blob: ba19a37b857693c283559a96497148e59f39e7a6 [file] [log] [blame]
/// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/writer/glsl/generator_impl.h"
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <set>
#include <utility>
#include <vector>
#include "src/tint/ast/call_statement.h"
#include "src/tint/ast/fallthrough_statement.h"
#include "src/tint/ast/id_attribute.h"
#include "src/tint/ast/internal_attribute.h"
#include "src/tint/ast/interpolate_attribute.h"
#include "src/tint/ast/variable_decl_statement.h"
#include "src/tint/debug.h"
#include "src/tint/sem/array.h"
#include "src/tint/sem/atomic.h"
#include "src/tint/sem/block_statement.h"
#include "src/tint/sem/call.h"
#include "src/tint/sem/constant.h"
#include "src/tint/sem/depth_multisampled_texture.h"
#include "src/tint/sem/depth_texture.h"
#include "src/tint/sem/function.h"
#include "src/tint/sem/member_accessor_expression.h"
#include "src/tint/sem/module.h"
#include "src/tint/sem/multisampled_texture.h"
#include "src/tint/sem/sampled_texture.h"
#include "src/tint/sem/statement.h"
#include "src/tint/sem/storage_texture.h"
#include "src/tint/sem/struct.h"
#include "src/tint/sem/type_constructor.h"
#include "src/tint/sem/type_conversion.h"
#include "src/tint/sem/variable.h"
#include "src/tint/transform/add_empty_entry_point.h"
#include "src/tint/transform/add_spirv_block_attribute.h"
#include "src/tint/transform/binding_remapper.h"
#include "src/tint/transform/builtin_polyfill.h"
#include "src/tint/transform/canonicalize_entry_point_io.h"
#include "src/tint/transform/combine_samplers.h"
#include "src/tint/transform/decompose_memory_access.h"
#include "src/tint/transform/disable_uniformity_analysis.h"
#include "src/tint/transform/expand_compound_assignment.h"
#include "src/tint/transform/fold_trivial_single_use_lets.h"
#include "src/tint/transform/loop_to_for_loop.h"
#include "src/tint/transform/manager.h"
#include "src/tint/transform/promote_initializers_to_const_var.h"
#include "src/tint/transform/promote_side_effects_to_decl.h"
#include "src/tint/transform/remove_phonies.h"
#include "src/tint/transform/renamer.h"
#include "src/tint/transform/simplify_pointers.h"
#include "src/tint/transform/single_entry_point.h"
#include "src/tint/transform/unshadow.h"
#include "src/tint/transform/unwind_discard_functions.h"
#include "src/tint/transform/zero_init_workgroup_memory.h"
#include "src/tint/utils/defer.h"
#include "src/tint/utils/map.h"
#include "src/tint/utils/scoped_assignment.h"
#include "src/tint/writer/append_vector.h"
#include "src/tint/writer/float_to_string.h"
#include "src/tint/writer/generate_external_texture_bindings.h"
using namespace tint::number_suffixes; // NOLINT
namespace {
bool IsRelational(tint::ast::BinaryOp op) {
return op == tint::ast::BinaryOp::kEqual || op == tint::ast::BinaryOp::kNotEqual ||
op == tint::ast::BinaryOp::kLessThan || op == tint::ast::BinaryOp::kGreaterThan ||
op == tint::ast::BinaryOp::kLessThanEqual ||
op == tint::ast::BinaryOp::kGreaterThanEqual;
}
bool RequiresOESSampleVariables(tint::ast::Builtin builtin) {
switch (builtin) {
case tint::ast::Builtin::kSampleIndex:
case tint::ast::Builtin::kSampleMask:
return true;
default:
return false;
}
}
} // namespace
namespace tint::writer::glsl {
namespace {
const char kTempNamePrefix[] = "tint_tmp";
const char kSpecConstantPrefix[] = "WGSL_SPEC_CONSTANT_";
bool last_is_break_or_fallthrough(const ast::BlockStatement* stmts) {
return IsAnyOf<ast::BreakStatement, ast::FallthroughStatement>(stmts->Last());
}
const char* convert_texel_format_to_glsl(const ast::TexelFormat format) {
switch (format) {
case ast::TexelFormat::kR32Uint:
return "r32ui";
case ast::TexelFormat::kR32Sint:
return "r32i";
case ast::TexelFormat::kR32Float:
return "r32f";
case ast::TexelFormat::kRgba8Unorm:
return "rgba8";
case ast::TexelFormat::kRgba8Snorm:
return "rgba8_snorm";
case ast::TexelFormat::kRgba8Uint:
return "rgba8ui";
case ast::TexelFormat::kRgba8Sint:
return "rgba8i";
case ast::TexelFormat::kRg32Uint:
return "rg32ui";
case ast::TexelFormat::kRg32Sint:
return "rg32i";
case ast::TexelFormat::kRg32Float:
return "rg32f";
case ast::TexelFormat::kRgba16Uint:
return "rgba16ui";
case ast::TexelFormat::kRgba16Sint:
return "rgba16i";
case ast::TexelFormat::kRgba16Float:
return "rgba16f";
case ast::TexelFormat::kRgba32Uint:
return "rgba32ui";
case ast::TexelFormat::kRgba32Sint:
return "rgba32i";
case ast::TexelFormat::kRgba32Float:
return "rgba32f";
case ast::TexelFormat::kNone:
return "unknown";
}
return "unknown";
}
void PrintF32(std::ostream& out, float value) {
// Note: Currently inf and nan should not be constructable, but this is implemented for the day
// we support them.
if (std::isinf(value)) {
out << (value >= 0 ? "uintBitsToFloat(0x7f800000u)" : "uintBitsToFloat(0xff800000u)");
} else if (std::isnan(value)) {
out << "uintBitsToFloat(0x7fc00000u)";
} else {
out << FloatToString(value) << "f";
}
}
} // namespace
SanitizedResult::SanitizedResult() = default;
SanitizedResult::~SanitizedResult() = default;
SanitizedResult::SanitizedResult(SanitizedResult&&) = default;
SanitizedResult Sanitize(const Program* in,
const Options& options,
const std::string& entry_point) {
transform::Manager manager;
transform::DataMap data;
manager.Add<transform::DisableUniformityAnalysis>();
{ // Builtin polyfills
transform::BuiltinPolyfill::Builtins polyfills;
polyfills.count_leading_zeros = true;
polyfills.count_trailing_zeros = true;
polyfills.extract_bits = transform::BuiltinPolyfill::Level::kClampParameters;
polyfills.first_leading_bit = true;
polyfills.first_trailing_bit = true;
polyfills.insert_bits = transform::BuiltinPolyfill::Level::kClampParameters;
data.Add<transform::BuiltinPolyfill::Config>(polyfills);
manager.Add<transform::BuiltinPolyfill>();
}
if (!entry_point.empty()) {
manager.Add<transform::SingleEntryPoint>();
data.Add<transform::SingleEntryPoint::Config>(entry_point);
}
manager.Add<transform::Renamer>();
data.Add<transform::Renamer::Config>(transform::Renamer::Target::kGlslKeywords,
/* preserve_unicode */ false);
manager.Add<transform::Unshadow>();
// Attempt to convert `loop`s into for-loops. This is to try and massage the
// output into something that will not cause FXC to choke or misbehave.
manager.Add<transform::FoldTrivialSingleUseLets>();
manager.Add<transform::LoopToForLoop>();
if (!options.disable_workgroup_init) {
// ZeroInitWorkgroupMemory must come before CanonicalizeEntryPointIO as
// ZeroInitWorkgroupMemory may inject new builtin parameters.
manager.Add<transform::ZeroInitWorkgroupMemory>();
}
manager.Add<transform::CanonicalizeEntryPointIO>();
manager.Add<transform::ExpandCompoundAssignment>();
manager.Add<transform::PromoteSideEffectsToDecl>();
manager.Add<transform::UnwindDiscardFunctions>();
manager.Add<transform::SimplifyPointers>();
manager.Add<transform::RemovePhonies>();
if (options.generate_external_texture_bindings) {
auto new_bindings_map = writer::GenerateExternalTextureBindings(in);
data.Add<transform::MultiplanarExternalTexture::NewBindingPoints>(new_bindings_map);
}
manager.Add<transform::MultiplanarExternalTexture>();
data.Add<transform::CombineSamplers::BindingInfo>(options.binding_map,
options.placeholder_binding_point);
manager.Add<transform::CombineSamplers>();
data.Add<transform::BindingRemapper::Remappings>(
options.binding_points, options.access_controls, options.allow_collisions);
manager.Add<transform::BindingRemapper>();
manager.Add<transform::PromoteInitializersToConstVar>();
manager.Add<transform::AddEmptyEntryPoint>();
manager.Add<transform::AddSpirvBlockAttribute>();
data.Add<transform::CanonicalizeEntryPointIO::Config>(
transform::CanonicalizeEntryPointIO::ShaderStyle::kGlsl);
auto out = manager.Run(in, data);
SanitizedResult result;
result.program = std::move(out.program);
return result;
}
GeneratorImpl::GeneratorImpl(const Program* program, const Version& version)
: TextGenerator(program), version_(version) {}
GeneratorImpl::~GeneratorImpl() = default;
bool GeneratorImpl::Generate() {
{
auto out = line();
out << "#version " << version_.major_version << version_.minor_version << "0";
if (version_.IsES()) {
out << " es";
}
}
auto helpers_insertion_point = current_buffer_->lines.size();
line();
auto* mod = builder_.Sem().Module();
for (auto* decl : mod->DependencyOrderedDeclarations()) {
if (decl->Is<ast::Alias>()) {
continue; // Ignore aliases.
}
if (auto* global = decl->As<ast::Variable>()) {
if (!EmitGlobalVariable(global)) {
return false;
}
} else if (auto* str = decl->As<ast::Struct>()) {
// Skip emission if the struct contains a runtime-sized array, since its
// only use will be as the store-type of a buffer and we emit those
// elsewhere.
// TODO(crbug.com/tint/1339): We could also avoid emitting any other
// struct that is only used as a buffer store type.
const sem::Struct* sem_str = builder_.Sem().Get(str);
const auto& members = sem_str->Members();
TINT_ASSERT(Writer, members.size() > 0);
auto* last_member = members[members.size() - 1];
auto* arr = last_member->Type()->As<sem::Array>();
if (!arr || !arr->IsRuntimeSized()) {
if (!EmitStructType(current_buffer_, sem_str)) {
return false;
}
}
} else if (auto* func = decl->As<ast::Function>()) {
if (func->IsEntryPoint()) {
if (!EmitEntryPointFunction(func)) {
return false;
}
} else {
if (!EmitFunction(func)) {
return false;
}
}
} else if (auto* ext = decl->As<ast::Enable>()) {
// Record the required extension for generating extension directive later
if (!RecordExtension(ext)) {
return false;
}
} else {
TINT_ICE(Writer, diagnostics_)
<< "unhandled module-scope declaration: " << decl->TypeInfo().name;
return false;
}
}
TextBuffer extensions;
if (version_.IsES() && requires_oes_sample_variables_) {
extensions.Append("#extension GL_OES_sample_variables : require");
}
auto indent = current_buffer_->current_indent;
if (!extensions.lines.empty()) {
current_buffer_->Insert(extensions, helpers_insertion_point, indent);
helpers_insertion_point += extensions.lines.size();
}
if (version_.IsES() && requires_default_precision_qualifier_) {
current_buffer_->Insert("precision mediump float;", helpers_insertion_point++, indent);
}
if (!helpers_.lines.empty()) {
current_buffer_->Insert("", helpers_insertion_point++, indent);
current_buffer_->Insert(helpers_, helpers_insertion_point, indent);
helpers_insertion_point += helpers_.lines.size();
}
return true;
}
bool GeneratorImpl::RecordExtension(const ast::Enable*) {
/*
Deal with extension node here, recording it within the generator for
later emition.
For example:
```
if (ext->kind == ast::Enable::ExtensionKind::kF16) {
require_fp16_ = true;
}
```
*/
return true;
}
bool GeneratorImpl::EmitIndexAccessor(std::ostream& out, const ast::IndexAccessorExpression* expr) {
if (!EmitExpression(out, expr->object)) {
return false;
}
out << "[";
if (!EmitExpression(out, expr->index)) {
return false;
}
out << "]";
return true;
}
bool GeneratorImpl::EmitBitcast(std::ostream& out, const ast::BitcastExpression* expr) {
auto* src_type = TypeOf(expr->expr)->UnwrapRef();
auto* dst_type = TypeOf(expr)->UnwrapRef();
if (!dst_type->is_integer_scalar_or_vector() && !dst_type->is_float_scalar_or_vector()) {
diagnostics_.add_error(
diag::System::Writer,
"Unable to do bitcast to type " + dst_type->FriendlyName(builder_.Symbols()));
return false;
}
if (src_type == dst_type) {
return EmitExpression(out, expr->expr);
}
if (src_type->is_float_scalar_or_vector() && dst_type->is_signed_scalar_or_vector()) {
out << "floatBitsToInt";
} else if (src_type->is_float_scalar_or_vector() && dst_type->is_unsigned_scalar_or_vector()) {
out << "floatBitsToUint";
} else if (src_type->is_signed_scalar_or_vector() && dst_type->is_float_scalar_or_vector()) {
out << "intBitsToFloat";
} else if (src_type->is_unsigned_scalar_or_vector() && dst_type->is_float_scalar_or_vector()) {
out << "uintBitsToFloat";
} else {
if (!EmitType(out, dst_type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) {
return false;
}
}
out << "(";
if (!EmitExpression(out, expr->expr)) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitAssign(const ast::AssignmentStatement* stmt) {
auto out = line();
if (!EmitExpression(out, stmt->lhs)) {
return false;
}
out << " = ";
if (!EmitExpression(out, stmt->rhs)) {
return false;
}
out << ";";
return true;
}
bool GeneratorImpl::EmitVectorRelational(std::ostream& out, const ast::BinaryExpression* expr) {
switch (expr->op) {
case ast::BinaryOp::kEqual:
out << "equal";
break;
case ast::BinaryOp::kNotEqual:
out << "notEqual";
break;
case ast::BinaryOp::kLessThan:
out << "lessThan";
break;
case ast::BinaryOp::kGreaterThan:
out << "greaterThan";
break;
case ast::BinaryOp::kLessThanEqual:
out << "lessThanEqual";
break;
case ast::BinaryOp::kGreaterThanEqual:
out << "greaterThanEqual";
break;
default:
break;
}
out << "(";
if (!EmitExpression(out, expr->lhs)) {
return false;
}
out << ", ";
if (!EmitExpression(out, expr->rhs)) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitBitwiseBoolOp(std::ostream& out, const ast::BinaryExpression* expr) {
auto* bool_type = TypeOf(expr->lhs)->UnwrapRef();
auto* uint_type = BoolTypeToUint(bool_type);
// Cast result to bool scalar or vector type.
if (!EmitType(out, bool_type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) {
return false;
}
ScopedParen outerCastParen(out);
// Cast LHS to uint scalar or vector type.
if (!EmitType(out, uint_type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) {
return false;
}
{
ScopedParen innerCastParen(out);
// Emit LHS.
if (!EmitExpression(out, expr->lhs)) {
return false;
}
}
// Emit operator.
if (expr->op == ast::BinaryOp::kAnd) {
out << " & ";
} else if (expr->op == ast::BinaryOp::kOr) {
out << " | ";
} else {
TINT_ICE(Writer, diagnostics_) << "unexpected binary op: " << FriendlyName(expr->op);
return false;
}
// Cast RHS to uint scalar or vector type.
if (!EmitType(out, uint_type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) {
return false;
}
{
ScopedParen innerCastParen(out);
// Emit RHS.
if (!EmitExpression(out, expr->rhs)) {
return false;
}
}
return true;
}
bool GeneratorImpl::EmitFloatModulo(std::ostream& out, const ast::BinaryExpression* expr) {
std::string fn;
auto* ret_ty = TypeOf(expr)->UnwrapRef();
fn = utils::GetOrCreate(float_modulo_funcs_, ret_ty, [&]() -> std::string {
TextBuffer b;
TINT_DEFER(helpers_.Append(b));
auto fn_name = UniqueIdentifier("tint_float_modulo");
std::vector<std::string> parameter_names;
{
auto decl = line(&b);
if (!EmitTypeAndName(decl, ret_ty, ast::StorageClass::kNone, ast::Access::kUndefined,
fn_name)) {
return "";
}
{
ScopedParen sp(decl);
const auto* ty = TypeOf(expr->lhs)->UnwrapRef();
if (!EmitTypeAndName(decl, ty, ast::StorageClass::kNone, ast::Access::kUndefined,
"lhs")) {
return "";
}
decl << ", ";
ty = TypeOf(expr->rhs)->UnwrapRef();
if (!EmitTypeAndName(decl, ty, ast::StorageClass::kNone, ast::Access::kUndefined,
"rhs")) {
return "";
}
}
decl << " {";
}
{
ScopedIndent si(&b);
line(&b) << "return (lhs - rhs * trunc(lhs / rhs));";
}
line(&b) << "}";
line(&b);
return fn_name;
});
if (fn.empty()) {
return false;
}
// Call the helper
out << fn;
{
ScopedParen sp(out);
if (!EmitExpression(out, expr->lhs)) {
return false;
}
out << ", ";
if (!EmitExpression(out, expr->rhs)) {
return false;
}
}
return true;
}
bool GeneratorImpl::EmitBinary(std::ostream& out, const ast::BinaryExpression* expr) {
if (IsRelational(expr->op) && !TypeOf(expr->lhs)->UnwrapRef()->is_scalar()) {
return EmitVectorRelational(out, expr);
}
if (expr->op == ast::BinaryOp::kLogicalAnd || expr->op == ast::BinaryOp::kLogicalOr) {
auto name = UniqueIdentifier(kTempNamePrefix);
{
auto pre = line();
pre << "bool " << name << " = ";
if (!EmitExpression(pre, expr->lhs)) {
return false;
}
pre << ";";
}
if (expr->op == ast::BinaryOp::kLogicalOr) {
line() << "if (!" << name << ") {";
} else {
line() << "if (" << name << ") {";
}
{
ScopedIndent si(this);
auto pre = line();
pre << name << " = ";
if (!EmitExpression(pre, expr->rhs)) {
return false;
}
pre << ";";
}
line() << "}";
out << "(" << name << ")";
return true;
}
if ((expr->op == ast::BinaryOp::kAnd || expr->op == ast::BinaryOp::kOr) &&
TypeOf(expr->lhs)->UnwrapRef()->is_bool_scalar_or_vector()) {
return EmitBitwiseBoolOp(out, expr);
}
if (expr->op == ast::BinaryOp::kModulo &&
(TypeOf(expr->lhs)->UnwrapRef()->is_float_scalar_or_vector() ||
TypeOf(expr->rhs)->UnwrapRef()->is_float_scalar_or_vector())) {
return EmitFloatModulo(out, expr);
}
out << "(";
if (!EmitExpression(out, expr->lhs)) {
return false;
}
out << " ";
switch (expr->op) {
case ast::BinaryOp::kAnd:
out << "&";
break;
case ast::BinaryOp::kOr:
out << "|";
break;
case ast::BinaryOp::kXor:
out << "^";
break;
case ast::BinaryOp::kLogicalAnd:
case ast::BinaryOp::kLogicalOr: {
// These are both handled above.
TINT_UNREACHABLE(Writer, diagnostics_);
return false;
}
case ast::BinaryOp::kEqual:
out << "==";
break;
case ast::BinaryOp::kNotEqual:
out << "!=";
break;
case ast::BinaryOp::kLessThan:
out << "<";
break;
case ast::BinaryOp::kGreaterThan:
out << ">";
break;
case ast::BinaryOp::kLessThanEqual:
out << "<=";
break;
case ast::BinaryOp::kGreaterThanEqual:
out << ">=";
break;
case ast::BinaryOp::kShiftLeft:
out << "<<";
break;
case ast::BinaryOp::kShiftRight:
// TODO(dsinclair): MSL is based on C++14, and >> in C++14 has
// implementation-defined behaviour for negative LHS. We may have to
// generate extra code to implement WGSL-specified behaviour for negative
// LHS.
out << R"(>>)";
break;
case ast::BinaryOp::kAdd:
out << "+";
break;
case ast::BinaryOp::kSubtract:
out << "-";
break;
case ast::BinaryOp::kMultiply:
out << "*";
break;
case ast::BinaryOp::kDivide:
out << "/";
break;
case ast::BinaryOp::kModulo:
out << "%";
break;
case ast::BinaryOp::kNone:
diagnostics_.add_error(diag::System::Writer, "missing binary operation type");
return false;
}
out << " ";
if (!EmitExpression(out, expr->rhs)) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitStatements(const ast::StatementList& stmts) {
for (auto* s : stmts) {
if (!EmitStatement(s)) {
return false;
}
}
return true;
}
bool GeneratorImpl::EmitStatementsWithIndent(const ast::StatementList& stmts) {
ScopedIndent si(this);
return EmitStatements(stmts);
}
bool GeneratorImpl::EmitBlock(const ast::BlockStatement* stmt) {
line() << "{";
if (!EmitStatementsWithIndent(stmt->statements)) {
return false;
}
line() << "}";
return true;
}
bool GeneratorImpl::EmitBreak(const ast::BreakStatement*) {
line() << "break;";
return true;
}
bool GeneratorImpl::EmitCall(std::ostream& out, const ast::CallExpression* expr) {
auto* call = builder_.Sem().Get<sem::Call>(expr);
auto* target = call->Target();
if (target->Is<sem::Function>()) {
return EmitFunctionCall(out, call);
}
if (auto* builtin = target->As<sem::Builtin>()) {
return EmitBuiltinCall(out, call, builtin);
}
if (auto* cast = target->As<sem::TypeConversion>()) {
return EmitTypeConversion(out, call, cast);
}
if (auto* ctor = target->As<sem::TypeConstructor>()) {
return EmitTypeConstructor(out, call, ctor);
}
TINT_ICE(Writer, diagnostics_) << "unhandled call target: " << target->TypeInfo().name;
return false;
}
bool GeneratorImpl::EmitFunctionCall(std::ostream& out, const sem::Call* call) {
const auto& args = call->Arguments();
auto* decl = call->Declaration();
auto* ident = decl->target.name;
auto name = builder_.Symbols().NameFor(ident->symbol);
auto caller_sym = ident->symbol;
out << name << "(";
bool first = true;
for (auto* arg : args) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(out, arg->Declaration())) {
return false;
}
}
out << ")";
return true;
}
bool GeneratorImpl::EmitBuiltinCall(std::ostream& out,
const sem::Call* call,
const sem::Builtin* builtin) {
auto* expr = call->Declaration();
if (builtin->IsTexture()) {
return EmitTextureCall(out, call, builtin);
}
if (builtin->Type() == sem::BuiltinType::kCountOneBits) {
return EmitCountOneBitsCall(out, expr);
}
if (builtin->Type() == sem::BuiltinType::kSelect) {
return EmitSelectCall(out, expr);
}
if (builtin->Type() == sem::BuiltinType::kDot) {
return EmitDotCall(out, expr, builtin);
}
if (builtin->Type() == sem::BuiltinType::kModf) {
return EmitModfCall(out, expr, builtin);
}
if (builtin->Type() == sem::BuiltinType::kFrexp) {
return EmitFrexpCall(out, expr, builtin);
}
if (builtin->Type() == sem::BuiltinType::kDegrees) {
return EmitDegreesCall(out, expr, builtin);
}
if (builtin->Type() == sem::BuiltinType::kRadians) {
return EmitRadiansCall(out, expr, builtin);
}
if (builtin->Type() == sem::BuiltinType::kArrayLength) {
return EmitArrayLength(out, expr);
}
if (builtin->Type() == sem::BuiltinType::kExtractBits) {
return EmitExtractBits(out, expr);
}
if (builtin->Type() == sem::BuiltinType::kInsertBits) {
return EmitInsertBits(out, expr);
}
if (builtin->Type() == sem::BuiltinType::kFma && version_.IsES()) {
return EmitEmulatedFMA(out, expr);
}
if (builtin->Type() == sem::BuiltinType::kAbs &&
TypeOf(expr->args[0])->UnwrapRef()->is_unsigned_scalar_or_vector()) {
// GLSL does not support abs() on unsigned arguments. However, it's a no-op.
return EmitExpression(out, expr->args[0]);
}
if ((builtin->Type() == sem::BuiltinType::kAny || builtin->Type() == sem::BuiltinType::kAll) &&
TypeOf(expr->args[0])->UnwrapRef()->is_scalar()) {
// GLSL does not support any() or all() on scalar arguments. It's a no-op.
return EmitExpression(out, expr->args[0]);
}
if (builtin->IsBarrier()) {
return EmitBarrierCall(out, builtin);
}
if (builtin->IsAtomic()) {
return EmitWorkgroupAtomicCall(out, expr, builtin);
}
auto name = generate_builtin_name(builtin);
if (name.empty()) {
return false;
}
out << name << "(";
bool first = true;
for (auto* arg : call->Arguments()) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(out, arg->Declaration())) {
return false;
}
}
out << ")";
return true;
}
bool GeneratorImpl::EmitTypeConversion(std::ostream& out,
const sem::Call* call,
const sem::TypeConversion* conv) {
if (!EmitType(out, conv->Target(), ast::StorageClass::kNone, ast::Access::kReadWrite, "")) {
return false;
}
out << "(";
if (!EmitExpression(out, call->Arguments()[0]->Declaration())) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitTypeConstructor(std::ostream& out,
const sem::Call* call,
const sem::TypeConstructor* ctor) {
auto* type = ctor->ReturnType();
// If the type constructor is empty then we need to construct with the zero
// value for all components.
if (call->Arguments().empty()) {
return EmitZeroValue(out, type);
}
auto it = structure_builders_.find(As<sem::Struct>(type));
if (it != structure_builders_.end()) {
out << it->second << "(";
} else {
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) {
return false;
}
out << "(";
}
bool first = true;
for (auto* arg : call->Arguments()) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(out, arg->Declaration())) {
return false;
}
}
out << ")";
return true;
}
bool GeneratorImpl::EmitWorkgroupAtomicCall(std::ostream& out,
const ast::CallExpression* expr,
const sem::Builtin* builtin) {
auto call = [&](const char* name) {
out << name;
{
ScopedParen sp(out);
for (size_t i = 0; i < expr->args.size(); i++) {
auto* arg = expr->args[i];
if (i > 0) {
out << ", ";
}
if (!EmitExpression(out, arg)) {
return false;
}
}
}
return true;
};
switch (builtin->Type()) {
case sem::BuiltinType::kAtomicLoad: {
// GLSL does not have an atomicLoad, so we emulate it with
// atomicOr using 0 as the OR value
out << "atomicOr";
{
ScopedParen sp(out);
if (!EmitExpression(out, expr->args[0])) {
return false;
}
out << ", 0";
if (builtin->ReturnType()->Is<sem::U32>()) {
out << "u";
}
}
return true;
}
case sem::BuiltinType::kAtomicCompareExchangeWeak: {
// Emit the builtin return type unique to this overload. This does not
// exist in the AST, so it will not be generated in Generate().
if (!EmitStructTypeOnce(&helpers_, builtin->ReturnType()->As<sem::Struct>())) {
return false;
}
auto* dest = expr->args[0];
auto* compare_value = expr->args[1];
auto* value = expr->args[2];
std::string result = UniqueIdentifier("atomic_compare_result");
{
auto pre = line();
if (!EmitTypeAndName(pre, builtin->ReturnType(), ast::StorageClass::kNone,
ast::Access::kUndefined, result)) {
return false;
}
pre << ";";
}
{
auto pre = line();
pre << result << ".old_value = atomicCompSwap";
{
ScopedParen sp(pre);
if (!EmitExpression(pre, dest)) {
return false;
}
pre << ", ";
if (!EmitExpression(pre, compare_value)) {
return false;
}
pre << ", ";
if (!EmitExpression(pre, value)) {
return false;
}
}
pre << ";";
}
{
auto pre = line();
pre << result << ".exchanged = " << result << ".old_value == ";
if (!EmitExpression(pre, compare_value)) {
return false;
}
pre << ";";
}
out << result;
return true;
}
case sem::BuiltinType::kAtomicAdd:
case sem::BuiltinType::kAtomicSub:
return call("atomicAdd");
case sem::BuiltinType::kAtomicMax:
return call("atomicMax");
case sem::BuiltinType::kAtomicMin:
return call("atomicMin");
case sem::BuiltinType::kAtomicAnd:
return call("atomicAnd");
case sem::BuiltinType::kAtomicOr:
return call("atomicOr");
case sem::BuiltinType::kAtomicXor:
return call("atomicXor");
case sem::BuiltinType::kAtomicExchange:
case sem::BuiltinType::kAtomicStore:
// GLSL does not have an atomicStore, so we emulate it with
// atomicExchange.
return call("atomicExchange");
default:
break;
}
TINT_UNREACHABLE(Writer, diagnostics_) << "unsupported atomic builtin: " << builtin->Type();
return false;
}
bool GeneratorImpl::EmitArrayLength(std::ostream& out, const ast::CallExpression* expr) {
out << "uint(";
if (!EmitExpression(out, expr->args[0])) {
return false;
}
out << ".length())";
return true;
}
bool GeneratorImpl::EmitExtractBits(std::ostream& out, const ast::CallExpression* expr) {
out << "bitfieldExtract(";
if (!EmitExpression(out, expr->args[0])) {
return false;
}
out << ", int(";
if (!EmitExpression(out, expr->args[1])) {
return false;
}
out << "), int(";
if (!EmitExpression(out, expr->args[2])) {
return false;
}
out << "))";
return true;
}
bool GeneratorImpl::EmitInsertBits(std::ostream& out, const ast::CallExpression* expr) {
out << "bitfieldInsert(";
if (!EmitExpression(out, expr->args[0])) {
return false;
}
out << ", ";
if (!EmitExpression(out, expr->args[1])) {
return false;
}
out << ", int(";
if (!EmitExpression(out, expr->args[2])) {
return false;
}
out << "), int(";
if (!EmitExpression(out, expr->args[3])) {
return false;
}
out << "))";
return true;
}
bool GeneratorImpl::EmitEmulatedFMA(std::ostream& out, const ast::CallExpression* expr) {
out << "((";
if (!EmitExpression(out, expr->args[0])) {
return false;
}
out << ") * (";
if (!EmitExpression(out, expr->args[1])) {
return false;
}
out << ") + (";
if (!EmitExpression(out, expr->args[2])) {
return false;
}
out << "))";
return true;
}
bool GeneratorImpl::EmitCountOneBitsCall(std::ostream& out, const ast::CallExpression* expr) {
// GLSL's bitCount returns an integer type, so cast it to the appropriate
// unsigned type.
if (!EmitType(out, TypeOf(expr)->UnwrapRef(), ast::StorageClass::kNone, ast::Access::kReadWrite,
"")) {
return false;
}
out << "(bitCount(";
if (!EmitExpression(out, expr->args[0])) {
return false;
}
out << "))";
return true;
}
bool GeneratorImpl::EmitSelectCall(std::ostream& out, const ast::CallExpression* expr) {
auto* expr_false = expr->args[0];
auto* expr_true = expr->args[1];
auto* expr_cond = expr->args[2];
// GLSL does not support ternary expressions with a bool vector conditional,
// but it does support mix() with same.
if (TypeOf(expr_cond)->UnwrapRef()->is_bool_vector()) {
out << "mix(";
if (!EmitExpression(out, expr_false)) {
return false;
}
out << ", ";
if (!EmitExpression(out, expr_true)) {
return false;
}
out << ", ";
if (!EmitExpression(out, expr_cond)) {
return false;
}
out << ")";
return true;
}
ScopedParen paren(out);
if (!EmitExpression(out, expr_cond)) {
return false;
}
out << " ? ";
if (!EmitExpression(out, expr_true)) {
return false;
}
out << " : ";
if (!EmitExpression(out, expr_false)) {
return false;
}
return true;
}
bool GeneratorImpl::EmitDotCall(std::ostream& out,
const ast::CallExpression* expr,
const sem::Builtin* builtin) {
auto* vec_ty = builtin->Parameters()[0]->Type()->As<sem::Vector>();
std::string fn = "dot";
if (vec_ty->type()->is_integer_scalar()) {
// GLSL does not have a builtin for dot() with integer vector types.
// Generate the helper function if it hasn't been created already
fn = utils::GetOrCreate(int_dot_funcs_, vec_ty, [&]() -> std::string {
TextBuffer b;
TINT_DEFER(helpers_.Append(b));
auto fn_name = UniqueIdentifier("tint_int_dot");
std::string v;
{
std::stringstream s;
if (!EmitType(s, vec_ty->type(), ast::StorageClass::kNone, ast::Access::kRead,
"")) {
return "";
}
v = s.str();
}
{ // (u)int tint_int_dot([i|u]vecN a, [i|u]vecN b) {
auto l = line(&b);
if (!EmitType(l, vec_ty->type(), ast::StorageClass::kNone, ast::Access::kRead,
"")) {
return "";
}
l << " " << fn_name << "(";
if (!EmitType(l, vec_ty, ast::StorageClass::kNone, ast::Access::kRead, "")) {
return "";
}
l << " a, ";
if (!EmitType(l, vec_ty, ast::StorageClass::kNone, ast::Access::kRead, "")) {
return "";
}
l << " b) {";
}
{
auto l = line(&b);
l << " return ";
for (uint32_t i = 0; i < vec_ty->Width(); i++) {
if (i > 0) {
l << " + ";
}
l << "a[" << i << "]*b[" << i << "]";
}
l << ";";
}
line(&b) << "}";
return fn_name;
});
if (fn.empty()) {
return false;
}
}
out << fn << "(";
if (!EmitExpression(out, expr->args[0])) {
return false;
}
out << ", ";
if (!EmitExpression(out, expr->args[1])) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitModfCall(std::ostream& out,
const ast::CallExpression* expr,
const sem::Builtin* builtin) {
if (expr->args.size() == 1) {
return CallBuiltinHelper(
out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) {
// Emit the builtin return type unique to this overload. This does not
// exist in the AST, so it will not be generated in Generate().
if (!EmitStructType(&helpers_, builtin->ReturnType()->As<sem::Struct>())) {
return false;
}
{
auto l = line(b);
if (!EmitType(l, builtin->ReturnType(), ast::StorageClass::kNone,
ast::Access::kUndefined, "")) {
return false;
}
l << " result;";
}
line(b) << "result.fract = modf(" << params[0] << ", result.whole);";
line(b) << "return result;";
return true;
});
}
// DEPRECATED
out << "modf";
ScopedParen sp(out);
if (!EmitExpression(out, expr->args[0])) {
return false;
}
out << ", ";
if (!EmitExpression(out, expr->args[1])) {
return false;
}
return true;
}
bool GeneratorImpl::EmitFrexpCall(std::ostream& out,
const ast::CallExpression* expr,
const sem::Builtin* builtin) {
if (expr->args.size() == 1) {
return CallBuiltinHelper(
out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) {
// Emit the builtin return type unique to this overload. This does not
// exist in the AST, so it will not be generated in Generate().
if (!EmitStructType(&helpers_, builtin->ReturnType()->As<sem::Struct>())) {
return false;
}
{
auto l = line(b);
if (!EmitType(l, builtin->ReturnType(), ast::StorageClass::kNone,
ast::Access::kUndefined, "")) {
return false;
}
l << " result;";
}
line(b) << "result.sig = frexp(" << params[0] << ", result.exp);";
line(b) << "return result;";
return true;
});
}
// DEPRECATED
// Exponent is an integer in WGSL, but HLSL wants a float.
// We need to make the call with a temporary float, and then cast.
return CallBuiltinHelper(
out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) {
auto* significand_ty = builtin->Parameters()[0]->Type();
auto significand = params[0];
auto* exponent_ty = builtin->Parameters()[1]->Type();
auto exponent = params[1];
std::string width;
if (auto* vec = significand_ty->As<sem::Vector>()) {
width = std::to_string(vec->Width());
}
// Exponent is an integer, which HLSL does not have an overload for.
// We need to cast from a float.
line(b) << "float" << width << " float_exp;";
line(b) << "float" << width << " significand = frexp(" << significand
<< ", float_exp);";
{
auto l = line(b);
l << exponent << " = ";
if (!EmitType(l, exponent_ty->UnwrapPtr(), ast::StorageClass::kNone,
ast::Access::kUndefined, "")) {
return false;
}
l << "(float_exp);";
}
line(b) << "return significand;";
return true;
});
}
bool GeneratorImpl::EmitDegreesCall(std::ostream& out,
const ast::CallExpression* expr,
const sem::Builtin* builtin) {
return CallBuiltinHelper(out, expr, builtin,
[&](TextBuffer* b, const std::vector<std::string>& params) {
line(b) << "return " << params[0] << " * " << std::setprecision(20)
<< sem::kRadToDeg << ";";
return true;
});
}
bool GeneratorImpl::EmitRadiansCall(std::ostream& out,
const ast::CallExpression* expr,
const sem::Builtin* builtin) {
return CallBuiltinHelper(out, expr, builtin,
[&](TextBuffer* b, const std::vector<std::string>& params) {
line(b) << "return " << params[0] << " * " << std::setprecision(20)
<< sem::kDegToRad << ";";
return true;
});
}
bool GeneratorImpl::EmitBarrierCall(std::ostream& out, const sem::Builtin* builtin) {
// TODO(crbug.com/tint/661): Combine sequential barriers to a single
// instruction.
if (builtin->Type() == sem::BuiltinType::kWorkgroupBarrier) {
out << "barrier()";
} else if (builtin->Type() == sem::BuiltinType::kStorageBarrier) {
out << "{ barrier(); memoryBarrierBuffer(); }";
} else {
TINT_UNREACHABLE(Writer, diagnostics_)
<< "unexpected barrier builtin type " << sem::str(builtin->Type());
return false;
}
return true;
}
const ast::Expression* GeneratorImpl::CreateF32Zero(const sem::Statement* stmt) {
auto* zero = builder_.Expr(0_f);
auto* f32 = builder_.create<sem::F32>();
auto* sem_zero = builder_.create<sem::Expression>(zero, f32, stmt, sem::Constant{},
/* has_side_effects */ false);
builder_.Sem().Add(zero, sem_zero);
return zero;
}
bool GeneratorImpl::EmitTextureCall(std::ostream& out,
const sem::Call* call,
const sem::Builtin* builtin) {
using Usage = sem::ParameterUsage;
auto& signature = builtin->Signature();
auto* expr = call->Declaration();
auto arguments = expr->args;
// Returns the argument with the given usage
auto arg = [&](Usage usage) {
int idx = signature.IndexOf(usage);
return (idx >= 0) ? arguments[idx] : nullptr;
};
auto* texture = arg(Usage::kTexture);
if (!texture) {
TINT_ICE(Writer, diagnostics_) << "missing texture argument";
return false;
}
auto* texture_type = TypeOf(texture)->UnwrapRef()->As<sem::Texture>();
switch (builtin->Type()) {
case sem::BuiltinType::kTextureDimensions: {
if (texture_type->Is<sem::StorageTexture>()) {
out << "imageSize(";
} else {
out << "textureSize(";
}
if (!EmitExpression(out, texture)) {
return false;
}
// The LOD parameter is mandatory on textureSize() for non-multisampled
// textures.
if (!texture_type->Is<sem::StorageTexture>() &&
!texture_type->Is<sem::MultisampledTexture>() &&
!texture_type->Is<sem::DepthMultisampledTexture>()) {
out << ", ";
if (auto* level_arg = arg(Usage::kLevel)) {
if (!EmitExpression(out, level_arg)) {
return false;
}
} else {
out << "0";
}
}
out << ")";
// textureSize() on array samplers returns the array size in the
// final component, so strip it out.
if (texture_type->dim() == ast::TextureDimension::k2dArray ||
texture_type->dim() == ast::TextureDimension::kCubeArray) {
out << ".xy";
}
return true;
}
case sem::BuiltinType::kTextureNumLayers: {
if (texture_type->Is<sem::StorageTexture>()) {
out << "imageSize(";
} else {
out << "textureSize(";
}
// textureSize() on sampler2dArray returns the array size in the
// final component, so return it
if (!EmitExpression(out, texture)) {
return false;
}
// The LOD parameter is mandatory on textureSize() for non-multisampled
// textures.
if (!texture_type->Is<sem::StorageTexture>() &&
!texture_type->Is<sem::MultisampledTexture>() &&
!texture_type->Is<sem::DepthMultisampledTexture>()) {
out << ", ";
if (auto* level_arg = arg(Usage::kLevel)) {
if (!EmitExpression(out, level_arg)) {
return false;
}
} else {
out << "0";
}
}
out << ").z";
return true;
}
case sem::BuiltinType::kTextureNumLevels: {
out << "textureQueryLevels(";
if (!EmitExpression(out, texture)) {
return false;
}
out << ")";
return true;
}
case sem::BuiltinType::kTextureNumSamples: {
out << "textureSamples(";
if (!EmitExpression(out, texture)) {
return false;
}
out << ")";
return true;
}
default:
break;
}
uint32_t glsl_ret_width = 4u;
bool append_depth_ref_to_coords = true;
bool is_depth = texture_type->Is<sem::DepthTexture>();
switch (builtin->Type()) {
case sem::BuiltinType::kTextureSample:
case sem::BuiltinType::kTextureSampleBias:
out << "texture";
if (is_depth) {
glsl_ret_width = 1u;
}
break;
case sem::BuiltinType::kTextureSampleLevel:
out << "textureLod";
if (is_depth) {
glsl_ret_width = 1u;
}
break;
case sem::BuiltinType::kTextureGather:
case sem::BuiltinType::kTextureGatherCompare:
out << "textureGather";
append_depth_ref_to_coords = false;
break;
case sem::BuiltinType::kTextureSampleGrad:
out << "textureGrad";
break;
case sem::BuiltinType::kTextureSampleCompare:
case sem::BuiltinType::kTextureSampleCompareLevel:
out << "texture";
glsl_ret_width = 1;
break;
case sem::BuiltinType::kTextureLoad:
out << "texelFetch";
break;
case sem::BuiltinType::kTextureStore:
out << "imageStore";
break;
default:
diagnostics_.add_error(diag::System::Writer,
"Internal compiler error: Unhandled texture builtin '" +
std::string(builtin->str()) + "'");
return false;
}
if (builtin->Signature().IndexOf(sem::ParameterUsage::kOffset) >= 0) {
out << "Offset";
}
out << "(";
if (!EmitExpression(out, texture)) {
return false;
}
out << ", ";
auto* param_coords = arg(Usage::kCoords);
if (!param_coords) {
TINT_ICE(Writer, diagnostics_) << "missing coords argument";
return false;
}
if (auto* array_index = arg(Usage::kArrayIndex)) {
// Array index needs to be appended to the coordinates.
param_coords = AppendVector(&builder_, param_coords, array_index)->Declaration();
}
// GLSL requires Dref to be appended to the coordinates, *unless* it's
// samplerCubeArrayShadow, in which case it will be handled as a separate
// parameter.
if (texture_type->dim() == ast::TextureDimension::kCubeArray) {
append_depth_ref_to_coords = false;
}
if (is_depth && append_depth_ref_to_coords) {
auto* depth_ref = arg(Usage::kDepthRef);
if (!depth_ref) {
// Sampling a depth texture in GLSL always requires a depth reference, so
// append zero here.
depth_ref = CreateF32Zero(builder_.Sem().Get(param_coords)->Stmt());
}
param_coords = AppendVector(&builder_, param_coords, depth_ref)->Declaration();
}
if (!EmitExpression(out, param_coords)) {
return false;
}
for (auto usage :
{Usage::kLevel, Usage::kDdx, Usage::kDdy, Usage::kSampleIndex, Usage::kValue}) {
if (auto* e = arg(usage)) {
out << ", ";
if (usage == Usage::kLevel && is_depth) {
// WGSL's textureSampleLevel() "level" param is i32 for depth textures,
// whereas GLSL's textureLod() "lod" param is always float, so cast it.
out << "float(";
if (!EmitExpression(out, e)) {
return false;
}
out << ")";
} else if (!EmitExpression(out, e)) {
return false;
}
}
}
// GLSL's textureGather always requires a refZ parameter.
if (is_depth && builtin->Type() == sem::BuiltinType::kTextureGather) {
out << ", 0.0";
}
// [1] samplerCubeArrayShadow requires a separate depthRef parameter
if (is_depth && !append_depth_ref_to_coords) {
if (auto* e = arg(Usage::kDepthRef)) {
out << ", ";
if (!EmitExpression(out, e)) {
return false;
}
} else if (builtin->Type() == sem::BuiltinType::kTextureSample) {
out << ", 0.0f";
}
}
for (auto usage : {Usage::kOffset, Usage::kComponent, Usage::kBias}) {
if (auto* e = arg(usage)) {
out << ", ";
if (!EmitExpression(out, e)) {
return false;
}
}
}
out << ")";
if (builtin->ReturnType()->Is<sem::Void>()) {
return true;
}
// If the builtin return type does not match the number of elements of the
// GLSL builtin, we need to swizzle the expression to generate the correct
// number of components.
uint32_t wgsl_ret_width = 1;
if (auto* vec = builtin->ReturnType()->As<sem::Vector>()) {
wgsl_ret_width = vec->Width();
}
if (wgsl_ret_width < glsl_ret_width) {
out << ".";
for (uint32_t i = 0; i < wgsl_ret_width; i++) {
out << "xyz"[i];
}
}
if (wgsl_ret_width > glsl_ret_width) {
TINT_ICE(Writer, diagnostics_)
<< "WGSL return width (" << wgsl_ret_width << ") is wider than GLSL return width ("
<< glsl_ret_width << ") for " << builtin->Type();
return false;
}
return true;
}
std::string GeneratorImpl::generate_builtin_name(const sem::Builtin* builtin) {
switch (builtin->Type()) {
case sem::BuiltinType::kAbs:
case sem::BuiltinType::kAcos:
case sem::BuiltinType::kAll:
case sem::BuiltinType::kAny:
case sem::BuiltinType::kAsin:
case sem::BuiltinType::kAtan:
case sem::BuiltinType::kCeil:
case sem::BuiltinType::kClamp:
case sem::BuiltinType::kCos:
case sem::BuiltinType::kCosh:
case sem::BuiltinType::kCross:
case sem::BuiltinType::kDeterminant:
case sem::BuiltinType::kDistance:
case sem::BuiltinType::kDot:
case sem::BuiltinType::kExp:
case sem::BuiltinType::kExp2:
case sem::BuiltinType::kFloor:
case sem::BuiltinType::kFrexp:
case sem::BuiltinType::kLdexp:
case sem::BuiltinType::kLength:
case sem::BuiltinType::kLog:
case sem::BuiltinType::kLog2:
case sem::BuiltinType::kMax:
case sem::BuiltinType::kMin:
case sem::BuiltinType::kModf:
case sem::BuiltinType::kNormalize:
case sem::BuiltinType::kPow:
case sem::BuiltinType::kReflect:
case sem::BuiltinType::kRefract:
case sem::BuiltinType::kRound:
case sem::BuiltinType::kSign:
case sem::BuiltinType::kSin:
case sem::BuiltinType::kSinh:
case sem::BuiltinType::kSqrt:
case sem::BuiltinType::kStep:
case sem::BuiltinType::kTan:
case sem::BuiltinType::kTanh:
case sem::BuiltinType::kTranspose:
case sem::BuiltinType::kTrunc:
return builtin->str();
case sem::BuiltinType::kAtan2:
return "atan";
case sem::BuiltinType::kCountOneBits:
return "bitCount";
case sem::BuiltinType::kDpdx:
return "dFdx";
case sem::BuiltinType::kDpdxCoarse:
if (version_.IsES()) {
return "dFdx";
}
return "dFdxCoarse";
case sem::BuiltinType::kDpdxFine:
if (version_.IsES()) {
return "dFdx";
}
return "dFdxFine";
case sem::BuiltinType::kDpdy:
return "dFdy";
case sem::BuiltinType::kDpdyCoarse:
if (version_.IsES()) {
return "dFdy";
}
return "dFdyCoarse";
case sem::BuiltinType::kDpdyFine:
if (version_.IsES()) {
return "dFdy";
}
return "dFdyFine";
case sem::BuiltinType::kFaceForward:
return "faceforward";
case sem::BuiltinType::kFract:
return "fract";
case sem::BuiltinType::kFma:
return "fma";
case sem::BuiltinType::kFwidth:
case sem::BuiltinType::kFwidthCoarse:
case sem::BuiltinType::kFwidthFine:
return "fwidth";
case sem::BuiltinType::kInverseSqrt:
return "inversesqrt";
case sem::BuiltinType::kMix:
return "mix";
case sem::BuiltinType::kPack2x16float:
return "packHalf2x16";
case sem::BuiltinType::kPack2x16snorm:
return "packSnorm2x16";
case sem::BuiltinType::kPack2x16unorm:
return "packUnorm2x16";
case sem::BuiltinType::kPack4x8snorm:
return "packSnorm4x8";
case sem::BuiltinType::kPack4x8unorm:
return "packUnorm4x8";
case sem::BuiltinType::kReverseBits:
return "bitfieldReverse";
case sem::BuiltinType::kSmoothstep:
return "smoothstep";
case sem::BuiltinType::kUnpack2x16float:
return "unpackHalf2x16";
case sem::BuiltinType::kUnpack2x16snorm:
return "unpackSnorm2x16";
case sem::BuiltinType::kUnpack2x16unorm:
return "unpackUnorm2x16";
case sem::BuiltinType::kUnpack4x8snorm:
return "unpackSnorm4x8";
case sem::BuiltinType::kUnpack4x8unorm:
return "unpackUnorm4x8";
default:
diagnostics_.add_error(diag::System::Writer,
"Unknown builtin method: " + std::string(builtin->str()));
}
return "";
}
bool GeneratorImpl::EmitCase(const ast::CaseStatement* stmt) {
if (stmt->IsDefault()) {
line() << "default: {";
} else {
for (auto* selector : stmt->selectors) {
auto out = line();
out << "case ";
if (!EmitLiteral(out, selector)) {
return false;
}
out << ":";
if (selector == stmt->selectors.back()) {
out << " {";
}
}
}
{
ScopedIndent si(this);
if (!EmitStatements(stmt->body->statements)) {
return false;
}
if (!last_is_break_or_fallthrough(stmt->body)) {
line() << "break;";
}
}
line() << "}";
return true;
}
bool GeneratorImpl::EmitContinue(const ast::ContinueStatement*) {
if (!emit_continuing_ || !emit_continuing_()) {
return false;
}
line() << "continue;";
return true;
}
bool GeneratorImpl::EmitDiscard(const ast::DiscardStatement*) {
// TODO(dsinclair): Verify this is correct when the discard semantics are
// defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361)
line() << "discard;";
return true;
}
bool GeneratorImpl::EmitExpression(std::ostream& out, const ast::Expression* expr) {
if (auto* sem = builder_.Sem().Get(expr)) {
if (auto constant = sem->ConstantValue()) {
return EmitConstant(out, constant);
}
}
return Switch(
expr,
[&](const ast::IndexAccessorExpression* a) { //
return EmitIndexAccessor(out, a);
},
[&](const ast::BinaryExpression* b) { //
return EmitBinary(out, b);
},
[&](const ast::BitcastExpression* b) { //
return EmitBitcast(out, b);
},
[&](const ast::CallExpression* c) { //
return EmitCall(out, c);
},
[&](const ast::IdentifierExpression* i) { //
return EmitIdentifier(out, i);
},
[&](const ast::LiteralExpression* l) { //
return EmitLiteral(out, l);
},
[&](const ast::MemberAccessorExpression* m) { //
return EmitMemberAccessor(out, m);
},
[&](const ast::UnaryOpExpression* u) { //
return EmitUnaryOp(out, u);
},
[&](Default) { //
diagnostics_.add_error(diag::System::Writer, "unknown expression type: " +
std::string(expr->TypeInfo().name));
return false;
});
}
bool GeneratorImpl::EmitIdentifier(std::ostream& out, const ast::IdentifierExpression* expr) {
out << builder_.Symbols().NameFor(expr->symbol);
return true;
}
bool GeneratorImpl::EmitIf(const ast::IfStatement* stmt) {
{
auto out = line();
out << "if (";
if (!EmitExpression(out, stmt->condition)) {
return false;
}
out << ") {";
}
if (!EmitStatementsWithIndent(stmt->body->statements)) {
return false;
}
if (stmt->else_statement) {
line() << "} else {";
if (auto* block = stmt->else_statement->As<ast::BlockStatement>()) {
if (!EmitStatementsWithIndent(block->statements)) {
return false;
}
} else {
if (!EmitStatementsWithIndent({stmt->else_statement})) {
return false;
}
}
}
line() << "}";
return true;
}
bool GeneratorImpl::EmitFunction(const ast::Function* func) {
auto* sem = builder_.Sem().Get(func);
if (ast::HasAttribute<ast::InternalAttribute>(func->attributes)) {
// An internal function. Do not emit.
return true;
}
{
auto out = line();
auto name = builder_.Symbols().NameFor(func->symbol);
if (!EmitType(out, sem->ReturnType(), ast::StorageClass::kNone, ast::Access::kReadWrite,
"")) {
return false;
}
out << " " << name << "(";
bool first = true;
for (auto* v : sem->Parameters()) {
if (!first) {
out << ", ";
}
first = false;
auto const* type = v->Type();
if (auto* ptr = type->As<sem::Pointer>()) {
// Transform pointer parameters in to `inout` parameters.
// The WGSL spec is highly restrictive in what can be passed in pointer
// parameters, which allows for this transformation. See:
// https://gpuweb.github.io/gpuweb/wgsl/#function-restriction
out << "inout ";
type = ptr->StoreType();
}
// Note: WGSL only allows for StorageClass::kNone on parameters, however
// the sanitizer transforms generates load / store functions for storage
// or uniform buffers. These functions have a buffer parameter with
// StorageClass::kStorage or StorageClass::kUniform. This is required to
// correctly translate the parameter to a [RW]ByteAddressBuffer for
// storage buffers and a uint4[N] for uniform buffers.
if (!EmitTypeAndName(out, type, v->StorageClass(), v->Access(),
builder_.Symbols().NameFor(v->Declaration()->symbol))) {
return false;
}
}
out << ") {";
}
if (!EmitStatementsWithIndent(func->body->statements)) {
return false;
}
line() << "}";
line();
return true;
}
bool GeneratorImpl::EmitGlobalVariable(const ast::Variable* global) {
return Switch(
global, //
[&](const ast::Var* var) {
auto* sem = builder_.Sem().Get(global);
switch (sem->StorageClass()) {
case ast::StorageClass::kUniform:
return EmitUniformVariable(var, sem);
case ast::StorageClass::kStorage:
return EmitStorageVariable(var, sem);
case ast::StorageClass::kHandle:
return EmitHandleVariable(var, sem);
case ast::StorageClass::kPrivate:
return EmitPrivateVariable(sem);
case ast::StorageClass::kWorkgroup:
return EmitWorkgroupVariable(sem);
case ast::StorageClass::kInput:
case ast::StorageClass::kOutput:
return EmitIOVariable(sem);
default:
TINT_ICE(Writer, diagnostics_)
<< "unhandled storage class " << sem->StorageClass();
return false;
}
},
[&](const ast::Let* let) { return EmitProgramConstVariable(let); },
[&](const ast::Override* override) { return EmitOverride(override); },
[&](Default) {
TINT_ICE(Writer, diagnostics_)
<< "unhandled global variable type " << global->TypeInfo().name;
return false;
});
}
bool GeneratorImpl::EmitUniformVariable(const ast::Var* var, const sem::Variable* sem) {
auto* type = sem->Type()->UnwrapRef();
auto* str = type->As<sem::Struct>();
if (!str) {
TINT_ICE(Writer, builder_.Diagnostics()) << "storage variable must be of struct type";
return false;
}
ast::VariableBindingPoint bp = var->BindingPoint();
{
auto out = line();
out << "layout(binding = " << bp.binding->value;
if (version_.IsDesktop()) {
out << ", std140";
}
out << ") uniform " << UniqueIdentifier(StructName(str)) << " {";
}
EmitStructMembers(current_buffer_, str, /* emit_offsets */ true);
auto name = builder_.Symbols().NameFor(var->symbol);
line() << "} " << name << ";";
line();
return true;
}
bool GeneratorImpl::EmitStorageVariable(const ast::Var* var, const sem::Variable* sem) {
auto* type = sem->Type()->UnwrapRef();
auto* str = type->As<sem::Struct>();
if (!str) {
TINT_ICE(Writer, builder_.Diagnostics()) << "storage variable must be of struct type";
return false;
}
ast::VariableBindingPoint bp = var->BindingPoint();
line() << "layout(binding = " << bp.binding->value << ", std430) buffer "
<< UniqueIdentifier(StructName(str)) << " {";
EmitStructMembers(current_buffer_, str, /* emit_offsets */ true);
auto name = builder_.Symbols().NameFor(var->symbol);
line() << "} " << name << ";";
return true;
}
bool GeneratorImpl::EmitHandleVariable(const ast::Var* var, const sem::Variable* sem) {
auto out = line();
auto name = builder_.Symbols().NameFor(var->symbol);
auto* type = sem->Type()->UnwrapRef();
if (type->Is<sem::Sampler>()) {
// GLSL ignores Sampler variables.
return true;
}
if (auto* storage = type->As<sem::StorageTexture>()) {
out << "layout(" << convert_texel_format_to_glsl(storage->texel_format()) << ") ";
}
if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(), name)) {
return false;
}
out << ";";
return true;
}
bool GeneratorImpl::EmitPrivateVariable(const sem::Variable* var) {
auto* decl = var->Declaration();
auto out = line();
auto name = builder_.Symbols().NameFor(decl->symbol);
auto* type = var->Type()->UnwrapRef();
if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) {
return false;
}
out << " = ";
if (auto* constructor = decl->constructor) {
if (!EmitExpression(out, constructor)) {
return false;
}
} else {
if (!EmitZeroValue(out, var->Type()->UnwrapRef())) {
return false;
}
}
out << ";";
return true;
}
bool GeneratorImpl::EmitWorkgroupVariable(const sem::Variable* var) {
auto* decl = var->Declaration();
auto out = line();
out << "shared ";
auto name = builder_.Symbols().NameFor(decl->symbol);
auto* type = var->Type()->UnwrapRef();
if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) {
return false;
}
if (auto* constructor = decl->constructor) {
out << " = ";
if (!EmitExpression(out, constructor)) {
return false;
}
}
out << ";";
return true;
}
bool GeneratorImpl::EmitIOVariable(const sem::Variable* var) {
auto* decl = var->Declaration();
if (auto* b = ast::GetAttribute<ast::BuiltinAttribute>(decl->attributes)) {
// Use of gl_SampleID requires the GL_OES_sample_variables extension
if (RequiresOESSampleVariables(b->builtin)) {
requires_oes_sample_variables_ = true;
}
// Do not emit builtin (gl_) variables.
return true;
}
auto out = line();
EmitAttributes(out, decl->attributes);
EmitInterpolationQualifiers(out, decl->attributes);
auto name = builder_.Symbols().NameFor(decl->symbol);
auto* type = var->Type()->UnwrapRef();
if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) {
return false;
}
if (auto* constructor = decl->constructor) {
out << " = ";
if (!EmitExpression(out, constructor)) {
return false;
}
}
out << ";";
return true;
}
void GeneratorImpl::EmitInterpolationQualifiers(std::ostream& out,
const ast::AttributeList& attributes) {
for (auto* attr : attributes) {
if (auto* interpolate = attr->As<ast::InterpolateAttribute>()) {
switch (interpolate->type) {
case ast::InterpolationType::kPerspective:
case ast::InterpolationType::kLinear:
break;
case ast::InterpolationType::kFlat:
out << "flat ";
break;
}
switch (interpolate->sampling) {
case ast::InterpolationSampling::kCentroid:
out << "centroid ";
break;
case ast::InterpolationSampling::kSample:
case ast::InterpolationSampling::kCenter:
case ast::InterpolationSampling::kNone:
break;
}
}
}
}
bool GeneratorImpl::EmitAttributes(std::ostream& out, const ast::AttributeList& attributes) {
if (attributes.empty()) {
return true;
}
bool first = true;
for (auto* attr : attributes) {
if (auto* location = attr->As<ast::LocationAttribute>()) {
out << (first ? "layout(" : ", ");
out << "location = " << std::to_string(location->value);
first = false;
}
}
if (!first) {
out << ") ";
}
return true;
}
bool GeneratorImpl::EmitEntryPointFunction(const ast::Function* func) {
auto* func_sem = builder_.Sem().Get(func);
if (func->PipelineStage() == ast::PipelineStage::kFragment) {
requires_default_precision_qualifier_ = true;
}
if (func->PipelineStage() == ast::PipelineStage::kCompute) {
auto out = line();
// Emit the layout(local_size) attributes.
auto wgsize = func_sem->WorkgroupSize();
out << "layout(";
for (int i = 0; i < 3; i++) {
if (i > 0) {
out << ", ";
}
out << "local_size_" << (i == 0 ? "x" : i == 1 ? "y" : "z") << " = ";
if (wgsize[i].overridable_const) {
auto* global = builder_.Sem().Get<sem::GlobalVariable>(wgsize[i].overridable_const);
if (!global->Declaration()->Is<ast::Override>()) {
TINT_ICE(Writer, builder_.Diagnostics())
<< "expected a pipeline-overridable constant";
}
out << kSpecConstantPrefix << global->ConstantId();
} else {
out << std::to_string(wgsize[i].value);
}
}
out << ") in;";
}
// Emit original entry point signature
{
auto out = line();
out << func->return_type->FriendlyName(builder_.Symbols()) << " "
<< builder_.Symbols().NameFor(func->symbol) << "(";
bool first = true;
// Emit entry point parameters.
for (auto* var : func->params) {
auto* sem = builder_.Sem().Get(var);
auto* type = sem->Type();
if (!type->Is<sem::Struct>()) {
// ICE likely indicates that the CanonicalizeEntryPointIO transform was
// not run, or a builtin parameter was added after it was run.
TINT_ICE(Writer, diagnostics_) << "Unsupported non-struct entry point parameter";
}
if (!first) {
out << ", ";
}
first = false;
if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(),
builder_.Symbols().NameFor(var->symbol))) {
return false;
}
}
out << ") {";
}
// Emit original entry point function body
{
ScopedIndent si(this);
if (func->PipelineStage() == ast::PipelineStage::kVertex) {
line() << "gl_PointSize = 1.0;";
}
if (!EmitStatements(func->body->statements)) {
return false;
}
if (!Is<ast::ReturnStatement>(func->body->Last())) {
ast::ReturnStatement ret(ProgramID(), Source{});
if (!EmitStatement(&ret)) {
return false;
}
}
}
line() << "}";
return true;
}
bool GeneratorImpl::EmitConstant(std::ostream& out, const sem::Constant& constant) {
return EmitConstantRange(out, constant, constant.Type(), 0, constant.ElementCount());
}
bool GeneratorImpl::EmitConstantRange(std::ostream& out,
const sem::Constant& constant,
const sem::Type* range_ty,
size_t start,
size_t end) {
return Switch(
range_ty, //
[&](const sem::Bool*) {
out << (constant.Element<AInt>(start) ? "true" : "false");
return true;
},
[&](const sem::F32*) {
PrintF32(out, static_cast<float>(constant.Element<AFloat>(start)));
return true;
},
[&](const sem::I32*) {
out << constant.Element<AInt>(start).value;
return true;
},
[&](const sem::U32*) {
out << constant.Element<AInt>(start).value << "u";
return true;
},
[&](const sem::Vector* v) {
if (!EmitType(out, v, ast::StorageClass::kNone, ast::Access::kUndefined, "")) {
return false;
}
ScopedParen sp(out);
if (constant.AllEqual(start, end)) {
if (!EmitConstantRange(out, constant, v->type(), start, start + 1)) {
return false;
}
return true;
}
for (size_t i = start; i < end; i++) {
if (i > start) {
out << ", ";
}
if (!EmitConstantRange(out, constant, v->type(), i, i + 1u)) {
return false;
}
}
return true;
},
[&](const sem::Matrix* m) {
if (!EmitType(out, constant.Type(), ast::StorageClass::kNone, ast::Access::kUndefined,
"")) {
return false;
}
ScopedParen sp(out);
for (size_t column_idx = 0; column_idx < m->columns(); column_idx++) {
if (column_idx > 0) {
out << ", ";
}
size_t col_start = m->rows() * column_idx;
size_t col_end = col_start + m->rows();
if (!EmitConstantRange(out, constant, m->ColumnType(), col_start, col_end)) {
return false;
}
}
return true;
},
[&](Default) {
diagnostics_.add_error(
diag::System::Writer,
"unhandled constant type: " + builder_.FriendlyName(constant.Type()));
return false;
});
}
bool GeneratorImpl::EmitLiteral(std::ostream& out, const ast::LiteralExpression* lit) {
return Switch(
lit,
[&](const ast::BoolLiteralExpression* l) {
out << (l->value ? "true" : "false");
return true;
},
[&](const ast::FloatLiteralExpression* l) {
PrintF32(out, static_cast<float>(l->value));
return true;
},
[&](const ast::IntLiteralExpression* l) {
out << l->value;
if (l->suffix == ast::IntLiteralExpression::Suffix::kU) {
out << "u";
}
return true;
},
[&](Default) {
diagnostics_.add_error(diag::System::Writer, "unknown literal type");
return false;
});
}
bool GeneratorImpl::EmitZeroValue(std::ostream& out, const sem::Type* type) {
if (type->Is<sem::Bool>()) {
out << "false";
} else if (type->Is<sem::F32>()) {
out << "0.0f";
} else if (type->Is<sem::I32>()) {
out << "0";
} else if (type->Is<sem::U32>()) {
out << "0u";
} else if (auto* vec = type->As<sem::Vector>()) {
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) {
return false;
}
ScopedParen sp(out);
for (uint32_t i = 0; i < vec->Width(); i++) {
if (i != 0) {
out << ", ";
}
if (!EmitZeroValue(out, vec->type())) {
return false;
}
}
} else if (auto* mat = type->As<sem::Matrix>()) {
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) {
return false;
}
ScopedParen sp(out);
for (uint32_t i = 0; i < (mat->rows() * mat->columns()); i++) {
if (i != 0) {
out << ", ";
}
if (!EmitZeroValue(out, mat->type())) {
return false;
}
}
} else if (auto* str = type->As<sem::Struct>()) {
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kUndefined, "")) {
return false;
}
bool first = true;
out << "(";
for (auto* member : str->Members()) {
if (!first) {
out << ", ";
} else {
first = false;
}
EmitZeroValue(out, member->Type());
}
out << ")";
} else if (auto* array = type->As<sem::Array>()) {
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kUndefined, "")) {
return false;
}
out << "(";
for (uint32_t i = 0; i < array->Count(); i++) {
if (i != 0) {
out << ", ";
}
EmitZeroValue(out, array->ElemType());
}
out << ")";
} else {
diagnostics_.add_error(diag::System::Writer, "Invalid type for zero emission: " +
type->FriendlyName(builder_.Symbols()));
return false;
}
return true;
}
bool GeneratorImpl::EmitLoop(const ast::LoopStatement* stmt) {
auto emit_continuing = [this, stmt]() {
if (stmt->continuing && !stmt->continuing->Empty()) {
if (!EmitBlock(stmt->continuing)) {
return false;
}
}
return true;
};
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
line() << "while (true) {";
{
ScopedIndent si(this);
if (!EmitStatements(stmt->body->statements)) {
return false;
}
if (!emit_continuing_()) {
return false;
}
}
line() << "}";
return true;
}
bool GeneratorImpl::EmitForLoop(const ast::ForLoopStatement* stmt) {
// Nest a for loop with a new block. In HLSL the initializer scope is not
// nested by the for-loop, so we may get variable redefinitions.
line() << "{";
increment_indent();
TINT_DEFER({
decrement_indent();
line() << "}";
});
TextBuffer init_buf;
if (auto* init = stmt->initializer) {
TINT_SCOPED_ASSIGNMENT(current_buffer_, &init_buf);
if (!EmitStatement(init)) {
return false;
}
}
TextBuffer cond_pre;
std::stringstream cond_buf;
if (auto* cond = stmt->condition) {
TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre);
if (!EmitExpression(cond_buf, cond)) {
return false;
}
}
TextBuffer cont_buf;
if (auto* cont = stmt->continuing) {
TINT_SCOPED_ASSIGNMENT(current_buffer_, &cont_buf);
if (!EmitStatement(cont)) {
return false;
}
}
// If the for-loop has a multi-statement conditional and / or continuing, then
// we cannot emit this as a regular for-loop in HLSL. Instead we need to
// generate a `while(true)` loop.
bool emit_as_loop = cond_pre.lines.size() > 0 || cont_buf.lines.size() > 1;
// If the for-loop has multi-statement initializer, or is going to be emitted
// as a `while(true)` loop, then declare the initializer statement(s) before
// the loop.
if (init_buf.lines.size() > 1 || (stmt->initializer && emit_as_loop)) {
current_buffer_->Append(init_buf);
init_buf.lines.clear(); // Don't emit the initializer again in the 'for'
}
if (emit_as_loop) {
auto emit_continuing = [&]() {
current_buffer_->Append(cont_buf);
return true;
};
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
line() << "while (true) {";
increment_indent();
TINT_DEFER({
decrement_indent();
line() << "}";
});
if (stmt->condition) {
current_buffer_->Append(cond_pre);
line() << "if (!(" << cond_buf.str() << ")) { break; }";
}
if (!EmitStatements(stmt->body->statements)) {
return false;
}
if (!emit_continuing_()) {
return false;
}
} else {
// For-loop can be generated.
{
auto out = line();
out << "for";
{
ScopedParen sp(out);
if (!init_buf.lines.empty()) {
out << init_buf.lines[0].content << " ";
} else {
out << "; ";
}
out << cond_buf.str() << "; ";
if (!cont_buf.lines.empty()) {
out << TrimSuffix(cont_buf.lines[0].content, ";");
}
}
out << " {";
}
{
auto emit_continuing = [] { return true; };
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
if (!EmitStatementsWithIndent(stmt->body->statements)) {
return false;
}
}
line() << "}";
}
return true;
}
bool GeneratorImpl::EmitWhile(const ast::WhileStatement* stmt) {
TextBuffer cond_pre;
std::stringstream cond_buf;
{
auto* cond = stmt->condition;
TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre);
if (!EmitExpression(cond_buf, cond)) {
return false;
}
}
auto emit_continuing = [&]() { return true; };
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
// If the whilehas a multi-statement conditional, then we cannot emit this
// as a regular while in GLSL. Instead we need to generate a `while(true)` loop.
bool emit_as_loop = cond_pre.lines.size() > 0;
if (emit_as_loop) {
line() << "while (true) {";
increment_indent();
TINT_DEFER({
decrement_indent();
line() << "}";
});
current_buffer_->Append(cond_pre);
line() << "if (!(" << cond_buf.str() << ")) { break; }";
if (!EmitStatements(stmt->body->statements)) {
return false;
}
} else {
// While can be generated.
{
auto out = line();
out << "while";
{
ScopedParen sp(out);
out << cond_buf.str();
}
out << " {";
}
if (!EmitStatementsWithIndent(stmt->body->statements)) {
return false;
}
line() << "}";
}
return true;
}
bool GeneratorImpl::EmitMemberAccessor(std::ostream& out,
const ast::MemberAccessorExpression* expr) {
if (!EmitExpression(out, expr->structure)) {
return false;
}
out << ".";
// Swizzles output the name directly
if (builder_.Sem().Get(expr)->Is<sem::Swizzle>()) {
out << builder_.Symbols().NameFor(expr->member->symbol);
} else if (!EmitExpression(out, expr->member)) {
return false;
}
return true;
}
bool GeneratorImpl::EmitReturn(const ast::ReturnStatement* stmt) {
if (stmt->value) {
auto out = line();
out << "return ";
if (!EmitExpression(out, stmt->value)) {
return false;
}
out << ";";
} else {
line() << "return;";
}
return true;
}
bool GeneratorImpl::EmitStatement(const ast::Statement* stmt) {
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
return EmitAssign(a);
}
if (auto* b = stmt->As<ast::BlockStatement>()) {
return EmitBlock(b);
}
if (auto* b = stmt->As<ast::BreakStatement>()) {
return EmitBreak(b);
}
if (auto* c = stmt->As<ast::CallStatement>()) {
auto out = line();
if (!EmitCall(out, c->expr)) {
return false;
}
out << ";";
return true;
}
if (auto* c = stmt->As<ast::ContinueStatement>()) {
return EmitContinue(c);
}
if (auto* d = stmt->As<ast::DiscardStatement>()) {
return EmitDiscard(d);
}
if (stmt->As<ast::FallthroughStatement>()) {
line() << "/* fallthrough */";
return true;
}
if (auto* i = stmt->As<ast::IfStatement>()) {
return EmitIf(i);
}
if (auto* l = stmt->As<ast::LoopStatement>()) {
return EmitLoop(l);
}
if (auto* l = stmt->As<ast::ForLoopStatement>()) {
return EmitForLoop(l);
}
if (auto* l = stmt->As<ast::WhileStatement>()) {
return EmitWhile(l);
}
if (auto* r = stmt->As<ast::ReturnStatement>()) {
return EmitReturn(r);
}
if (auto* s = stmt->As<ast::SwitchStatement>()) {
return EmitSwitch(s);
}
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
return Switch(
v->variable, //
[&](const ast::Var* var) { return EmitVar(var); },
[&](const ast::Let* let) { return EmitLet(let); },
[&](Default) { //
TINT_ICE(Writer, diagnostics_)
<< "unknown variable type: " << v->variable->TypeInfo().name;
return false;
});
}
diagnostics_.add_error(diag::System::Writer,
"unknown statement type: " + std::string(stmt->TypeInfo().name));
return false;
}
bool GeneratorImpl::EmitSwitch(const ast::SwitchStatement* stmt) {
{ // switch(expr) {
auto out = line();
out << "switch(";
if (!EmitExpression(out, stmt->condition)) {
return false;
}
out << ") {";
}
{
ScopedIndent si(this);
for (auto* s : stmt->body) {
if (!EmitCase(s)) {
return false;
}
}
}
line() << "}";
return true;
}
bool GeneratorImpl::EmitType(std::ostream& out,
const sem::Type* type,
ast::StorageClass storage_class,
ast::Access access,
const std::string& name,
bool* name_printed /* = nullptr */) {
if (name_printed) {
*name_printed = false;
}
switch (storage_class) {
case ast::StorageClass::kInput: {
out << "in ";
break;
}
case ast::StorageClass::kOutput: {
out << "out ";
break;
}
case ast::StorageClass::kUniform:
case ast::StorageClass::kHandle: {
out << "uniform ";
break;
}
default:
break;
}
if (auto* ary = type->As<sem::Array>()) {
const sem::Type* base_type = ary;
std::vector<uint32