blob: 7249bc5154cc0d804bac63d91ae3a63c84a4ffd4 [file] [log] [blame]
// Copyright 2021 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "dawn/native/ExternalTexture.h"
#include <algorithm>
#include <utility>
#include "dawn/native/Buffer.h"
#include "dawn/native/Device.h"
#include "dawn/native/ObjectType_autogen.h"
#include "dawn/native/Queue.h"
#include "dawn/native/Texture.h"
#include "dawn/native/dawn_platform.h"
namespace dawn::native {
MaybeError ValidateExternalTexturePlane(const TextureViewBase* textureView) {
DAWN_INVALID_IF(
(textureView->GetTexture()->GetUsage() & wgpu::TextureUsage::TextureBinding) == 0,
"The external texture plane (%s) usage (%s) doesn't include the required usage (%s)",
textureView, textureView->GetTexture()->GetUsage(), wgpu::TextureUsage::TextureBinding);
DAWN_INVALID_IF(textureView->GetDimension() != wgpu::TextureViewDimension::e2D,
"The external texture plane (%s) dimension (%s) is not 2D.", textureView,
textureView->GetDimension());
DAWN_INVALID_IF(textureView->GetLevelCount() > 1,
"The external texture plane (%s) mip level count (%u) is not 1.", textureView,
textureView->GetLevelCount());
DAWN_INVALID_IF(textureView->GetTexture()->GetSampleCount() != 1,
"The external texture plane (%s) sample count (%u) is not one.", textureView,
textureView->GetTexture()->GetSampleCount());
return {};
}
MaybeError ValidateExternalTextureDescriptor(const DeviceBase* device,
const ExternalTextureDescriptor* descriptor) {
DAWN_ASSERT(descriptor);
DAWN_ASSERT(descriptor->plane0);
DAWN_TRY(device->ValidateObject(descriptor->plane0));
DAWN_INVALID_IF(!descriptor->gamutConversionMatrix,
"The gamut conversion matrix must be non-null.");
DAWN_INVALID_IF(!descriptor->srcTransferFunctionParameters,
"The source transfer function parameters must be non-null.");
DAWN_INVALID_IF(!descriptor->dstTransferFunctionParameters,
"The destination transfer function parameters must be non-null.");
DAWN_TRY(ValidateExternalTexturePlane(descriptor->plane0));
auto CheckPlaneFormat = [](const DeviceBase* device, const Format& format,
uint32_t requiredComponentCount) -> MaybeError {
DAWN_INVALID_IF(format.aspects != Aspect::Color, "The format (%s) is not a color format.",
format.format);
DAWN_INVALID_IF(!IsSubset(SampleTypeBit::Float,
format.GetAspectInfo(Aspect::Color).supportedSampleTypes),
"The format (%s) is not filterable float.", format.format);
DAWN_INVALID_IF(format.componentCount != requiredComponentCount,
"The format (%s) component count (%u) is not %u.", format.format,
requiredComponentCount, format.componentCount);
return {};
};
if (descriptor->plane1) {
DAWN_INVALID_IF(
!descriptor->yuvToRgbConversionMatrix,
"When more than one plane is set, the YUV-to-RGB conversion matrix must be non-null.");
DAWN_TRY(device->ValidateObject(descriptor->plane1));
DAWN_TRY(ValidateExternalTexturePlane(descriptor->plane1));
// Y + UV case.
DAWN_TRY_CONTEXT(CheckPlaneFormat(device, descriptor->plane0->GetFormat(), 1),
"validating the format of plane 0 (%s)", descriptor->plane0);
DAWN_TRY_CONTEXT(CheckPlaneFormat(device, descriptor->plane1->GetFormat(), 2),
"validating the format of plane 1 (%s)", descriptor->plane1);
} else {
// RGBA case.
DAWN_TRY_CONTEXT(CheckPlaneFormat(device, descriptor->plane0->GetFormat(), 4),
"validating the format of plane 0 (%s)", descriptor->plane0);
}
DAWN_INVALID_IF(descriptor->visibleSize.width == 0 || descriptor->visibleSize.height == 0,
"VisibleSize %s have 0 on width or height.", &descriptor->visibleSize);
const Extent3D textureSize = descriptor->plane0->GetSingleSubresourceVirtualSize();
DAWN_INVALID_IF(descriptor->visibleSize.width > textureSize.width ||
descriptor->visibleSize.height > textureSize.height,
"VisibleSize %s is exceed the texture size, defined by Plane0 size (%u, %u).",
&descriptor->visibleSize, textureSize.width, textureSize.height);
DAWN_INVALID_IF(
descriptor->visibleOrigin.x > textureSize.width - descriptor->visibleSize.width ||
descriptor->visibleOrigin.y > textureSize.height - descriptor->visibleSize.height,
"VisibleRect[Origin: %s, Size: %s] is exceed the texture size, defined by "
"Plane0 size (%u, %u).",
&descriptor->visibleOrigin, &descriptor->visibleSize, textureSize.width,
textureSize.height);
return {};
}
// static
ResultOrError<Ref<ExternalTextureBase>> ExternalTextureBase::Create(
DeviceBase* device,
const ExternalTextureDescriptor* descriptor) {
Ref<ExternalTextureBase> externalTexture =
AcquireRef(new ExternalTextureBase(device, descriptor));
DAWN_TRY(externalTexture->Initialize(device, descriptor));
return std::move(externalTexture);
}
ExternalTextureBase::ExternalTextureBase(DeviceBase* device,
const ExternalTextureDescriptor* descriptor)
: ApiObjectBase(device, descriptor->label),
mVisibleOrigin(descriptor->visibleOrigin),
mVisibleSize(descriptor->visibleSize),
mState(ExternalTextureState::Active) {
GetObjectTrackingList()->Track(this);
}
// Error external texture cannot be used in bind group.
ExternalTextureBase::ExternalTextureBase(DeviceBase* device,
ObjectBase::ErrorTag tag,
const char* label)
: ApiObjectBase(device, tag, label), mState(ExternalTextureState::Destroyed) {}
ExternalTextureBase::~ExternalTextureBase() = default;
MaybeError ExternalTextureBase::Initialize(DeviceBase* device,
const ExternalTextureDescriptor* descriptor) {
// Store any passed in TextureViews associated with individual planes.
mTextureViews[0] = descriptor->plane0;
if (descriptor->plane1) {
mTextureViews[1] = descriptor->plane1;
} else {
DAWN_TRY_ASSIGN(mTextureViews[1],
device->GetOrCreatePlaceholderTextureViewForExternalTexture());
}
// We must create a buffer to store parameters needed by a shader that operates on this
// external texture.
BufferDescriptor bufferDesc;
bufferDesc.size = sizeof(ExternalTextureParams);
bufferDesc.usage = wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst;
bufferDesc.label = "Dawn_External_Texture_Params_Buffer";
DAWN_TRY_ASSIGN(mParamsBuffer, device->CreateBuffer(&bufferDesc));
ExternalTextureParams params;
params.numPlanes = descriptor->plane1 == nullptr ? 1 : 2;
params.doYuvToRgbConversionOnly = descriptor->doYuvToRgbConversionOnly ? 1 : 0;
// YUV-to-RGB conversion is performed by multiplying the source YUV values with a 4x3 matrix
// passed from Chromium. The matrix was originally sourced from /skia/src/core/SkYUVMath.cpp.
// This matrix is only used in multiplanar scenarios.
if (params.numPlanes == 2) {
DAWN_ASSERT(descriptor->yuvToRgbConversionMatrix);
const float* yMat = descriptor->yuvToRgbConversionMatrix;
std::copy(yMat, yMat + 12, params.yuvToRgbConversionMatrix.begin());
}
// Gamut correction is performed by multiplying a 3x3 matrix passed from Chromium. The
// matrix was computed by multiplying the appropriate source and destination gamut
// matrices sourced from ui/gfx/color_space.cc.
const float* gMat = descriptor->gamutConversionMatrix;
params.gamutConversionMatrix = {gMat[0], gMat[1], gMat[2], 0.0f, //
gMat[3], gMat[4], gMat[5], 0.0f, //
gMat[6], gMat[7], gMat[8], 0.0f};
// Gamma decode/encode is performed by the logic:
// if (abs(v) < params.D) {
// return sign(v) * (params.C * abs(v) + params.F);
// }
// return pow(A * x + B, G) + E
//
// Constants are passed from Chromium and originally sourced from ui/gfx/color_space.cc
const float* srcFn = descriptor->srcTransferFunctionParameters;
std::copy(srcFn, srcFn + 7, params.gammaDecodingParams.begin());
const float* dstFn = descriptor->dstTransferFunctionParameters;
std::copy(dstFn, dstFn + 7, params.gammaEncodingParams.begin());
// Unlike WGSL, which stores matrices in column vectors, the following arithmetic uses row
// vectors, so elements are stored in the following order:
//
// ┌ ┐
// │ 0, 1, 2 │
// │ 3, 4, 5 │
// └ ┘
//
// The matrix is transposed at the end.
//
// Note that we are working in homogeneous coordinates so there is an implied third row
// containing [0, 0, 1].
using mat2x3 = std::array<float, 6>;
// Likewise the vectors have an implicit last element that's 1.
using vec2 = std::array<float, 2>;
// Multiplies the two mat2x3 matrices, by treating the RHS matrix as a mat3x3 where the last row
// is [0, 0, 1].
auto Mul = [](const mat2x3& lhs, const mat2x3& rhs) -> mat2x3 {
auto& a = lhs[0];
auto& b = lhs[1];
auto& c = lhs[2];
auto& d = lhs[3];
auto& e = lhs[4];
auto& f = lhs[5];
auto& g = rhs[0];
auto& h = rhs[1];
auto& i = rhs[2];
auto& j = rhs[3];
auto& k = rhs[4];
auto& l = rhs[5];
// ┌ ┐ ┌ ┐
// │ a, b, c │ │ g, h, i │
// │ d, e, f │ x │ j, k, l │
// └ ┘ │ 0, 0, 1 │
// └ ┘
return mat2x3{
a * g + b * j, //
a * h + b * k, //
a * i + b * l + c, //
d * g + e * j, //
d * h + e * k, //
d * i + e * l + f, //
};
};
auto Scale = [](float x, float y) -> mat2x3 { return {x, 0, 0, 0, y, 0}; };
auto ScaleVec = [&](vec2 v) -> mat2x3 { return Scale(v[0], v[1]); };
auto Translate = [](float x, float y) -> mat2x3 { return mat2x3{1, 0, x, 0, 1, y}; };
auto TranslateVec = [&](vec2 v) -> mat2x3 { return Translate(v[0], v[1]); };
auto TransposeForWGSL = [](const mat2x3& m) -> std::array<float, 6> {
return {m[0], m[3], m[1], m[4], m[2], m[5]};
};
// Vector operations
auto Add = [](const vec2& a, const vec2& b) -> vec2 { return {a[0] + b[0], a[1] + b[1]}; };
auto Sub = [](const vec2& a, const vec2& b) -> vec2 { return {a[0] - b[0], a[1] - b[1]}; };
auto Div = [](const vec2& a, const vec2& b) -> vec2 { return {a[0] / b[0], a[1] / b[1]}; };
// Extract all the relevant sizes as float to avoid extra casts in later computations.
Extent3D plane0Extent = descriptor->plane0->GetSingleSubresourceVirtualSize();
Extent3D plane1Extent = {1, 1, 1};
if (params.numPlanes == 2) {
plane1Extent = descriptor->plane1->GetSingleSubresourceVirtualSize();
}
vec2 plane0Size = {static_cast<float>(plane0Extent.width),
static_cast<float>(plane0Extent.height)};
vec2 plane1Size = {static_cast<float>(plane1Extent.width),
static_cast<float>(plane1Extent.height)};
vec2 visibleOrigin = {static_cast<float>(mVisibleOrigin.x),
static_cast<float>(mVisibleOrigin.y)};
vec2 visibleSize = {static_cast<float>(mVisibleSize.width),
static_cast<float>(mVisibleSize.height)};
// Offset the coordinates so the center texel is at the origin, so we can apply rotations and
// y-flips. After translation, coordinates range from [-0.5 .. +0.5] in both U and V.
mat2x3 sampleTransform = Translate(-0.5, -0.5);
// The video frame metadata both rotation and mirroring information. The rotation happens before
// the mirroring when processing the video frame, so do the inverse order when converting UV
// coordinates.
if (descriptor->mirrored) {
sampleTransform = Mul(Scale(-1, 1), sampleTransform);
}
// Apply rotations as needed this may rotate the shader-visible size of the texture for
// textureLoad operations.
std::array<uint32_t, 2> loadBounds = {mVisibleSize.width - 1, mVisibleSize.height - 1};
switch (descriptor->rotation) {
case wgpu::ExternalTextureRotation::Rotate0Degrees:
break;
case wgpu::ExternalTextureRotation::Rotate90Degrees:
std::swap(loadBounds[0], loadBounds[1]);
sampleTransform = Mul(mat2x3{0, +1, 0, // x' = y
-1, 0, 0}, // y' = -x
sampleTransform);
break;
case wgpu::ExternalTextureRotation::Rotate180Degrees:
sampleTransform = Mul(mat2x3{-1, 0, 0, // x' = -x
0, -1, 0}, // y' = -y
sampleTransform);
break;
case wgpu::ExternalTextureRotation::Rotate270Degrees:
std::swap(loadBounds[0], loadBounds[1]);
sampleTransform = Mul(mat2x3{0, -1, 0, // x' = -y
+1, 0, 0}, // y' = x
sampleTransform);
break;
}
// Offset the coordinates so the bottom-left texel is at origin.
// After translation, coordinates range from [0 .. 1] in both U and V.
sampleTransform = Mul(Translate(0.5, 0.5), sampleTransform);
// Finally, scale and translate based on the visible rect. This applies cropping.
vec2 rectScale = Div(visibleSize, plane0Size);
vec2 rectOffset = Div(visibleOrigin, plane0Size);
sampleTransform = Mul(TranslateVec(rectOffset), Mul(ScaleVec(rectScale), sampleTransform));
params.sampleTransform = TransposeForWGSL(sampleTransform);
// Compute the load transformation matrix by using toTexels * sampleTransform * toNormalized
// Note that coords starts from 0 so the max value is size - 1.
{
mat2x3 toTexels = ScaleVec(Sub(plane0Size, {1.0f, 1.0f}));
mat2x3 toNormalized = Scale(1.0f / loadBounds[0], 1.0f / loadBounds[1]);
mat2x3 loadTransform = Mul(toTexels, Mul(sampleTransform, toNormalized));
params.loadTransform = TransposeForWGSL(loadTransform);
}
// Compute the clamping for each plane individually: to avoid bleeding of OOB texels due to
// interpolation we need to offset by a half texel in, which depends on the size of the plane.
{
vec2 plane0HalfTexel = Div({0.5f, 0.5f}, plane0Size);
vec2 plane1HalfTexel = Div({0.5f, 0.5f}, plane1Size);
params.samplePlane0RectMin = Add(rectOffset, plane0HalfTexel);
params.samplePlane1RectMin = Add(rectOffset, plane1HalfTexel);
params.samplePlane0RectMax = Sub(Add(rectOffset, rectScale), plane0HalfTexel);
params.samplePlane1RectMax = Sub(Add(rectOffset, rectScale), plane1HalfTexel);
}
params.plane1CoordFactor = Div(plane1Size, plane0Size);
params.visibleSize = loadBounds;
DAWN_TRY(device->GetQueue()->WriteBuffer(mParamsBuffer.Get(), 0, &params,
sizeof(ExternalTextureParams)));
return {};
}
const std::array<Ref<TextureViewBase>, kMaxPlanesPerFormat>& ExternalTextureBase::GetTextureViews()
const {
return mTextureViews;
}
MaybeError ExternalTextureBase::ValidateCanUseInSubmitNow() const {
DAWN_ASSERT(!IsError());
DAWN_INVALID_IF(mState != ExternalTextureState::Active,
"External texture %s used in a submit is not active.", this);
for (uint32_t i = 0; i < kMaxPlanesPerFormat; ++i) {
if (mTextureViews[i] != nullptr) {
DAWN_TRY_CONTEXT(mTextureViews[i]->GetTexture()->ValidateCanUseInSubmitNow(),
"Validate plane %u of %s can be used in a submit.", i, this);
}
}
return {};
}
MaybeError ExternalTextureBase::ValidateRefresh() {
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_INVALID_IF(mState == ExternalTextureState::Destroyed, "%s is destroyed.", this);
return {};
}
MaybeError ExternalTextureBase::ValidateExpire() {
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_INVALID_IF(mState != ExternalTextureState::Active, "%s is not active.", this);
return {};
}
void ExternalTextureBase::APIRefresh() {
if (GetDevice()->ConsumedError(ValidateRefresh(), "calling %s.Refresh()", this)) {
return;
}
mState = ExternalTextureState::Active;
}
void ExternalTextureBase::APIExpire() {
if (GetDevice()->ConsumedError(ValidateExpire(), "calling %s.Expire()", this)) {
return;
}
mState = ExternalTextureState::Expired;
}
void ExternalTextureBase::APIDestroy() {
Destroy();
}
void ExternalTextureBase::DestroyImpl() {
// TODO(crbug.com/dawn/831): DestroyImpl is called from two places.
// - It may be called if the texture is explicitly destroyed with APIDestroy.
// This case is NOT thread-safe and needs proper synchronization with other
// simultaneous uses of the texture.
// - It may be called when the last ref to the texture is dropped and the texture
// is implicitly destroyed. This case is thread-safe because there are no
// other threads using the texture since there are no other live refs.
mState = ExternalTextureState::Destroyed;
}
// static
Ref<ExternalTextureBase> ExternalTextureBase::MakeError(DeviceBase* device, const char* label) {
return AcquireRef(new ExternalTextureBase(device, ObjectBase::kError, label));
}
BufferBase* ExternalTextureBase::GetParamsBuffer() const {
return mParamsBuffer.Get();
}
ObjectType ExternalTextureBase::GetType() const {
return ObjectType::ExternalTexture;
}
const Extent2D& ExternalTextureBase::GetVisibleSize() const {
DAWN_ASSERT(!IsError());
return mVisibleSize;
}
const Origin2D& ExternalTextureBase::GetVisibleOrigin() const {
DAWN_ASSERT(!IsError());
return mVisibleOrigin;
}
} // namespace dawn::native