| // Copyright 2020 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <vector> |
| |
| #include "dawn/native/Buffer.h" |
| #include "dawn/native/CommandEncoder.h" |
| #include "dawn/native/QueryHelper.h" |
| #include "dawn/tests/DawnTest.h" |
| #include "dawn/utils/WGPUHelpers.h" |
| |
| namespace dawn { |
| namespace { |
| |
| void EncodeConvertTimestampsToNanoseconds(wgpu::CommandEncoder encoder, |
| wgpu::Buffer timestamps, |
| wgpu::Buffer availability, |
| wgpu::Buffer params) { |
| ASSERT_TRUE(native::EncodeConvertTimestampsToNanoseconds( |
| native::FromAPI(encoder.Get()), native::FromAPI(timestamps.Get()), |
| native::FromAPI(availability.Get()), native::FromAPI(params.Get())) |
| .IsSuccess()); |
| } |
| |
| class InternalShaderExpectation : public ::dawn::detail::Expectation { |
| public: |
| ~InternalShaderExpectation() override = default; |
| |
| InternalShaderExpectation(const uint64_t* values, |
| const unsigned int count, |
| const uint32_t quantizationMask) { |
| mExpected.assign(values, values + count); |
| mQuantizationMask = quantizationMask; |
| } |
| |
| // Expect the actual results are approximately equal to the expected values. |
| testing::AssertionResult Check(const void* data, size_t size) override { |
| DAWN_ASSERT(size == sizeof(uint64_t) * mExpected.size()); |
| // The computations in the shader use a multiplier that's a 16bit integer plus a shift |
| // that maximize the multiplier. This means that for the range of periods we care about |
| // (1 to 2^16-1 ns per tick), the high order bit of the multiplier will always be set. |
| // Intuitively this means that we have 15 bits of precision in the computation so we |
| // expect that for the error tolerance. |
| constexpr static double kErrorToleranceRatio = 1.0 / (1 << 15); // about 3e-5. |
| |
| constexpr static double kUpperLimitMultiplier = 1.0 + kErrorToleranceRatio; |
| constexpr static double kLowerLimitMultiplier = 1.0 - kErrorToleranceRatio; |
| |
| const uint64_t* actual = static_cast<const uint64_t*>(data); |
| for (size_t i = 0; i < mExpected.size(); ++i) { |
| if (mExpected[i] == 0) { |
| if (actual[i] != 0) { |
| return testing::AssertionFailure() |
| << "Expected data[" << i << "] to be 0, actual " << actual[i] << "\n"; |
| } |
| continue; |
| } |
| |
| uint64_t expected = mExpected[i]; |
| uint64_t upperLimit = static_cast<double>(mExpected[i]) * kUpperLimitMultiplier; |
| uint64_t lowerLimit = static_cast<double>(mExpected[i]) * kLowerLimitMultiplier; |
| |
| // Quantization may make an actual value close to the lower limit go below it. |
| // Take this into account by also quantizing the lower limit. |
| uint32_t invertedQuantizationMask = ~mQuantizationMask; |
| uint64_t quantizationMask64 = ~uint64_t(invertedQuantizationMask); |
| lowerLimit &= quantizationMask64; |
| |
| if (actual[i] < lowerLimit || actual[i] > upperLimit) { |
| return testing::AssertionFailure() |
| << "Expected data[" << i << "] to be " << expected << ", actual " |
| << actual[i] << ". Error rate is larger than " << kErrorToleranceRatio |
| << ". Upper limit is " << upperLimit << ". Lower limit is " << lowerLimit |
| << "\n"; |
| } |
| |
| if ((actual[i] & ~quantizationMask64) != 0) { |
| return testing::AssertionFailure() << "Actual data 0x" << std::hex << actual[i] |
| << " does not match quantization mask 0x" |
| << std::hex << mQuantizationMask << "\n"; |
| } |
| } |
| |
| return testing::AssertionSuccess(); |
| } |
| |
| private: |
| std::vector<uint64_t> mExpected; |
| uint32_t mQuantizationMask; |
| }; |
| |
| constexpr static uint64_t kSentinelValue = ~uint64_t(0u); |
| |
| class QueryInternalShaderTests : public DawnTest { |
| protected: |
| void SetUp() override { |
| DawnTest::SetUp(); |
| |
| DAWN_TEST_UNSUPPORTED_IF(UsesWire()); |
| DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_timestamp_query_conversion")); |
| |
| // If implicit device synchronization is turned on, EncodeConvertTimestampsToNanoseconds |
| // will expect the device to be locked. But we are calling it directly without going through |
| // wgpu API, hence the device won't be locked on this route. This would lead to assertion |
| // failure. So disable the test if this feature is turned on. |
| DAWN_TEST_UNSUPPORTED_IF(IsImplicitDeviceSyncEnabled()); |
| } |
| |
| // Original timestamp values in query set for testing |
| const std::vector<uint64_t> querySetValues = { |
| kSentinelValue, // garbage data which is not written at beginning |
| 10079569507, // t0 |
| 10394415012, // t1 |
| kSentinelValue, // garbage data which is not written between timestamps |
| 11713454943, // t2 |
| 38912556941, // t3 (big value) |
| 10080295766, // t4 (reset) |
| 12159966783, // t5 (after reset) |
| 12651224612, // t6 |
| 39872473956, // t7 |
| }; |
| |
| const uint32_t kQueryCount = querySetValues.size(); |
| |
| // Timestamps available state |
| const std::vector<uint32_t> availabilities = {0, 1, 1, 0, 1, 1, 1, 1, 1, 1}; |
| |
| const std::vector<uint64_t> GetExpectedResults(const std::vector<uint64_t>& origin, |
| uint32_t start, |
| uint32_t firstQuery, |
| uint32_t queryCount, |
| float period) { |
| std::vector<uint64_t> expected(origin.begin(), origin.end()); |
| for (size_t i = 0; i < queryCount; i++) { |
| if (availabilities[firstQuery + i] == 0) { |
| // Not a available timestamp, write 0 |
| expected[start + i] = 0u; |
| } else { |
| // Maybe the timestamp * period is larger than the maximum of uint64, so cast the |
| // delta value to double (higher precision than float) |
| expected[start + i] = |
| static_cast<uint64_t>(static_cast<double>(origin[start + i]) * period); |
| } |
| } |
| return expected; |
| } |
| |
| void RunTest(uint32_t firstQuery, |
| uint32_t queryCount, |
| uint32_t destinationOffset, |
| uint32_t quantizationMask, |
| float period) { |
| DAWN_ASSERT(destinationOffset % kQueryResolveAlignment == 0); |
| |
| uint64_t size = queryCount * sizeof(uint64_t) + destinationOffset; |
| |
| // The resolve buffer storing original timestamps and the converted values |
| wgpu::BufferDescriptor timestampsDesc; |
| timestampsDesc.size = size; |
| timestampsDesc.usage = wgpu::BufferUsage::QueryResolve | wgpu::BufferUsage::CopySrc | |
| wgpu::BufferUsage::CopyDst; |
| wgpu::Buffer timestampsBuffer = device.CreateBuffer(×tampsDesc); |
| |
| // Set sentinel values to check the slots before the destination offset should not be |
| // converted |
| std::vector<uint64_t> timestampValues(size / sizeof(uint64_t), 1u); |
| uint32_t start = destinationOffset / sizeof(uint64_t); |
| for (uint32_t i = 0; i < queryCount; i++) { |
| timestampValues[start + i] = querySetValues[firstQuery + i]; |
| } |
| // Write sentinel values and orignal timestamps to timestamps buffer |
| queue.WriteBuffer(timestampsBuffer, 0, timestampValues.data(), size); |
| |
| // The buffer indicating which values are available timestamps |
| wgpu::Buffer availabilityBuffer = |
| utils::CreateBufferFromData(device, availabilities.data(), |
| kQueryCount * sizeof(uint32_t), wgpu::BufferUsage::Storage); |
| |
| // The params uniform buffer |
| native::TimestampParams params(firstQuery, queryCount, destinationOffset, quantizationMask, |
| period); |
| wgpu::Buffer paramsBuffer = utils::CreateBufferFromData(device, ¶ms, sizeof(params), |
| wgpu::BufferUsage::Uniform); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| EncodeConvertTimestampsToNanoseconds(encoder, timestampsBuffer, availabilityBuffer, |
| paramsBuffer); |
| wgpu::CommandBuffer commands = encoder.Finish(); |
| queue.Submit(1, &commands); |
| |
| const std::vector<uint64_t> expected = |
| GetExpectedResults(timestampValues, start, firstQuery, queryCount, period); |
| |
| EXPECT_BUFFER(timestampsBuffer, 0, size, |
| new InternalShaderExpectation(expected.data(), size / sizeof(uint64_t), |
| quantizationMask)) |
| << "Conversion test for period:" << period << " firstQuery:" << firstQuery |
| << " queryCount:" << queryCount << " destinationOffset:" << destinationOffset |
| << " quantizationMask: 0x" << std::hex << quantizationMask; |
| } |
| }; |
| |
| // Test the accuracy of timestamp compute shader which uses unsigned 32-bit integers to simulate |
| // unsigned 64-bit integers (timestamps) multiplied by float (period). |
| // The arguments pass to timestamp internal pipeline: |
| // - The timestamps buffer contains the original timestamps resolved from query set (created |
| // manually here), and will be used to store the results processed by the compute shader. |
| // Expect 0 for unavailable timestamps and nanoseconds for available timestamps in an expected |
| // error tolerance ratio. |
| // - The availability buffer passes the data of which slot in timestamps buffer is an initialized |
| // timestamp. |
| // - The params buffer passes the timestamp count, the offset in timestamps buffer and the |
| // timestamp period (here use GPU frequency (HZ) on Intel D3D12 to calculate the period in |
| // ns for testing). |
| TEST_P(QueryInternalShaderTests, TimestampComputeShaderMultiplication) { |
| // TODO(crbug.com/dawn/741): Test output is wrong with D3D12 + WARP. |
| DAWN_SUPPRESS_TEST_IF(IsD3D12() && IsWARP()); |
| // TODO(crbug.com/dawn/1617): VUID-vkUpdateDescriptorSets-None-03047 on UHD630 |
| // driver 31.0.101.2111 |
| DAWN_SUPPRESS_TEST_IF(IsWindows() && IsVulkan() && IsIntel()); |
| |
| constexpr std::array<float, 5> kPeriodsToTest = { |
| 1, |
| 7, |
| // A gpu frequency on Intel D3D12 (ticks/second) |
| 83.333, |
| 1042, |
| 65535, |
| }; |
| |
| const uint32_t kNoOpQuantizationBitmask = 0xFFFFFFFF; |
| |
| for (float period : kPeriodsToTest) { |
| // Convert timestamps in timestamps buffer with offset 0 |
| // Test for ResolveQuerySet(querySet, 0, kQueryCount, timestampsBuffer, 0) |
| RunTest(0, kQueryCount, 0, kNoOpQuantizationBitmask, period); |
| |
| // Convert timestamps in timestamps buffer with offset 256 |
| // Test for ResolveQuerySet(querySet, 1, kQueryCount - 1, timestampsBuffer, 256) |
| RunTest(1, kQueryCount - 1, kQueryResolveAlignment, kNoOpQuantizationBitmask, period); |
| |
| // Convert partial timestamps in timestamps buffer with offset 256 |
| // Test for ResolveQuerySet(querySet, 1, 4, timestampsBuffer, 256) |
| RunTest(1, 4, kQueryResolveAlignment, kNoOpQuantizationBitmask, period); |
| } |
| } |
| |
| TEST_P(QueryInternalShaderTests, TimestampComputeShaderQuantization) { |
| DAWN_TEST_UNSUPPORTED_IF(!HasToggleEnabled("timestamp_quantization")); |
| // TODO(crbug.com/dawn/741): Test output is wrong with D3D12 + WARP. |
| DAWN_SUPPRESS_TEST_IF(IsD3D12() && IsWARP()); |
| // TODO(crbug.com/dawn/1617): VUID-vkUpdateDescriptorSets-None-03047 on UHD630 |
| // driver 31.0.101.2111 |
| DAWN_SUPPRESS_TEST_IF(IsWindows() && IsVulkan() && IsIntel()); |
| |
| constexpr std::array<uint32_t, 3> kQuantizationMasksToTest = { |
| 0xFFFFFFFF, |
| 0xFFFFFF00, |
| 0xFFFF0000, |
| }; |
| |
| for (uint32_t quantizationMask : kQuantizationMasksToTest) { |
| // Convert timestamps in timestamps buffer with offset 0 |
| // Test for ResolveQuerySet(querySet, 0, kQueryCount, timestampsBuffer, 0) |
| RunTest(0, kQueryCount, 0, quantizationMask, 1); |
| } |
| } |
| |
| DAWN_INSTANTIATE_TEST(QueryInternalShaderTests, D3D12Backend(), MetalBackend(), VulkanBackend()); |
| |
| } // anonymous namespace |
| } // namespace dawn |