blob: b23f264f0f3eb6965d19d044a7accb89f2a05c47 [file] [log] [blame]
// Copyright 2020 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef SRC_TINT_UTILS_TRAITS_TRAITS_H_
#define SRC_TINT_UTILS_TRAITS_TRAITS_H_
#include <ostream>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
namespace tint::traits {
/// Convience type definition for std::decay<T>::type
template <typename T>
using Decay = typename std::decay<T>::type;
/// NthTypeOf returns the `N`th type in `Types`
template <int N, typename... Types>
using NthTypeOf = typename std::tuple_element<N, std::tuple<Types...>>::type;
/// Signature describes the signature of a function.
template <typename RETURN, typename... PARAMETERS>
struct Signature {
/// The return type of the function signature
using ret = RETURN;
/// The parameters of the function signature held in a std::tuple
using parameters = std::tuple<PARAMETERS...>;
/// The type of the Nth parameter of function signature
template <std::size_t N>
using parameter = NthTypeOf<N, PARAMETERS...>;
/// The total number of parameters
static constexpr std::size_t parameter_count = sizeof...(PARAMETERS);
};
/// SignatureOf is a traits helper that infers the signature of the function,
/// method, static method, lambda, or function-like object `F`.
template <typename F>
struct SignatureOf {
/// The signature of the function-like object `F`
using type = typename SignatureOf<decltype(&F::operator())>::type;
};
/// SignatureOf specialization for a regular function or static method.
template <typename R, typename... ARGS>
struct SignatureOf<R (*)(ARGS...)> {
/// The signature of the function-like object `F`
using type = Signature<typename std::decay<R>::type, typename std::decay<ARGS>::type...>;
};
/// SignatureOf specialization for a non-static method.
template <typename R, typename C, typename... ARGS>
struct SignatureOf<R (C::*)(ARGS...)> {
/// The signature of the function-like object `F`
using type = Signature<typename std::decay<R>::type, typename std::decay<ARGS>::type...>;
};
/// SignatureOf specialization for a non-static, const method.
template <typename R, typename C, typename... ARGS>
struct SignatureOf<R (C::*)(ARGS...) const> {
/// The signature of the function-like object `F`
using type = Signature<typename std::decay<R>::type, typename std::decay<ARGS>::type...>;
};
/// SignatureOfT is an alias to `typename SignatureOf<F>::type`.
template <typename F>
using SignatureOfT = typename SignatureOf<Decay<F>>::type;
/// ParameterType is an alias to `typename SignatureOf<F>::type::parameter<N>`.
template <typename F, std::size_t N>
using ParameterType = typename SignatureOfT<Decay<F>>::template parameter<N>;
/// LastParameterType returns the type of the last parameter of `F`. `F` must have at least one
/// parameter.
template <typename F>
using LastParameterType = ParameterType<F, SignatureOfT<Decay<F>>::parameter_count - 1>;
/// ReturnType is an alias to `typename SignatureOf<F>::type::ret`.
template <typename F>
using ReturnType = typename SignatureOfT<Decay<F>>::ret;
/// Returns true iff decayed T and decayed U are the same.
template <typename T, typename U>
static constexpr bool IsType = std::is_same<Decay<T>, Decay<U>>::value;
/// IsTypeOrDerived<T, BASE> is true iff `T` is of type `BASE`, or derives from
/// `BASE`.
template <typename T, typename BASE>
static constexpr bool IsTypeOrDerived =
std::is_base_of<BASE, Decay<T>>::value || std::is_same<BASE, Decay<T>>::value;
/// If `CONDITION` is true then EnableIf resolves to type T, otherwise an invalid type.
template <bool CONDITION, typename T = void>
using EnableIf = std::enable_if_t<CONDITION, T>;
/// If `T` is of type `BASE`, or derives from `BASE`, then EnableIfIsType
/// resolves to type `T`, otherwise an invalid type.
template <typename T, typename BASE>
using EnableIfIsType = EnableIf<IsTypeOrDerived<T, BASE>, T>;
/// @returns the std::index_sequence with all the indices shifted by OFFSET.
template <std::size_t OFFSET, std::size_t... INDICES>
constexpr auto Shift(std::index_sequence<INDICES...>) {
return std::integer_sequence<std::size_t, OFFSET + INDICES...>{};
}
/// @returns a std::integer_sequence with the integers `[OFFSET..OFFSET+COUNT)`
template <std::size_t OFFSET, std::size_t COUNT>
constexpr auto Range() {
return Shift<OFFSET>(std::make_index_sequence<COUNT>{});
}
namespace detail {
/// @returns the tuple `t` swizzled by `INDICES`
template <typename TUPLE, std::size_t... INDICES>
constexpr auto Swizzle(TUPLE&& t, std::index_sequence<INDICES...>)
-> std::tuple<std::tuple_element_t<INDICES, std::remove_reference_t<TUPLE>>...> {
return {std::forward<std::tuple_element_t<INDICES, std::remove_reference_t<TUPLE>>>(
std::get<INDICES>(std::forward<TUPLE>(t)))...};
}
/// @returns a nullptr of the tuple type `TUPLE` swizzled by `INDICES`.
/// @note: This function is intended to be used in a `decltype()` expression,
/// and returns a pointer-to-tuple as the tuple may hold non-constructable
/// types.
template <typename TUPLE, std::size_t... INDICES>
constexpr auto* SwizzlePtrTy(std::index_sequence<INDICES...>) {
using Swizzled = std::tuple<std::tuple_element_t<INDICES, TUPLE>...>;
return static_cast<Swizzled*>(nullptr);
}
} // namespace detail
/// @returns the slice of the tuple `t` with the tuple elements
/// `[OFFSET..OFFSET+COUNT)`
template <std::size_t OFFSET, std::size_t COUNT, typename TUPLE>
constexpr auto Slice(TUPLE&& t) {
return traits::detail::Swizzle<TUPLE>(std::forward<TUPLE>(t), Range<OFFSET, COUNT>());
}
/// Resolves to the slice of the tuple `t` with the tuple elements
/// `[OFFSET..OFFSET+COUNT)`
template <std::size_t OFFSET, std::size_t COUNT, typename TUPLE>
using SliceTuple =
std::remove_pointer_t<decltype(traits::detail::SwizzlePtrTy<TUPLE>(Range<OFFSET, COUNT>()))>;
namespace detail {
/// Base template for IsTypeIn
template <typename T, typename TypeList>
struct IsTypeIn;
/// Specialization for IsTypeIn
template <typename T, template <typename...> typename TypeContainer, typename... Ts>
struct IsTypeIn<T, TypeContainer<Ts...>> : std::disjunction<std::is_same<T, Ts>...> {};
} // namespace detail
/// Evaluates to true if T is one of the types in the TypeContainer's template arguments.
/// Works for std::variant, std::tuple, std::pair, or any typename template where all parameters are
/// types.
template <typename T, typename TypeContainer>
static constexpr bool IsTypeIn = traits::detail::IsTypeIn<T, TypeContainer>::value;
/// Evaluates to the decayed pointer element type, or the decayed type T if T is not a pointer.
template <typename T>
using PtrElTy = Decay<std::remove_pointer_t<Decay<T>>>;
/// Evaluates to true if `T` decayed is a `std::string`, `std::string_view`, `const char*` or
/// `char*`
template <typename T>
static constexpr bool IsStringLike =
std::is_same_v<Decay<T>, std::string> || std::is_same_v<Decay<T>, std::string_view> ||
std::is_same_v<Decay<T>, const char*> || std::is_same_v<Decay<T>, char*>;
namespace detail {
/// Helper for CharArrayToCharPtr
template <typename T>
struct CharArrayToCharPtrImpl {
/// Evaluates to T
using type = T;
};
/// Specialization of CharArrayToCharPtrImpl for `char[N]`
template <size_t N>
struct CharArrayToCharPtrImpl<char[N]> {
/// Evaluates to `char*`
using type = char*;
};
/// Specialization of CharArrayToCharPtrImpl for `const char[N]`
template <size_t N>
struct CharArrayToCharPtrImpl<const char[N]> {
/// Evaluates to `const char*`
using type = const char*;
};
} // namespace detail
/// Evaluates to `char*` or `const char*` if `T` is `char[N]` or `const char[N]`, respectively,
/// otherwise T.
template <typename T>
using CharArrayToCharPtr = typename traits::detail::CharArrayToCharPtrImpl<T>::type;
////////////////////////////////////////////////////////////////////////////////
// IsOStream
////////////////////////////////////////////////////////////////////////////////
namespace detail {
/// Helper for determining whether the type T can be used as a stream writer
template <typename T, typename ENABLE = void>
struct IsOStream : std::false_type {};
/// Specialization for types that declare a `static constexpr bool IsStreamWriter` member
template <typename T>
struct IsOStream<T, std::void_t<decltype(T::IsStreamWriter)>> {
/// Equal to T::IsStreamWriter
static constexpr bool value = T::IsStreamWriter;
};
/// Specialization for std::ostream
template <typename T>
struct IsOStream<T, std::enable_if_t<std::is_same_v<T, std::ostream>>> : std::true_type {};
/// Specialization for std::stringstream
template <typename T>
struct IsOStream<T, std::enable_if_t<std::is_same_v<T, std::stringstream>>> : std::true_type {};
} // namespace detail
/// Is true if the class T can be treated as an output stream
template <typename T>
static constexpr bool IsOStream = detail::IsOStream<T>::value;
/// If `CONDITION` is true then EnableIfIsOStream resolves to type T, otherwise an invalid type.
template <typename T = void>
using EnableIfIsOStream = EnableIf<IsOStream<T>, T>;
////////////////////////////////////////////////////////////////////////////////
// HasOperatorShiftLeft
////////////////////////////////////////////////////////////////////////////////
namespace detail {
/// Helper for determining whether the operator<<(LHS, RHS) exists
template <typename LHS, typename RHS, typename = void>
struct HasOperatorShiftLeft : std::false_type {};
/// Specialization to detect operator
template <typename LHS, typename RHS>
struct HasOperatorShiftLeft<LHS,
RHS,
std::void_t<decltype(std::declval<LHS&>() << std::declval<RHS>())>>
: std::true_type {};
} // namespace detail
/// Is true if operator<<(LHS, RHS) exists
template <typename LHS, typename RHS>
static constexpr bool HasOperatorShiftLeft = detail::HasOperatorShiftLeft<LHS, RHS>::value;
} // namespace tint::traits
#endif // SRC_TINT_UTILS_TRAITS_TRAITS_H_