blob: 3b12afdfcc8bd5030a732bb00f9bf582e0ef0fdb [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/resolver/resolver.h"
#include "gmock/gmock.h"
#include "src/tint/resolver/resolver_test_helper.h"
#include "src/tint/sem/index_accessor_expression.h"
#include "src/tint/type/reference.h"
namespace tint::resolver {
namespace {
using namespace tint::builtin::fluent_types; // NOLINT
using namespace tint::number_suffixes; // NOLINT
using ResolverIndexAccessorTest = ResolverTest;
TEST_F(ResolverIndexAccessorTest, Matrix_Dynamic_F32) {
GlobalVar("my_var", ty.mat2x3<f32>(), builtin::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", Expr(Source{{12, 34}}, 1_f));
WrapInFunction(acc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverIndexAccessorTest, Matrix_Dynamic_Ref) {
GlobalVar("my_var", ty.mat2x3<f32>(), builtin::AddressSpace::kPrivate);
auto* idx = Var("idx", ty.i32(), Call<i32>());
auto* acc = IndexAccessor("my_var", idx);
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Matrix_BothDimensions_Dynamic_Ref) {
GlobalVar("my_var", ty.mat4x4<f32>(), builtin::AddressSpace::kPrivate);
auto* idx = Var("idx", ty.u32(), Expr(3_u));
auto* idy = Var("idy", ty.u32(), Expr(2_u));
auto* acc = IndexAccessor(IndexAccessor("my_var", idx), idy);
WrapInFunction(Decl(idx), Decl(idy), acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Matrix_Dynamic) {
GlobalConst("my_const", ty.mat2x3<f32>(), Call<mat2x3<f32>>());
auto* idx = Var("idx", ty.i32(), Call<i32>());
auto* acc = IndexAccessor("my_const", Expr(Source{{12, 34}}, idx));
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "");
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Matrix_XDimension_Dynamic) {
GlobalConst("my_const", ty.mat4x4<f32>(), Call<mat4x4<f32>>());
auto* idx = Var("idx", ty.u32(), Expr(3_u));
auto* acc = IndexAccessor("my_const", Expr(Source{{12, 34}}, idx));
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "");
}
TEST_F(ResolverIndexAccessorTest, Matrix_BothDimension_Dynamic) {
GlobalConst("my_const", ty.mat4x4<f32>(), Call<mat4x4<f32>>());
auto* idx = Var("idy", ty.u32(), Expr(2_u));
auto* acc = IndexAccessor(IndexAccessor("my_const", Expr(Source{{12, 34}}, idx)), 1_i);
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "");
}
TEST_F(ResolverIndexAccessorTest, Matrix) {
GlobalVar("my_var", ty.mat2x3<f32>(), builtin::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 1_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<type::Vector>());
EXPECT_EQ(TypeOf(acc)->As<type::Vector>()->Width(), 3u);
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Matrix_BothDimensions) {
GlobalVar("my_var", ty.mat2x3<f32>(), builtin::AddressSpace::kPrivate);
auto* acc = IndexAccessor(IndexAccessor("my_var", 0_i), 1_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Vector_F32) {
GlobalVar("my_var", ty.vec3<f32>(), builtin::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", Expr(Source{{12, 34}}, 2_f));
WrapInFunction(acc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverIndexAccessorTest, Vector_Dynamic_Ref) {
GlobalVar("my_var", ty.vec3<f32>(), builtin::AddressSpace::kPrivate);
auto* idx = Var("idx", ty.i32(), Expr(2_i));
auto* acc = IndexAccessor("my_var", idx);
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Vector_Dynamic) {
GlobalConst("my_const", ty.vec3<f32>(), Call<vec3<f32>>());
auto* idx = Var("idx", ty.i32(), Expr(2_i));
auto* acc = IndexAccessor("my_const", Expr(Source{{12, 34}}, idx));
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
}
TEST_F(ResolverIndexAccessorTest, Vector) {
GlobalVar("my_var", ty.vec3<f32>(), builtin::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_i32) {
GlobalVar("my_var", ty.array<f32, 3>(), builtin::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_TRUE(TypeOf(acc)->Is<type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_u32) {
GlobalVar("my_var", ty.array<f32, 3>(), builtin::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_u);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_TRUE(TypeOf(acc)->Is<type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_AInt) {
GlobalVar("my_var", ty.array<f32, 3>(), builtin::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_a);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_TRUE(TypeOf(acc)->Is<type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Alias_Array) {
auto* aary = Alias("myarrty", ty.array<f32, 3>());
GlobalVar("my_var", ty.Of(aary), builtin::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Constant) {
GlobalConst("my_const", ty.array<f32, 3>(), Call<array<f32, 3>>());
auto* acc = IndexAccessor("my_const", 2_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<type::F32>());
}
TEST_F(ResolverIndexAccessorTest, Array_Dynamic_I32) {
// let a : array<f32, 3> = 0;
// var idx : i32 = 0;
// var f : f32 = a[idx];
auto* a = Let("a", ty.array<f32, 3>(), Call<array<f32, 3>>());
auto* idx = Var("idx", ty.i32(), Call<i32>());
auto* acc = IndexAccessor("a", Expr(Source{{12, 34}}, idx));
auto* f = Var("f", ty.f32(), acc);
Func("my_func", utils::Empty, ty.void_(),
utils::Vector{
Decl(a),
Decl(idx),
Decl(f),
});
EXPECT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "");
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_F32) {
// let a : array<f32, 3>;
// var f : f32 = a[2.0f];
auto* a = Let("a", ty.array<f32, 3>(), Call<array<f32, 3>>());
auto* f = Var("a_2", ty.f32(), IndexAccessor("a", Expr(Source{{12, 34}}, 2_f)));
Func("my_func", utils::Empty, ty.void_(),
utils::Vector{
Decl(a),
Decl(f),
});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_I32) {
// let a : array<f32, 3>;
// var f : f32 = a[2i];
auto* a = Let("a", ty.array<f32, 3>(), Call<array<f32, 3>>());
auto* acc = IndexAccessor("a", 2_i);
auto* f = Var("a_2", ty.f32(), acc);
Func("my_func", utils::Empty, ty.void_(),
utils::Vector{
Decl(a),
Decl(f),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Expr_Deref_FuncGoodParent) {
// fn func(p: ptr<function, vec4<f32>>) -> f32 {
// let idx: u32 = u32();
// let x: f32 = (*p)[idx];
// return x;
// }
auto* p = Param("p", ty.ptr<function, vec4<f32>>());
auto* idx = Let("idx", ty.u32(), Call<u32>());
auto* star_p = Deref(p);
auto* acc = IndexAccessor(Source{{12, 34}}, star_p, idx);
auto* x = Var("x", ty.f32(), acc);
Func("func", utils::Vector{p}, ty.f32(), utils::Vector{Decl(idx), Decl(x), Return(x)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Expr_Deref_FuncBadParent) {
// fn func(p: ptr<function, vec4<f32>>) -> f32 {
// let idx: u32 = u32();
// let x: f32 = *p[idx];
// return x;
// }
auto* p = Param("p", ty.ptr<function, vec4<f32>>());
auto* idx = Let("idx", ty.u32(), Call<u32>());
auto* accessor_expr = IndexAccessor(Source{{12, 34}}, p, idx);
auto* star_p = Deref(accessor_expr);
auto* x = Var("x", ty.f32(), star_p);
Func("func", utils::Vector{p}, ty.f32(), utils::Vector{Decl(idx), Decl(x), Return(x)});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: cannot index type 'ptr<function, vec4<f32>, read_write>'");
}
TEST_F(ResolverIndexAccessorTest, Exr_Deref_BadParent) {
// var param: vec4<f32>
// let x: f32 = *(&param)[0];
auto* param = Var("param", ty.vec4<f32>());
auto* idx = Var("idx", ty.u32(), Call<u32>());
auto* addressOf_expr = AddressOf(param);
auto* accessor_expr = IndexAccessor(Source{{12, 34}}, addressOf_expr, idx);
auto* star_p = Deref(accessor_expr);
auto* x = Var("x", ty.f32(), star_p);
WrapInFunction(param, idx, x);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: cannot index type 'ptr<function, vec4<f32>, read_write>'");
}
} // namespace
} // namespace tint::resolver