blob: 3d21f7ad9530590a96bfd7e03248525208e08c0c [file] [log] [blame]
// Copyright 2020 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/wgsl/resolver/resolver.h"
#include <tuple>
#include "gmock/gmock.h"
#include "gtest/gtest-spi.h"
#include "src/tint/lang/core/builtin_value.h"
#include "src/tint/lang/core/type/reference.h"
#include "src/tint/lang/core/type/sampled_texture.h"
#include "src/tint/lang/core/type/texture_dimension.h"
#include "src/tint/lang/wgsl/ast/assignment_statement.h"
#include "src/tint/lang/wgsl/ast/break_statement.h"
#include "src/tint/lang/wgsl/ast/builtin_texture_helper_test.h"
#include "src/tint/lang/wgsl/ast/call_statement.h"
#include "src/tint/lang/wgsl/ast/continue_statement.h"
#include "src/tint/lang/wgsl/ast/float_literal_expression.h"
#include "src/tint/lang/wgsl/ast/id_attribute.h"
#include "src/tint/lang/wgsl/ast/if_statement.h"
#include "src/tint/lang/wgsl/ast/loop_statement.h"
#include "src/tint/lang/wgsl/ast/return_statement.h"
#include "src/tint/lang/wgsl/ast/stage_attribute.h"
#include "src/tint/lang/wgsl/ast/switch_statement.h"
#include "src/tint/lang/wgsl/ast/unary_op_expression.h"
#include "src/tint/lang/wgsl/ast/variable_decl_statement.h"
#include "src/tint/lang/wgsl/ast/workgroup_attribute.h"
#include "src/tint/lang/wgsl/resolver/resolver_helper_test.h"
#include "src/tint/lang/wgsl/sem/array.h"
#include "src/tint/lang/wgsl/sem/call.h"
#include "src/tint/lang/wgsl/sem/function.h"
#include "src/tint/lang/wgsl/sem/member_accessor_expression.h"
#include "src/tint/lang/wgsl/sem/module.h"
#include "src/tint/lang/wgsl/sem/statement.h"
#include "src/tint/lang/wgsl/sem/switch_statement.h"
#include "src/tint/lang/wgsl/sem/variable.h"
#include "src/tint/utils/text/string_stream.h"
namespace tint::resolver {
namespace {
using ::testing::ElementsAre;
using ::testing::HasSubstr;
using namespace tint::core::fluent_types; // NOLINT
using namespace tint::core::number_suffixes; // NOLINT
// Helpers and typedefs
template <typename T>
using DataType = builder::DataType<T>;
template <typename T, int ID = 0>
using alias = builder::alias<T, ID>;
template <typename T>
using alias1 = builder::alias1<T>;
template <typename T>
using alias2 = builder::alias2<T>;
template <typename T>
using alias3 = builder::alias3<T>;
using Op = core::BinaryOp;
TEST_F(ResolverTest, Stmt_Assign) {
auto* v = Var("v", ty.f32());
auto* lhs = Expr("v");
auto* rhs = Expr(2.3_f);
auto* assign = Assign(lhs, rhs);
WrapInFunction(v, assign);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
}
TEST_F(ResolverTest, Stmt_Case) {
auto* v = Var("v", ty.f32());
auto* lhs = Expr("v");
auto* rhs = Expr(2.3_f);
auto* assign = Assign(lhs, rhs);
auto* block = Block(assign);
auto* sel = CaseSelector(3_i);
auto* cse = Case(sel, block);
auto* def = DefaultCase();
auto* cond_var = Var("c", ty.i32());
auto* sw = Switch(cond_var, cse, def);
WrapInFunction(v, cond_var, sw);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
EXPECT_EQ(BlockOf(assign), block);
auto* sem = Sem().Get(sw);
ASSERT_EQ(sem->Cases().size(), 2u);
EXPECT_EQ(sem->Cases()[0]->Declaration(), cse);
ASSERT_EQ(sem->Cases()[0]->Selectors().size(), 1u);
EXPECT_EQ(sem->Cases()[1]->Selectors().size(), 1u);
}
TEST_F(ResolverTest, Stmt_Case_AddressOf_Invalid) {
auto* cond_var = Var("i", ty.i32());
WrapInFunction(cond_var, Switch("i", Case(CaseSelector(AddressOf(1_a)), Block())));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "error: cannot take the address of value of type 'abstract-int'");
}
TEST_F(ResolverTest, Stmt_Block) {
auto* v = Var("v", ty.f32());
auto* lhs = Expr("v");
auto* rhs = Expr(2.3_f);
auto* assign = Assign(lhs, rhs);
auto* block = Block(assign);
WrapInFunction(v, block);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
EXPECT_EQ(BlockOf(lhs), block);
EXPECT_EQ(BlockOf(rhs), block);
EXPECT_EQ(BlockOf(assign), block);
}
TEST_F(ResolverTest, Stmt_If) {
auto* v = Var("v", ty.f32());
auto* else_lhs = Expr("v");
auto* else_rhs = Expr(2.3_f);
auto* else_body = Block(Assign(else_lhs, else_rhs));
auto* else_cond = Expr(true);
auto* else_stmt = If(else_cond, else_body);
auto* lhs = Expr("v");
auto* rhs = Expr(2.3_f);
auto* assign = Assign(lhs, rhs);
auto* body = Block(assign);
auto* cond = Expr(true);
auto* stmt = If(cond, body, Else(else_stmt));
WrapInFunction(v, stmt);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(stmt->condition), nullptr);
ASSERT_NE(TypeOf(else_lhs), nullptr);
ASSERT_NE(TypeOf(else_rhs), nullptr);
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(stmt->condition)->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(else_lhs)->UnwrapRef()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(else_rhs)->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
EXPECT_EQ(StmtOf(cond), stmt);
EXPECT_EQ(StmtOf(else_cond), else_stmt);
EXPECT_EQ(BlockOf(lhs), body);
EXPECT_EQ(BlockOf(rhs), body);
EXPECT_EQ(BlockOf(else_lhs), else_body);
EXPECT_EQ(BlockOf(else_rhs), else_body);
}
TEST_F(ResolverTest, Stmt_Loop) {
auto* v = Var("v", ty.f32());
auto* body_lhs = Expr("v");
auto* body_rhs = Expr(2.3_f);
auto* body = Block(Assign(body_lhs, body_rhs), Break());
auto* continuing_lhs = Expr("v");
auto* continuing_rhs = Expr(2.3_f);
auto* break_if = BreakIf(false);
auto* continuing = Block(Assign(continuing_lhs, continuing_rhs), break_if);
auto* stmt = Loop(body, continuing);
WrapInFunction(v, stmt);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(body_lhs), nullptr);
ASSERT_NE(TypeOf(body_rhs), nullptr);
ASSERT_NE(TypeOf(continuing_lhs), nullptr);
ASSERT_NE(TypeOf(continuing_rhs), nullptr);
EXPECT_TRUE(TypeOf(body_lhs)->UnwrapRef()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(body_rhs)->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(continuing_lhs)->UnwrapRef()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(continuing_rhs)->Is<core::type::F32>());
EXPECT_EQ(BlockOf(body_lhs), body);
EXPECT_EQ(BlockOf(body_rhs), body);
EXPECT_EQ(BlockOf(continuing_lhs), continuing);
EXPECT_EQ(BlockOf(continuing_rhs), continuing);
EXPECT_EQ(BlockOf(break_if), continuing);
}
TEST_F(ResolverTest, Stmt_Return) {
auto* cond = Expr(2_i);
auto* ret = Return(cond);
Func("test", tint::Empty, ty.i32(), Vector{ret}, tint::Empty);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(cond), nullptr);
EXPECT_TRUE(TypeOf(cond)->Is<core::type::I32>());
}
TEST_F(ResolverTest, Stmt_Return_WithoutValue) {
auto* ret = Return();
WrapInFunction(ret);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, Stmt_Switch) {
auto* v = Var("v", ty.f32());
auto* lhs = Expr("v");
auto* rhs = Expr(2.3_f);
auto* case_block = Block(Assign(lhs, rhs));
auto* stmt = Switch(Expr(2_i), Case(CaseSelector(3_i), case_block), DefaultCase());
WrapInFunction(v, stmt);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(stmt->condition), nullptr);
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(stmt->condition)->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>());
EXPECT_EQ(BlockOf(lhs), case_block);
EXPECT_EQ(BlockOf(rhs), case_block);
}
TEST_F(ResolverTest, Stmt_Call) {
Func("my_func", tint::Empty, ty.void_(),
Vector{
Return(),
});
auto* expr = Call("my_func");
auto* call = CallStmt(expr);
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
EXPECT_TRUE(TypeOf(expr)->Is<core::type::Void>());
EXPECT_EQ(StmtOf(expr), call);
}
TEST_F(ResolverTest, Stmt_VariableDecl) {
auto* var = Var("my_var", ty.i32(), Expr(2_i));
auto* init = var->initializer;
auto* decl = Decl(var);
WrapInFunction(decl);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(init), nullptr);
EXPECT_TRUE(TypeOf(init)->Is<core::type::I32>());
}
TEST_F(ResolverTest, Stmt_VariableDecl_Alias) {
auto* my_int = Alias("MyInt", ty.i32());
auto* var = Var("my_var", ty.Of(my_int), Expr(2_i));
auto* init = var->initializer;
auto* decl = Decl(var);
WrapInFunction(decl);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(init), nullptr);
EXPECT_TRUE(TypeOf(init)->Is<core::type::I32>());
}
TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScope) {
auto* init = Expr(2_i);
GlobalVar("my_var", ty.i32(), core::AddressSpace::kPrivate, init);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(init), nullptr);
EXPECT_TRUE(TypeOf(init)->Is<core::type::I32>());
EXPECT_EQ(StmtOf(init), nullptr);
}
TEST_F(ResolverTest, Stmt_VariableDecl_OuterScopeAfterInnerScope) {
// fn func_i32() {
// {
// var foo : i32 = 2;
// var bar : i32 = foo;
// }
// var foo : f32 = 2.0;
// var bar : f32 = foo;
// }
// Declare i32 "foo" inside a block
auto* foo_i32 = Var("foo", ty.i32(), Expr(2_i));
auto* foo_i32_init = foo_i32->initializer;
auto* foo_i32_decl = Decl(foo_i32);
// Reference "foo" inside the block
auto* bar_i32 = Var("bar", ty.i32(), Expr("foo"));
auto* bar_i32_init = bar_i32->initializer;
auto* bar_i32_decl = Decl(bar_i32);
auto* inner = Block(foo_i32_decl, bar_i32_decl);
// Declare f32 "foo" at function scope
auto* foo_f32 = Var("foo", ty.f32(), Expr(2_f));
auto* foo_f32_init = foo_f32->initializer;
auto* foo_f32_decl = Decl(foo_f32);
// Reference "foo" at function scope
auto* bar_f32 = Var("bar", ty.f32(), Expr("foo"));
auto* bar_f32_init = bar_f32->initializer;
auto* bar_f32_decl = Decl(bar_f32);
Func("func", tint::Empty, ty.void_(), Vector{inner, foo_f32_decl, bar_f32_decl});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(foo_i32_init), nullptr);
EXPECT_TRUE(TypeOf(foo_i32_init)->Is<core::type::I32>());
ASSERT_NE(TypeOf(foo_f32_init), nullptr);
EXPECT_TRUE(TypeOf(foo_f32_init)->Is<core::type::F32>());
ASSERT_NE(TypeOf(bar_i32_init), nullptr);
EXPECT_TRUE(TypeOf(bar_i32_init)->UnwrapRef()->Is<core::type::I32>());
ASSERT_NE(TypeOf(bar_f32_init), nullptr);
EXPECT_TRUE(TypeOf(bar_f32_init)->UnwrapRef()->Is<core::type::F32>());
EXPECT_EQ(StmtOf(foo_i32_init), foo_i32_decl);
EXPECT_EQ(StmtOf(bar_i32_init), bar_i32_decl);
EXPECT_EQ(StmtOf(foo_f32_init), foo_f32_decl);
EXPECT_EQ(StmtOf(bar_f32_init), bar_f32_decl);
EXPECT_TRUE(CheckVarUsers(foo_i32, Vector{bar_i32->initializer}));
EXPECT_TRUE(CheckVarUsers(foo_f32, Vector{bar_f32->initializer}));
ASSERT_NE(VarOf(bar_i32->initializer), nullptr);
EXPECT_EQ(VarOf(bar_i32->initializer)->Declaration(), foo_i32);
ASSERT_NE(VarOf(bar_f32->initializer), nullptr);
EXPECT_EQ(VarOf(bar_f32->initializer)->Declaration(), foo_f32);
}
TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScopeAfterFunctionScope) {
// fn func_i32() {
// var foo : i32 = 2;
// }
// var foo : f32 = 2.0;
// fn func_f32() {
// var bar : f32 = foo;
// }
// Declare i32 "foo" inside a function
auto* fn_i32 = Var("foo", ty.i32(), Expr(2_i));
auto* fn_i32_init = fn_i32->initializer;
auto* fn_i32_decl = Decl(fn_i32);
Func("func_i32", tint::Empty, ty.void_(), Vector{fn_i32_decl});
// Declare f32 "foo" at module scope
auto* mod_f32 = Var("foo", ty.f32(), core::AddressSpace::kPrivate, Expr(2_f));
auto* mod_init = mod_f32->initializer;
AST().AddGlobalVariable(mod_f32);
// Reference "foo" in another function
auto* fn_f32 = Var("bar", ty.f32(), Expr("foo"));
auto* fn_f32_init = fn_f32->initializer;
auto* fn_f32_decl = Decl(fn_f32);
Func("func_f32", tint::Empty, ty.void_(), Vector{fn_f32_decl});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mod_init), nullptr);
EXPECT_TRUE(TypeOf(mod_init)->Is<core::type::F32>());
ASSERT_NE(TypeOf(fn_i32_init), nullptr);
EXPECT_TRUE(TypeOf(fn_i32_init)->Is<core::type::I32>());
ASSERT_NE(TypeOf(fn_f32_init), nullptr);
EXPECT_TRUE(TypeOf(fn_f32_init)->UnwrapRef()->Is<core::type::F32>());
EXPECT_EQ(StmtOf(fn_i32_init), fn_i32_decl);
EXPECT_EQ(StmtOf(mod_init), nullptr);
EXPECT_EQ(StmtOf(fn_f32_init), fn_f32_decl);
EXPECT_TRUE(CheckVarUsers(fn_i32, tint::Empty));
EXPECT_TRUE(CheckVarUsers(mod_f32, Vector{fn_f32->initializer}));
ASSERT_NE(VarOf(fn_f32->initializer), nullptr);
EXPECT_EQ(VarOf(fn_f32->initializer)->Declaration(), mod_f32);
}
TEST_F(ResolverTest, ArraySize_UnsignedLiteral) {
// var<private> a : array<f32, 10u>;
auto* a = GlobalVar("a", ty.array(ty.f32(), Expr(10_u)), core::AddressSpace::kPrivate);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(a), nullptr);
auto* ref = TypeOf(a)->As<core::type::Reference>();
ASSERT_NE(ref, nullptr);
auto* ary = ref->StoreType()->As<sem::Array>();
EXPECT_EQ(ary->Count(), create<core::type::ConstantArrayCount>(10u));
}
TEST_F(ResolverTest, ArraySize_SignedLiteral) {
// var<private> a : array<f32, 10i>;
auto* a = GlobalVar("a", ty.array(ty.f32(), Expr(10_i)), core::AddressSpace::kPrivate);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(a), nullptr);
auto* ref = TypeOf(a)->As<core::type::Reference>();
ASSERT_NE(ref, nullptr);
auto* ary = ref->StoreType()->As<sem::Array>();
EXPECT_EQ(ary->Count(), create<core::type::ConstantArrayCount>(10u));
}
TEST_F(ResolverTest, ArraySize_UnsignedConst) {
// const size = 10u;
// var<private> a : array<f32, size>;
GlobalConst("size", Expr(10_u));
auto* a = GlobalVar("a", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kPrivate);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(a), nullptr);
auto* ref = TypeOf(a)->As<core::type::Reference>();
ASSERT_NE(ref, nullptr);
auto* ary = ref->StoreType()->As<sem::Array>();
EXPECT_EQ(ary->Count(), create<core::type::ConstantArrayCount>(10u));
}
TEST_F(ResolverTest, ArraySize_SignedConst) {
// const size = 0;
// var<private> a : array<f32, size>;
GlobalConst("size", Expr(10_i));
auto* a = GlobalVar("a", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kPrivate);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(a), nullptr);
auto* ref = TypeOf(a)->As<core::type::Reference>();
ASSERT_NE(ref, nullptr);
auto* ary = ref->StoreType()->As<sem::Array>();
EXPECT_EQ(ary->Count(), create<core::type::ConstantArrayCount>(10u));
}
TEST_F(ResolverTest, ArraySize_NamedOverride) {
// override size = 10i;
// var<workgroup> a : array<f32, size>;
auto* override = Override("size", Expr(10_i));
auto* a = GlobalVar("a", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kWorkgroup);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(a), nullptr);
auto* ref = TypeOf(a)->As<core::type::Reference>();
ASSERT_NE(ref, nullptr);
auto* ary = ref->StoreType()->As<sem::Array>();
auto* sem_override = Sem().Get(override);
ASSERT_NE(sem_override, nullptr);
EXPECT_EQ(ary->Count(), create<sem::NamedOverrideArrayCount>(sem_override));
}
TEST_F(ResolverTest, ArraySize_NamedOverride_Equivalence) {
// override size = 10i;
// var<workgroup> a : array<f32, size>;
// var<workgroup> b : array<f32, size>;
auto* override = Override("size", Expr(10_i));
auto* a = GlobalVar("a", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kWorkgroup);
auto* b = GlobalVar("b", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kWorkgroup);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(a), nullptr);
auto* ref_a = TypeOf(a)->As<core::type::Reference>();
ASSERT_NE(ref_a, nullptr);
auto* ary_a = ref_a->StoreType()->As<sem::Array>();
ASSERT_NE(TypeOf(b), nullptr);
auto* ref_b = TypeOf(b)->As<core::type::Reference>();
ASSERT_NE(ref_b, nullptr);
auto* ary_b = ref_b->StoreType()->As<sem::Array>();
auto* sem_override = Sem().Get(override);
ASSERT_NE(sem_override, nullptr);
EXPECT_EQ(ary_a->Count(), create<sem::NamedOverrideArrayCount>(sem_override));
EXPECT_EQ(ary_b->Count(), create<sem::NamedOverrideArrayCount>(sem_override));
EXPECT_EQ(ary_a, ary_b);
}
TEST_F(ResolverTest, ArraySize_UnnamedOverride) {
// override size = 10i;
// var<workgroup> a : array<f32, size*2>;
auto* override = Override("size", Expr(10_i));
auto* cnt = Mul("size", 2_a);
auto* a = GlobalVar("a", ty.array(ty.f32(), cnt), core::AddressSpace::kWorkgroup);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(a), nullptr);
auto* ref = TypeOf(a)->As<core::type::Reference>();
ASSERT_NE(ref, nullptr);
auto* ary = ref->StoreType()->As<sem::Array>();
auto* sem_override = Sem().Get(override);
ASSERT_NE(sem_override, nullptr);
EXPECT_EQ(ary->Count(), create<sem::UnnamedOverrideArrayCount>(Sem().Get(cnt)));
}
TEST_F(ResolverTest, ArraySize_UnamedOverride_Equivalence) {
// override size = 10i;
// var<workgroup> a : array<f32, size>;
// var<workgroup> b : array<f32, size>;
auto* override = Override("size", Expr(10_i));
auto* a_cnt = Mul("size", 2_a);
auto* b_cnt = Mul("size", 2_a);
auto* a = GlobalVar("a", ty.array(ty.f32(), a_cnt), core::AddressSpace::kWorkgroup);
auto* b = GlobalVar("b", ty.array(ty.f32(), b_cnt), core::AddressSpace::kWorkgroup);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(a), nullptr);
auto* ref_a = TypeOf(a)->As<core::type::Reference>();
ASSERT_NE(ref_a, nullptr);
auto* ary_a = ref_a->StoreType()->As<sem::Array>();
ASSERT_NE(TypeOf(b), nullptr);
auto* ref_b = TypeOf(b)->As<core::type::Reference>();
ASSERT_NE(ref_b, nullptr);
auto* ary_b = ref_b->StoreType()->As<sem::Array>();
auto* sem_override = Sem().Get(override);
ASSERT_NE(sem_override, nullptr);
EXPECT_EQ(ary_a->Count(), create<sem::UnnamedOverrideArrayCount>(Sem().Get(a_cnt)));
EXPECT_EQ(ary_b->Count(), create<sem::UnnamedOverrideArrayCount>(Sem().Get(b_cnt)));
EXPECT_NE(ary_a, ary_b);
}
TEST_F(ResolverTest, Expr_Bitcast) {
GlobalVar("name", ty.f32(), core::AddressSpace::kPrivate);
auto* bitcast = Bitcast<f32>(Expr("name"));
WrapInFunction(bitcast);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(bitcast), nullptr);
EXPECT_TRUE(TypeOf(bitcast)->Is<core::type::F32>());
}
TEST_F(ResolverTest, Expr_Call) {
Func("my_func", tint::Empty, ty.f32(), Vector{Return(0_f)});
auto* call = Call("my_func");
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(call), nullptr);
EXPECT_TRUE(TypeOf(call)->Is<core::type::F32>());
}
TEST_F(ResolverTest, Expr_Call_InBinaryOp) {
Func("func", tint::Empty, ty.f32(), Vector{Return(0_f)});
auto* expr = Add(Call("func"), Call("func"));
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
EXPECT_TRUE(TypeOf(expr)->Is<core::type::F32>());
}
TEST_F(ResolverTest, Expr_Call_WithParams) {
Func("my_func", Vector{Param(Sym(), ty.f32())}, ty.f32(),
Vector{
Return(1.2_f),
});
auto* param = Expr(2.4_f);
auto* call = Call("my_func", param);
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(param), nullptr);
EXPECT_TRUE(TypeOf(param)->Is<core::type::F32>());
}
TEST_F(ResolverTest, Expr_Call_Builtin) {
auto* call = Call("round", 2.4_f);
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(call), nullptr);
EXPECT_TRUE(TypeOf(call)->Is<core::type::F32>());
}
TEST_F(ResolverTest, Expr_Cast) {
GlobalVar("name", ty.f32(), core::AddressSpace::kPrivate);
auto* cast = Call<f32>("name");
WrapInFunction(cast);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(cast), nullptr);
EXPECT_TRUE(TypeOf(cast)->Is<core::type::F32>());
}
TEST_F(ResolverTest, Expr_Initializer_Scalar) {
auto* s = Expr(1_f);
WrapInFunction(s);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(s), nullptr);
EXPECT_TRUE(TypeOf(s)->Is<core::type::F32>());
}
TEST_F(ResolverTest, Expr_Initializer_Type_Vec2) {
auto* tc = Call<vec2<f32>>(1_f, 1_f);
WrapInFunction(tc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u);
}
TEST_F(ResolverTest, Expr_Initializer_Type_Vec3) {
auto* tc = Call<vec3<f32>>(1_f, 1_f, 1_f);
WrapInFunction(tc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
}
TEST_F(ResolverTest, Expr_Initializer_Type_Vec4) {
auto* tc = Call<vec4<f32>>(1_f, 1_f, 1_f, 1_f);
WrapInFunction(tc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverTest, Expr_Identifier_GlobalVariable) {
auto* my_var = GlobalVar("my_var", ty.f32(), core::AddressSpace::kPrivate);
auto* ident = Expr("my_var");
WrapInFunction(ident);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(ident), nullptr);
EXPECT_TRUE(TypeOf(ident)->Is<core::type::F32>());
EXPECT_TRUE(CheckVarUsers(my_var, Vector{ident}));
ASSERT_NE(VarOf(ident), nullptr);
EXPECT_EQ(VarOf(ident)->Declaration(), my_var);
}
TEST_F(ResolverTest, Expr_Identifier_GlobalConst) {
auto* my_var = GlobalConst("my_var", ty.f32(), Call<f32>());
auto* ident = Expr("my_var");
WrapInFunction(ident);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(ident), nullptr);
EXPECT_TRUE(TypeOf(ident)->Is<core::type::F32>());
EXPECT_TRUE(CheckVarUsers(my_var, Vector{ident}));
ASSERT_NE(VarOf(ident), nullptr);
EXPECT_EQ(VarOf(ident)->Declaration(), my_var);
}
TEST_F(ResolverTest, Expr_Identifier_FunctionVariable_Const) {
auto* my_var_a = Expr("my_var");
auto* var = Let("my_var", ty.f32(), Call<f32>());
auto* decl = Decl(Var("b", ty.f32(), my_var_a));
Func("my_func", tint::Empty, ty.void_(),
Vector{
Decl(var),
decl,
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(my_var_a), nullptr);
EXPECT_TRUE(TypeOf(my_var_a)->Is<core::type::F32>());
EXPECT_EQ(StmtOf(my_var_a), decl);
EXPECT_TRUE(CheckVarUsers(var, Vector{my_var_a}));
ASSERT_NE(VarOf(my_var_a), nullptr);
EXPECT_EQ(VarOf(my_var_a)->Declaration(), var);
}
TEST_F(ResolverTest, IndexAccessor_Dynamic_Ref_F32) {
// var a : array<bool, 10u> = 0;
// var idx : f32 = f32();
// var f : f32 = a[idx];
auto* a = Var("a", ty.array<bool, 10>(), Call<array<bool, 10>>());
auto* idx = Var("idx", ty.f32(), Call<f32>());
auto* f = Var("f", ty.f32(), IndexAccessor("a", Expr(Source{{12, 34}}, idx)));
Func("my_func", tint::Empty, ty.void_(),
Vector{
Decl(a),
Decl(idx),
Decl(f),
});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverTest, Expr_Identifier_FunctionVariable) {
auto* my_var_a = Expr("my_var");
auto* my_var_b = Expr("my_var");
auto* assign = Assign(my_var_a, my_var_b);
auto* var = Var("my_var", ty.f32());
Func("my_func", tint::Empty, ty.void_(),
Vector{
Decl(var),
assign,
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(my_var_a), nullptr);
ASSERT_TRUE(TypeOf(my_var_a)->Is<core::type::Reference>());
EXPECT_TRUE(TypeOf(my_var_a)->UnwrapRef()->Is<core::type::F32>());
EXPECT_EQ(StmtOf(my_var_a), assign);
ASSERT_NE(TypeOf(my_var_b), nullptr);
EXPECT_TRUE(TypeOf(my_var_b)->Is<core::type::F32>());
EXPECT_EQ(StmtOf(my_var_b), assign);
EXPECT_TRUE(CheckVarUsers(var, Vector{my_var_a, my_var_b}));
ASSERT_NE(VarOf(my_var_a), nullptr);
EXPECT_EQ(VarOf(my_var_a)->Declaration(), var);
ASSERT_NE(VarOf(my_var_b), nullptr);
EXPECT_EQ(VarOf(my_var_b)->Declaration(), var);
}
TEST_F(ResolverTest, Expr_Identifier_Function_Ptr) {
auto* v = Expr("v");
auto* p = Expr("p");
auto* v_decl = Decl(Var("v", ty.f32()));
auto* p_decl = Decl(Let("p", ty.ptr<function, f32>(), AddressOf(v)));
auto* assign = Assign(Deref(p), 1.23_f);
Func("my_func", tint::Empty, ty.void_(),
Vector{
v_decl,
p_decl,
assign,
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(v), nullptr);
ASSERT_TRUE(TypeOf(v)->Is<core::type::Reference>());
EXPECT_TRUE(TypeOf(v)->UnwrapRef()->Is<core::type::F32>());
EXPECT_EQ(StmtOf(v), p_decl);
ASSERT_NE(TypeOf(p), nullptr);
ASSERT_TRUE(TypeOf(p)->Is<core::type::Pointer>());
EXPECT_TRUE(TypeOf(p)->UnwrapPtr()->Is<core::type::F32>());
EXPECT_EQ(StmtOf(p), assign);
}
TEST_F(ResolverTest, Expr_Call_Function) {
Func("my_func", tint::Empty, ty.f32(),
Vector{
Return(0_f),
});
auto* call = Call("my_func");
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(call), nullptr);
EXPECT_TRUE(TypeOf(call)->Is<core::type::F32>());
}
TEST_F(ResolverTest, Expr_Identifier_Unknown) {
auto* a = Expr("a");
WrapInFunction(a);
EXPECT_FALSE(r()->Resolve());
}
TEST_F(ResolverTest, Function_Parameters) {
auto* param_a = Param("a", ty.f32());
auto* param_b = Param("b", ty.i32());
auto* param_c = Param("c", ty.u32());
auto* func = Func("my_func",
Vector{
param_a,
param_b,
param_c,
},
ty.void_(), tint::Empty);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->Parameters().Length(), 3u);
EXPECT_TRUE(func_sem->Parameters()[0]->Type()->Is<core::type::F32>());
EXPECT_TRUE(func_sem->Parameters()[1]->Type()->Is<core::type::I32>());
EXPECT_TRUE(func_sem->Parameters()[2]->Type()->Is<core::type::U32>());
EXPECT_EQ(func_sem->Parameters()[0]->Declaration(), param_a);
EXPECT_EQ(func_sem->Parameters()[1]->Declaration(), param_b);
EXPECT_EQ(func_sem->Parameters()[2]->Declaration(), param_c);
EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>());
}
TEST_F(ResolverTest, Function_Parameters_Locations) {
auto* param_a = Param("a", ty.f32(), Vector{Location(3_a)});
auto* param_b = Param("b", ty.u32(), Vector{Builtin(core::BuiltinValue::kVertexIndex)});
auto* param_c = Param("c", ty.u32(), Vector{Location(1_a)});
GlobalVar("my_vec", ty.vec4<f32>(), core::AddressSpace::kPrivate);
auto* func = Func("my_func",
Vector{
param_a,
param_b,
param_c,
},
ty.vec4<f32>(),
Vector{
Return("my_vec"),
},
Vector{
Stage(ast::PipelineStage::kVertex),
},
Vector{
Builtin(core::BuiltinValue::kPosition),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->Parameters().Length(), 3u);
EXPECT_EQ(3u, func_sem->Parameters()[0]->Attributes().location);
EXPECT_FALSE(func_sem->Parameters()[1]->Attributes().location.has_value());
EXPECT_EQ(1u, func_sem->Parameters()[2]->Attributes().location);
}
TEST_F(ResolverTest, Function_GlobalVariable_Location) {
auto* var =
GlobalVar("my_vec", ty.vec4<f32>(), core::AddressSpace::kIn,
Vector{Location(3_a), Disable(ast::DisabledValidation::kIgnoreAddressSpace)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get<sem::GlobalVariable>(var);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(3u, sem->Attributes().location);
}
TEST_F(ResolverTest, Function_RegisterInputOutputVariables) {
auto* s = Structure("S", Vector{Member("m", ty.u32())});
auto* sb_var = GlobalVar("sb_var", ty.Of(s), core::AddressSpace::kStorage,
core::Access::kReadWrite, Binding(0_a), Group(0_a));
auto* wg_var = GlobalVar("wg_var", ty.f32(), core::AddressSpace::kWorkgroup);
auto* priv_var = GlobalVar("priv_var", ty.f32(), core::AddressSpace::kPrivate);
auto* func = Func("my_func", tint::Empty, ty.void_(),
Vector{
Assign("wg_var", "wg_var"),
Assign("sb_var", "sb_var"),
Assign("priv_var", "priv_var"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->Parameters().Length(), 0u);
EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>());
const auto& vars = func_sem->TransitivelyReferencedGlobals();
ASSERT_EQ(vars.Length(), 3u);
EXPECT_EQ(vars[0]->Declaration(), wg_var);
EXPECT_EQ(vars[1]->Declaration(), sb_var);
EXPECT_EQ(vars[2]->Declaration(), priv_var);
}
TEST_F(ResolverTest, Function_ReturnType_Location) {
auto* func = Func("my_func", tint::Empty, ty.f32(),
Vector{
Return(1_f),
},
Vector{
Stage(ast::PipelineStage::kFragment),
},
Vector{
Location(2_a),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(func);
ASSERT_NE(nullptr, sem);
EXPECT_EQ(2u, sem->ReturnLocation());
}
TEST_F(ResolverTest, Function_ReturnType_NoLocation) {
GlobalVar("my_vec", ty.vec4<f32>(), core::AddressSpace::kPrivate);
auto* func = Func("my_func", tint::Empty, ty.vec4<f32>(),
Vector{
Return("my_vec"),
},
Vector{
Stage(ast::PipelineStage::kVertex),
},
Vector{
Builtin(core::BuiltinValue::kPosition),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(func);
ASSERT_NE(nullptr, sem);
EXPECT_FALSE(sem->ReturnLocation());
}
TEST_F(ResolverTest, Function_RegisterInputOutputVariables_SubFunction) {
auto* s = Structure("S", Vector{Member("m", ty.u32())});
auto* sb_var = GlobalVar("sb_var", ty.Of(s), core::AddressSpace::kStorage,
core::Access::kReadWrite, Binding(0_a), Group(0_a));
auto* wg_var = GlobalVar("wg_var", ty.f32(), core::AddressSpace::kWorkgroup);
auto* priv_var = GlobalVar("priv_var", ty.f32(), core::AddressSpace::kPrivate);
Func("my_func", tint::Empty, ty.f32(),
Vector{Assign("wg_var", "wg_var"), Assign("sb_var", "sb_var"),
Assign("priv_var", "priv_var"), Return(0_f)});
auto* func2 = Func("func", tint::Empty, ty.void_(),
Vector{
WrapInStatement(Call("my_func")),
},
tint::Empty);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func2_sem = Sem().Get(func2);
ASSERT_NE(func2_sem, nullptr);
EXPECT_EQ(func2_sem->Parameters().Length(), 0u);
const auto& vars = func2_sem->TransitivelyReferencedGlobals();
ASSERT_EQ(vars.Length(), 3u);
EXPECT_EQ(vars[0]->Declaration(), wg_var);
EXPECT_EQ(vars[1]->Declaration(), sb_var);
EXPECT_EQ(vars[2]->Declaration(), priv_var);
}
TEST_F(ResolverTest, Function_NotRegisterFunctionVariable) {
auto* func = Func("my_func", tint::Empty, ty.void_(),
Vector{
Decl(Var("var", ty.f32())),
Assign("var", 1_f),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->TransitivelyReferencedGlobals().Length(), 0u);
EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>());
}
TEST_F(ResolverTest, Function_NotRegisterFunctionConstant) {
auto* func = Func("my_func", tint::Empty, ty.void_(),
Vector{
Decl(Let("var", ty.f32(), Call<f32>())),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->TransitivelyReferencedGlobals().Length(), 0u);
EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>());
}
TEST_F(ResolverTest, Function_NotRegisterFunctionParams) {
auto* func = Func("my_func", Vector{Param("var", ty.f32())}, ty.void_(), tint::Empty);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->TransitivelyReferencedGlobals().Length(), 0u);
EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>());
}
TEST_F(ResolverTest, Function_CallSites) {
auto* foo = Func("foo", tint::Empty, ty.void_(), tint::Empty);
auto* call_1 = Call("foo");
auto* call_2 = Call("foo");
auto* bar = Func("bar", tint::Empty, ty.void_(),
Vector{
CallStmt(call_1),
CallStmt(call_2),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* foo_sem = Sem().Get(foo);
ASSERT_NE(foo_sem, nullptr);
ASSERT_EQ(foo_sem->CallSites().Length(), 2u);
EXPECT_EQ(foo_sem->CallSites()[0]->Declaration(), call_1);
EXPECT_EQ(foo_sem->CallSites()[1]->Declaration(), call_2);
auto* bar_sem = Sem().Get(bar);
ASSERT_NE(bar_sem, nullptr);
EXPECT_EQ(bar_sem->CallSites().Length(), 0u);
}
TEST_F(ResolverTest, Function_WorkgroupSize_NotSet) {
// @compute @workgroup_size(1)
// fn main() {}
auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->WorkgroupSize()[0], 1u);
EXPECT_EQ(func_sem->WorkgroupSize()[1], 1u);
EXPECT_EQ(func_sem->WorkgroupSize()[2], 1u);
}
TEST_F(ResolverTest, Function_WorkgroupSize_Literals) {
// @compute @workgroup_size(8, 2, 3)
// fn main() {}
auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty,
Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(8_i, 2_i, 3_i),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->WorkgroupSize()[0], 8u);
EXPECT_EQ(func_sem->WorkgroupSize()[1], 2u);
EXPECT_EQ(func_sem->WorkgroupSize()[2], 3u);
}
TEST_F(ResolverTest, Function_WorkgroupSize_ViaConst) {
// const width = 16i;
// const height = 8i;
// const depth = 2i;
// @compute @workgroup_size(width, height, depth)
// fn main() {}
GlobalConst("width", ty.i32(), Expr(16_i));
GlobalConst("height", ty.i32(), Expr(8_i));
GlobalConst("depth", ty.i32(), Expr(2_i));
auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty,
Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize("width", "height", "depth"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->WorkgroupSize()[0], 16u);
EXPECT_EQ(func_sem->WorkgroupSize()[1], 8u);
EXPECT_EQ(func_sem->WorkgroupSize()[2], 2u);
}
TEST_F(ResolverTest, Function_WorkgroupSize_ViaConst_NestedInitializer) {
// const width = i32(i32(i32(8i)));
// const height = i32(i32(i32(4i)));
// @compute @workgroup_size(width, height)
// fn main() {}
GlobalConst("width", ty.i32(), Call<i32>(Call<i32>(Call<i32>(8_i))));
GlobalConst("height", ty.i32(), Call<i32>(Call<i32>(Call<i32>(4_i))));
auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty,
Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize("width", "height"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->WorkgroupSize()[0], 8u);
EXPECT_EQ(func_sem->WorkgroupSize()[1], 4u);
EXPECT_EQ(func_sem->WorkgroupSize()[2], 1u);
}
TEST_F(ResolverTest, Function_WorkgroupSize_OverridableConsts) {
// @id(0) override width = 16i;
// @id(1) override height = 8i;
// @id(2) override depth = 2i;
// @compute @workgroup_size(width, height, depth)
// fn main() {}
Override("width", ty.i32(), Expr(16_i), Id(0_a));
Override("height", ty.i32(), Expr(8_i), Id(1_a));
Override("depth", ty.i32(), Expr(2_i), Id(2_a));
auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty,
Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize("width", "height", "depth"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->WorkgroupSize()[0], std::nullopt);
EXPECT_EQ(func_sem->WorkgroupSize()[1], std::nullopt);
EXPECT_EQ(func_sem->WorkgroupSize()[2], std::nullopt);
}
TEST_F(ResolverTest, Function_WorkgroupSize_OverridableConsts_NoInit) {
// @id(0) override width : i32;
// @id(1) override height : i32;
// @id(2) override depth : i32;
// @compute @workgroup_size(width, height, depth)
// fn main() {}
Override("width", ty.i32(), Id(0_a));
Override("height", ty.i32(), Id(1_a));
Override("depth", ty.i32(), Id(2_a));
auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty,
Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize("width", "height", "depth"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->WorkgroupSize()[0], std::nullopt);
EXPECT_EQ(func_sem->WorkgroupSize()[1], std::nullopt);
EXPECT_EQ(func_sem->WorkgroupSize()[2], std::nullopt);
}
TEST_F(ResolverTest, Function_WorkgroupSize_Mixed) {
// @id(1) override height = 2i;
// const depth = 3i;
// @compute @workgroup_size(8, height, depth)
// fn main() {}
Override("height", ty.i32(), Expr(2_i), Id(0_a));
GlobalConst("depth", ty.i32(), Expr(3_i));
auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty,
Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(8_i, "height", "depth"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->WorkgroupSize()[0], 8u);
EXPECT_EQ(func_sem->WorkgroupSize()[1], std::nullopt);
EXPECT_EQ(func_sem->WorkgroupSize()[2], 3u);
}
TEST_F(ResolverTest, Expr_MemberAccessor_Type) {
auto* mem = MemberAccessor(Ident(Source{{12, 34}}, "f32"), "member");
WrapInFunction(mem);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), R"(12:34 error: cannot use type 'f32' as value
12:34 note: are you missing '()'?)");
}
TEST_F(ResolverTest, Expr_MemberAccessor_NonCompoundType) {
GlobalConst("depth", ty.i32(), Expr(3_i));
auto* mem = MemberAccessor(Ident(Source{{12, 34}}, "depth"), "x");
WrapInFunction(mem);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), R"(12:34 error: cannot index into expression of type 'i32')");
}
TEST_F(ResolverTest, Expr_MemberAccessor_Struct) {
auto* st =
Structure("S", Vector{Member("first_member", ty.i32()), Member("second_member", ty.f32())});
GlobalVar("my_struct", ty.Of(st), core::AddressSpace::kPrivate);
auto* mem = MemberAccessor("my_struct", "second_member");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
EXPECT_TRUE(TypeOf(mem)->Is<core::type::F32>());
auto* sma = Sem().Get(mem)->UnwrapLoad()->As<sem::StructMemberAccess>();
ASSERT_NE(sma, nullptr);
EXPECT_TRUE(sma->Member()->Type()->Is<core::type::F32>());
EXPECT_EQ(sma->Object()->Declaration(), mem->object);
EXPECT_EQ(sma->Member()->Index(), 1u);
EXPECT_EQ(sma->Member()->Name().Name(), "second_member");
}
TEST_F(ResolverTest, Expr_MemberAccessor_Struct_Alias) {
auto* st =
Structure("S", Vector{Member("first_member", ty.i32()), Member("second_member", ty.f32())});
auto* alias = Alias("alias", ty.Of(st));
GlobalVar("my_struct", ty.Of(alias), core::AddressSpace::kPrivate);
auto* mem = MemberAccessor("my_struct", "second_member");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
EXPECT_TRUE(TypeOf(mem)->Is<core::type::F32>());
auto* sma = Sem().Get(mem)->UnwrapLoad()->As<sem::StructMemberAccess>();
ASSERT_NE(sma, nullptr);
EXPECT_EQ(sma->Object()->Declaration(), mem->object);
EXPECT_TRUE(sma->Member()->Type()->Is<core::type::F32>());
EXPECT_EQ(sma->Member()->Index(), 1u);
}
TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle) {
GlobalVar("my_vec", ty.vec4<f32>(), core::AddressSpace::kPrivate);
auto* mem = MemberAccessor("my_vec", "xzyw");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(mem)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(mem)->As<core::type::Vector>()->Width(), 4u);
auto* sma = Sem().Get(mem)->As<sem::Swizzle>();
ASSERT_NE(sma, nullptr);
EXPECT_EQ(sma->Object()->Declaration(), mem->object);
EXPECT_THAT(sma->Indices(), ElementsAre(0, 2, 1, 3));
}
TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle_SingleElement) {
GlobalVar("my_vec", ty.vec3<f32>(), core::AddressSpace::kPrivate);
auto* mem = MemberAccessor("my_vec", "b");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<core::type::F32>());
auto* sma = Sem().Get(mem)->UnwrapLoad()->As<sem::Swizzle>();
ASSERT_NE(sma, nullptr);
EXPECT_EQ(sma->Object()->Declaration(), mem->object);
EXPECT_THAT(sma->Indices(), ElementsAre(2));
}
TEST_F(ResolverTest, Expr_Accessor_MultiLevel) {
// struct b {
// vec4<f32> foo
// }
// struct A {
// array<b, 3u> mem
// }
// var c : A
// c.mem[0].foo.yx
// -> vec2<f32>
//
// fn f() {
// c.mem[0].foo
// }
//
auto* stB = Structure("B", Vector{Member("foo", ty.vec4<f32>())});
auto* stA = Structure("A", Vector{Member("mem", ty.array(ty.Of(stB), 3_i))});
GlobalVar("c", ty.Of(stA), core::AddressSpace::kPrivate);
auto* mem =
MemberAccessor(MemberAccessor(IndexAccessor(MemberAccessor("c", "mem"), 0_i), "foo"), "yx");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(mem)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(mem)->As<core::type::Vector>()->Width(), 2u);
ASSERT_TRUE(Sem().Get(mem)->Is<sem::Swizzle>());
}
TEST_F(ResolverTest, Expr_MemberAccessor_InBinaryOp) {
auto* st =
Structure("S", Vector{Member("first_member", ty.f32()), Member("second_member", ty.f32())});
GlobalVar("my_struct", ty.Of(st), core::AddressSpace::kPrivate);
auto* expr = Add(MemberAccessor("my_struct", "first_member"),
MemberAccessor("my_struct", "second_member"));
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
EXPECT_TRUE(TypeOf(expr)->Is<core::type::F32>());
}
namespace ExprBinaryTest {
template <typename T, int ID>
struct Aliased {
using type = alias<T, ID>;
};
template <int N, typename T, int ID>
struct Aliased<vec<N, T>, ID> {
using type = vec<N, alias<T, ID>>;
};
template <int N, int M, typename T, int ID>
struct Aliased<mat<N, M, T>, ID> {
using type = mat<N, M, alias<T, ID>>;
};
struct Params {
core::BinaryOp op;
builder::ast_type_func_ptr create_lhs_type;
builder::ast_type_func_ptr create_rhs_type;
builder::ast_type_func_ptr create_lhs_alias_type;
builder::ast_type_func_ptr create_rhs_alias_type;
builder::sem_type_func_ptr create_result_type;
};
template <typename LHS, typename RHS, typename RES>
constexpr Params ParamsFor(core::BinaryOp op) {
return Params{op,
DataType<LHS>::AST,
DataType<RHS>::AST,
DataType<typename Aliased<LHS, 0>::type>::AST,
DataType<typename Aliased<RHS, 1>::type>::AST,
DataType<RES>::Sem};
}
static constexpr core::BinaryOp all_ops[] = {
core::BinaryOp::kAnd,
core::BinaryOp::kOr,
core::BinaryOp::kXor,
core::BinaryOp::kLogicalAnd,
core::BinaryOp::kLogicalOr,
core::BinaryOp::kEqual,
core::BinaryOp::kNotEqual,
core::BinaryOp::kLessThan,
core::BinaryOp::kGreaterThan,
core::BinaryOp::kLessThanEqual,
core::BinaryOp::kGreaterThanEqual,
core::BinaryOp::kShiftLeft,
core::BinaryOp::kShiftRight,
core::BinaryOp::kAdd,
core::BinaryOp::kSubtract,
core::BinaryOp::kMultiply,
core::BinaryOp::kDivide,
core::BinaryOp::kModulo,
};
static constexpr builder::ast_type_func_ptr all_create_type_funcs[] = {
DataType<bool>::AST, //
DataType<u32>::AST, //
DataType<i32>::AST, //
DataType<f32>::AST, //
DataType<vec3<bool>>::AST, //
DataType<vec3<i32>>::AST, //
DataType<vec3<u32>>::AST, //
DataType<vec3<f32>>::AST, //
DataType<mat3x3<f32>>::AST, //
DataType<mat2x3<f32>>::AST, //
DataType<mat3x2<f32>>::AST //
};
// A list of all valid test cases for 'lhs op rhs', except that for vecN and
// matNxN, we only test N=3.
static constexpr Params all_valid_cases[] = {
// Logical expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#logical-expr
// Binary logical expressions
ParamsFor<bool, bool, bool>(Op::kLogicalAnd),
ParamsFor<bool, bool, bool>(Op::kLogicalOr),
ParamsFor<bool, bool, bool>(Op::kAnd),
ParamsFor<bool, bool, bool>(Op::kOr),
ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kAnd),
ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kOr),
// Arithmetic expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#arithmetic-expr
// Binary arithmetic expressions over scalars
ParamsFor<i32, i32, i32>(Op::kAdd),
ParamsFor<i32, i32, i32>(Op::kSubtract),
ParamsFor<i32, i32, i32>(Op::kMultiply),
ParamsFor<i32, i32, i32>(Op::kDivide),
ParamsFor<i32, i32, i32>(Op::kModulo),
ParamsFor<u32, u32, u32>(Op::kAdd),
ParamsFor<u32, u32, u32>(Op::kSubtract),
ParamsFor<u32, u32, u32>(Op::kMultiply),
ParamsFor<u32, u32, u32>(Op::kDivide),
ParamsFor<u32, u32, u32>(Op::kModulo),
ParamsFor<f32, f32, f32>(Op::kAdd),
ParamsFor<f32, f32, f32>(Op::kSubtract),
ParamsFor<f32, f32, f32>(Op::kMultiply),
ParamsFor<f32, f32, f32>(Op::kDivide),
ParamsFor<f32, f32, f32>(Op::kModulo),
// Binary arithmetic expressions over vectors
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kAdd),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kSubtract),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kMultiply),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kDivide),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kModulo),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kAdd),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kSubtract),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kMultiply),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kDivide),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kModulo),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kAdd),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kSubtract),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kDivide),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kModulo),
// Binary arithmetic expressions with mixed scalar and vector operands
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kAdd),
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kSubtract),
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kMultiply),
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kDivide),
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kModulo),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kAdd),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kSubtract),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kMultiply),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kDivide),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kModulo),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kAdd),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kSubtract),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kMultiply),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kDivide),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kModulo),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kAdd),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kSubtract),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kMultiply),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kDivide),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kModulo),
ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kAdd),
ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kSubtract),
ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kMultiply),
ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kDivide),
ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kModulo),
ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kAdd),
ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kSubtract),
ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kDivide),
ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kModulo),
// Matrix arithmetic
ParamsFor<mat2x3<f32>, f32, mat2x3<f32>>(Op::kMultiply),
ParamsFor<mat3x2<f32>, f32, mat3x2<f32>>(Op::kMultiply),
ParamsFor<mat3x3<f32>, f32, mat3x3<f32>>(Op::kMultiply),
ParamsFor<f32, mat2x3<f32>, mat2x3<f32>>(Op::kMultiply),
ParamsFor<f32, mat3x2<f32>, mat3x2<f32>>(Op::kMultiply),
ParamsFor<f32, mat3x3<f32>, mat3x3<f32>>(Op::kMultiply),
ParamsFor<vec3<f32>, mat2x3<f32>, vec2<f32>>(Op::kMultiply),
ParamsFor<vec2<f32>, mat3x2<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<vec3<f32>, mat3x3<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<mat3x2<f32>, vec3<f32>, vec2<f32>>(Op::kMultiply),
ParamsFor<mat2x3<f32>, vec2<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<mat3x3<f32>, vec3<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<mat2x3<f32>, mat3x2<f32>, mat3x3<f32>>(Op::kMultiply),
ParamsFor<mat3x2<f32>, mat2x3<f32>, mat2x2<f32>>(Op::kMultiply),
ParamsFor<mat3x2<f32>, mat3x3<f32>, mat3x2<f32>>(Op::kMultiply),
ParamsFor<mat3x3<f32>, mat3x3<f32>, mat3x3<f32>>(Op::kMultiply),
ParamsFor<mat3x3<f32>, mat2x3<f32>, mat2x3<f32>>(Op::kMultiply),
ParamsFor<mat2x3<f32>, mat2x3<f32>, mat2x3<f32>>(Op::kAdd),
ParamsFor<mat3x2<f32>, mat3x2<f32>, mat3x2<f32>>(Op::kAdd),
ParamsFor<mat3x3<f32>, mat3x3<f32>, mat3x3<f32>>(Op::kAdd),
ParamsFor<mat2x3<f32>, mat2x3<f32>, mat2x3<f32>>(Op::kSubtract),
ParamsFor<mat3x2<f32>, mat3x2<f32>, mat3x2<f32>>(Op::kSubtract),
ParamsFor<mat3x3<f32>, mat3x3<f32>, mat3x3<f32>>(Op::kSubtract),
// Comparison expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#comparison-expr
// Comparisons over scalars
ParamsFor<bool, bool, bool>(Op::kEqual),
ParamsFor<bool, bool, bool>(Op::kNotEqual),
ParamsFor<i32, i32, bool>(Op::kEqual),
ParamsFor<i32, i32, bool>(Op::kNotEqual),
ParamsFor<i32, i32, bool>(Op::kLessThan),
ParamsFor<i32, i32, bool>(Op::kLessThanEqual),
ParamsFor<i32, i32, bool>(Op::kGreaterThan),
ParamsFor<i32, i32, bool>(Op::kGreaterThanEqual),
ParamsFor<u32, u32, bool>(Op::kEqual),
ParamsFor<u32, u32, bool>(Op::kNotEqual),
ParamsFor<u32, u32, bool>(Op::kLessThan),
ParamsFor<u32, u32, bool>(Op::kLessThanEqual),
ParamsFor<u32, u32, bool>(Op::kGreaterThan),
ParamsFor<u32, u32, bool>(Op::kGreaterThanEqual),
ParamsFor<f32, f32, bool>(Op::kEqual),
ParamsFor<f32, f32, bool>(Op::kNotEqual),
ParamsFor<f32, f32, bool>(Op::kLessThan),
ParamsFor<f32, f32, bool>(Op::kLessThanEqual),
ParamsFor<f32, f32, bool>(Op::kGreaterThan),
ParamsFor<f32, f32, bool>(Op::kGreaterThanEqual),
// Comparisons over vectors
ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kEqual),
ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kNotEqual),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kEqual),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kNotEqual),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kLessThan),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kLessThanEqual),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kGreaterThan),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kGreaterThanEqual),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kEqual),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kNotEqual),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kLessThan),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kLessThanEqual),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kGreaterThan),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kGreaterThanEqual),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kEqual),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kNotEqual),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kLessThan),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kLessThanEqual),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kGreaterThan),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kGreaterThanEqual),
// Binary bitwise operations
ParamsFor<i32, i32, i32>(Op::kOr),
ParamsFor<i32, i32, i32>(Op::kAnd),
ParamsFor<i32, i32, i32>(Op::kXor),
ParamsFor<u32, u32, u32>(Op::kOr),
ParamsFor<u32, u32, u32>(Op::kAnd),
ParamsFor<u32, u32, u32>(Op::kXor),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kOr),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kAnd),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kXor),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kOr),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kAnd),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kXor),
// Bit shift expressions
ParamsFor<i32, u32, i32>(Op::kShiftLeft),
ParamsFor<vec3<i32>, vec3<u32>, vec3<i32>>(Op::kShiftLeft),
ParamsFor<u32, u32, u32>(Op::kShiftLeft),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kShiftLeft),
ParamsFor<i32, u32, i32>(Op::kShiftRight),
ParamsFor<vec3<i32>, vec3<u32>, vec3<i32>>(Op::kShiftRight),
ParamsFor<u32, u32, u32>(Op::kShiftRight),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kShiftRight),
};
using Expr_Binary_Test_Valid = ResolverTestWithParam<Params>;
TEST_P(Expr_Binary_Test_Valid, All) {
auto& params = GetParam();
ast::Type lhs_type = params.create_lhs_type(*this);
ast::Type rhs_type = params.create_rhs_type(*this);
auto* result_type = params.create_result_type(*this);
StringStream ss;
ss << FriendlyName(lhs_type) << " " << params.op << " " << FriendlyName(rhs_type);
SCOPED_TRACE(ss.str());
GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate);
GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate);
auto* expr = create<ast::BinaryExpression>(params.op, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr) == result_type);
}
INSTANTIATE_TEST_SUITE_P(ResolverTest, Expr_Binary_Test_Valid, testing::ValuesIn(all_valid_cases));
enum class BinaryExprSide { Left, Right, Both };
using Expr_Binary_Test_WithAlias_Valid = ResolverTestWithParam<std::tuple<Params, BinaryExprSide>>;
TEST_P(Expr_Binary_Test_WithAlias_Valid, All) {
const Params& params = std::get<0>(GetParam());
BinaryExprSide side = std::get<1>(GetParam());
auto* create_lhs_type = (side == BinaryExprSide::Left || side == BinaryExprSide::Both)
? params.create_lhs_alias_type
: params.create_lhs_type;
auto* create_rhs_type = (side == BinaryExprSide::Right || side == BinaryExprSide::Both)
? params.create_rhs_alias_type
: params.create_rhs_type;
ast::Type lhs_type = create_lhs_type(*this);
ast::Type rhs_type = create_rhs_type(*this);
StringStream ss;
ss << FriendlyName(lhs_type) << " " << params.op << " " << FriendlyName(rhs_type);
ss << ", After aliasing: " << FriendlyName(lhs_type) << " " << params.op << " "
<< FriendlyName(rhs_type);
SCOPED_TRACE(ss.str());
GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate);
GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate);
auto* expr = create<ast::BinaryExpression>(params.op, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
// TODO(amaiorano): Bring this back once we have a way to get the canonical
// type
// auto* *result_type = params.create_result_type(*this);
// ASSERT_TRUE(TypeOf(expr) == result_type);
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_WithAlias_Valid,
testing::Combine(testing::ValuesIn(all_valid_cases),
testing::Values(BinaryExprSide::Left,
BinaryExprSide::Right,
BinaryExprSide::Both)));
// This test works by taking the cartesian product of all possible
// (type * type * op), and processing only the triplets that are not found in
// the `all_valid_cases` table.
using Expr_Binary_Test_Invalid = ResolverTestWithParam<
std::tuple<builder::ast_type_func_ptr, builder::ast_type_func_ptr, core::BinaryOp>>;
TEST_P(Expr_Binary_Test_Invalid, All) {
const builder::ast_type_func_ptr& lhs_create_type_func = std::get<0>(GetParam());
const builder::ast_type_func_ptr& rhs_create_type_func = std::get<1>(GetParam());
const core::BinaryOp op = std::get<2>(GetParam());
// Skip if valid case
// TODO(amaiorano): replace linear lookup with O(1) if too slow
for (auto& c : all_valid_cases) {
if (c.create_lhs_type == lhs_create_type_func &&
c.create_rhs_type == rhs_create_type_func && c.op == op) {
return;
}
}
ast::Type lhs_type = lhs_create_type_func(*this);
ast::Type rhs_type = rhs_create_type_func(*this);
StringStream ss;
ss << FriendlyName(lhs_type) << " " << op << " " << FriendlyName(rhs_type);
SCOPED_TRACE(ss.str());
GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate);
GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate);
auto* expr = create<ast::BinaryExpression>(Source{{12, 34}}, op, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
ASSERT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching overload for 'operator "));
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_Invalid,
testing::Combine(testing::ValuesIn(all_create_type_funcs),
testing::ValuesIn(all_create_type_funcs),
testing::ValuesIn(all_ops)));
using Expr_Binary_Test_Invalid_VectorMatrixMultiply =
ResolverTestWithParam<std::tuple<bool, uint32_t, uint32_t, uint32_t>>;
TEST_P(Expr_Binary_Test_Invalid_VectorMatrixMultiply, All) {
bool vec_by_mat = std::get<0>(GetParam());
uint32_t vec_size = std::get<1>(GetParam());
uint32_t mat_rows = std::get<2>(GetParam());
uint32_t mat_cols = std::get<3>(GetParam());
ast::Type lhs_type;
ast::Type rhs_type;
const core::type::Type* result_type = nullptr;
bool is_valid_expr;
if (vec_by_mat) {
lhs_type = ty.vec<f32>(vec_size);
rhs_type = ty.mat<f32>(mat_cols, mat_rows);
result_type = create<core::type::Vector>(create<core::type::F32>(), mat_cols);
is_valid_expr = vec_size == mat_rows;
} else {
lhs_type = ty.mat<f32>(mat_cols, mat_rows);
rhs_type = ty.vec<f32>(vec_size);
result_type = create<core::type::Vector>(create<core::type::F32>(), mat_rows);
is_valid_expr = vec_size == mat_cols;
}
GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate);
GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate);
auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
if (is_valid_expr) {
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(expr) == result_type);
} else {
ASSERT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("no matching overload for 'operator *"));
}
}
auto all_dimension_values = testing::Values(2u, 3u, 4u);
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_Invalid_VectorMatrixMultiply,
testing::Combine(testing::Values(true, false),
all_dimension_values,
all_dimension_values,
all_dimension_values));
using Expr_Binary_Test_Invalid_MatrixMatrixMultiply =
ResolverTestWithParam<std::tuple<uint32_t, uint32_t, uint32_t, uint32_t>>;
TEST_P(Expr_Binary_Test_Invalid_MatrixMatrixMultiply, All) {
uint32_t lhs_mat_rows = std::get<0>(GetParam());
uint32_t lhs_mat_cols = std::get<1>(GetParam());
uint32_t rhs_mat_rows = std::get<2>(GetParam());
uint32_t rhs_mat_cols = std::get<3>(GetParam());
auto lhs_type = ty.mat<f32>(lhs_mat_cols, lhs_mat_rows);
auto rhs_type = ty.mat<f32>(rhs_mat_cols, rhs_mat_rows);
auto* f32 = create<core::type::F32>();
auto* col = create<core::type::Vector>(f32, lhs_mat_rows);
auto* result_type = create<core::type::Matrix>(col, rhs_mat_cols);
GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate);
GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate);
auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
bool is_valid_expr = lhs_mat_cols == rhs_mat_rows;
if (is_valid_expr) {
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(expr) == result_type);
} else {
ASSERT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching overload for 'operator * "));
}
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_Invalid_MatrixMatrixMultiply,
testing::Combine(all_dimension_values,
all_dimension_values,
all_dimension_values,
all_dimension_values));
} // namespace ExprBinaryTest
using UnaryOpExpressionTest = ResolverTestWithParam<core::UnaryOp>;
TEST_P(UnaryOpExpressionTest, Expr_UnaryOp) {
auto op = GetParam();
if (op == core::UnaryOp::kNot) {
GlobalVar("ident", ty.vec4<bool>(), core::AddressSpace::kPrivate);
} else if (op == core::UnaryOp::kNegation || op == core::UnaryOp::kComplement) {
GlobalVar("ident", ty.vec4<i32>(), core::AddressSpace::kPrivate);
} else {
GlobalVar("ident", ty.vec4<f32>(), core::AddressSpace::kPrivate);
}
auto* der = create<ast::UnaryOpExpression>(op, Expr("ident"));
WrapInFunction(der);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(der), nullptr);
ASSERT_TRUE(TypeOf(der)->Is<core::type::Vector>());
if (op == core::UnaryOp::kNot) {
EXPECT_TRUE(TypeOf(der)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
} else if (op == core::UnaryOp::kNegation || op == core::UnaryOp::kComplement) {
EXPECT_TRUE(TypeOf(der)->As<core::type::Vector>()->type()->Is<core::type::I32>());
} else {
EXPECT_TRUE(TypeOf(der)->As<core::type::Vector>()->type()->Is<core::type::F32>());
}
EXPECT_EQ(TypeOf(der)->As<core::type::Vector>()->Width(), 4u);
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
UnaryOpExpressionTest,
testing::Values(core::UnaryOp::kComplement,
core::UnaryOp::kNegation,
core::UnaryOp::kNot));
TEST_F(ResolverTest, AddressSpace_SetsIfMissing) {
auto* var = Var("var", ty.i32());
auto* stmt = Decl(var);
Func("func", tint::Empty, ty.void_(), Vector{stmt});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->AddressSpace(), core::AddressSpace::kFunction);
}
TEST_F(ResolverTest, AddressSpace_SetForSampler) {
auto t = ty.sampler(core::type::SamplerKind::kSampler);
auto* var = GlobalVar("var", t, Binding(0_a), Group(0_a));
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->AddressSpace(), core::AddressSpace::kHandle);
}
TEST_F(ResolverTest, AddressSpace_SetForTexture) {
auto t = ty.sampled_texture(core::type::TextureDimension::k1d, ty.f32());
auto* var = GlobalVar("var", t, Binding(0_a), Group(0_a));
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->AddressSpace(), core::AddressSpace::kHandle);
}
TEST_F(ResolverTest, AddressSpace_DoesNotSetOnConst) {
auto* var = Let("var", ty.i32(), Call<i32>());
auto* stmt = Decl(var);
Func("func", tint::Empty, ty.void_(), Vector{stmt});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->AddressSpace(), core::AddressSpace::kUndefined);
}
TEST_F(ResolverTest, Access_SetForStorageBuffer) {
// struct S { x : i32 };
// var<storage> g : S;
auto* s = Structure("S", Vector{Member(Source{{12, 34}}, "x", ty.i32())});
auto* var = GlobalVar(Source{{56, 78}}, "g", ty.Of(s), core::AddressSpace::kStorage,
Binding(0_a), Group(0_a));
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->Access(), core::Access::kRead);
}
TEST_F(ResolverTest, BindingPoint_SetForResources) {
// @group(1) @binding(2) var s1 : sampler;
// @group(3) @binding(4) var s2 : sampler;
auto* s1 =
GlobalVar(Sym(), ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a));
auto* s2 =
GlobalVar(Sym(), ty.sampler(core::type::SamplerKind::kSampler), Group(3_a), Binding(4_a));
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get<sem::GlobalVariable>(s1)->Attributes().binding_point,
(BindingPoint{1u, 2u}));
EXPECT_EQ(Sem().Get<sem::GlobalVariable>(s2)->Attributes().binding_point,
(BindingPoint{3u, 4u}));
}
TEST_F(ResolverTest, Function_EntryPoints_StageAttribute) {
// fn b() {}
// fn c() { b(); }
// fn a() { c(); }
// fn ep_1() { a(); b(); }
// fn ep_2() { c();}
//
// c -> {ep_1, ep_2}
// a -> {ep_1}
// b -> {ep_1, ep_2}
// ep_1 -> {}
// ep_2 -> {}
GlobalVar("first", ty.f32(), core::AddressSpace::kPrivate);
GlobalVar("second", ty.f32(), core::AddressSpace::kPrivate);
GlobalVar("call_a", ty.f32(), core::AddressSpace::kPrivate);
GlobalVar("call_b", ty.f32(), core::AddressSpace::kPrivate);
GlobalVar("call_c", ty.f32(), core::AddressSpace::kPrivate);
auto* func_b = Func("b", tint::Empty, ty.f32(),
Vector{
Return(0_f),
});
auto* func_c = Func("c", tint::Empty, ty.f32(),
Vector{
Assign("second", Call("b")),
Return(0_f),
});
auto* func_a = Func("a", tint::Empty, ty.f32(),
Vector{
Assign("first", Call("c")),
Return(0_f),
});
auto* ep_1 = Func("ep_1", tint::Empty, ty.void_(),
Vector{
Assign("call_a", Call("a")),
Assign("call_b", Call("b")),
},
Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
auto* ep_2 = Func("ep_2", tint::Empty, ty.void_(),
Vector{
Assign("call_c", Call("c")),
},
Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* func_b_sem = Sem().Get(func_b);
auto* func_a_sem = Sem().Get(func_a);
auto* func_c_sem = Sem().Get(func_c);
auto* ep_1_sem = Sem().Get(ep_1);
auto* ep_2_sem = Sem().Get(ep_2);
ASSERT_NE(func_b_sem, nullptr);
ASSERT_NE(func_a_sem, nullptr);
ASSERT_NE(func_c_sem, nullptr);
ASSERT_NE(ep_1_sem, nullptr);
ASSERT_NE(ep_2_sem, nullptr);
EXPECT_EQ(func_b_sem->Parameters().Length(), 0u);
EXPECT_EQ(func_a_sem->Parameters().Length(), 0u);
EXPECT_EQ(func_c_sem->Parameters().Length(), 0u);
const auto& b_eps = func_b_sem->AncestorEntryPoints();
ASSERT_EQ(2u, b_eps.Length());
EXPECT_EQ(Symbols().Register("ep_1"), b_eps[0]->Declaration()->name->symbol);
EXPECT_EQ(Symbols().Register("ep_2"), b_eps[1]->Declaration()->name->symbol);
const auto& a_eps = func_a_sem->AncestorEntryPoints();
ASSERT_EQ(1u, a_eps.Length());
EXPECT_EQ(Symbols().Register("ep_1"), a_eps[0]->Declaration()->name->symbol);
const auto& c_eps = func_c_sem->AncestorEntryPoints();
ASSERT_EQ(2u, c_eps.Length());
EXPECT_EQ(Symbols().Register("ep_1"), c_eps[0]->Declaration()->name->symbol);
EXPECT_EQ(Symbols().Register("ep_2"), c_eps[1]->Declaration()->name->symbol);
EXPECT_TRUE(ep_1_sem->AncestorEntryPoints().IsEmpty());
EXPECT_TRUE(ep_2_sem->AncestorEntryPoints().IsEmpty());
}
// Check for linear-time traversal of functions reachable from entry points.
// See: crbug.com/tint/245
TEST_F(ResolverTest, Function_EntryPoints_LinearTime) {
// fn lNa() { }
// fn lNb() { }
// ...
// fn l2a() { l3a(); l3b(); }
// fn l2b() { l3a(); l3b(); }
// fn l1a() { l2a(); l2b(); }
// fn l1b() { l2a(); l2b(); }
// fn main() { l1a(); l1b(); }
static constexpr int levels = 64;
auto fn_a = [](int level) { return "l" + std::to_string(level + 1) + "a"; };
auto fn_b = [](int level) { return "l" + std::to_string(level + 1) + "b"; };
Func(fn_a(levels), tint::Empty, ty.void_(), tint::Empty);
Func(fn_b(levels), tint::Empty, ty.void_(), tint::Empty);
for (int i = levels - 1; i >= 0; i--) {
Func(fn_a(i), tint::Empty, ty.void_(),
Vector{
CallStmt(Call(fn_a(i + 1))),
CallStmt(Call(fn_b(i + 1))),
},
tint::Empty);
Func(fn_b(i), tint::Empty, ty.void_(),
Vector{
CallStmt(Call(fn_a(i + 1))),
CallStmt(Call(fn_b(i + 1))),
},
tint::Empty);
}
Func("main", tint::Empty, ty.void_(),
Vector{
CallStmt(Call(fn_a(0))),
CallStmt(Call(fn_b(0))),
},
Vector{Stage(ast::PipelineStage::kCompute), WorkgroupSize(1_i)});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
// Test for crbug.com/tint/728
TEST_F(ResolverTest, ASTNodesAreReached) {
Structure("A", Vector{Member("x", ty.array<f32, 4>(Vector{Stride(4)}))});
Structure("B", Vector{Member("x", ty.array<f32, 4>(Vector{Stride(4)}))});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, ASTNodeNotReached) {
EXPECT_FATAL_FAILURE(
{
ProgramBuilder b;
b.Ident("ident");
Resolver(&b, {}).Resolve();
},
"internal compiler error: AST node 'tint::ast::Identifier' was not reached by the "
"resolver");
}
TEST_F(ResolverTest, ASTNodeReachedTwice) {
EXPECT_FATAL_FAILURE(
{
ProgramBuilder b;
auto* expr = b.Expr(1_i);
b.GlobalVar("a", b.ty.i32(), core::AddressSpace::kPrivate, expr);
b.GlobalVar("b", b.ty.i32(), core::AddressSpace::kPrivate, expr);
Resolver(&b, {}).Resolve();
},
"internal compiler error: AST node 'tint::ast::IntLiteralExpression' was encountered twice "
"in the same AST of a Program");
}
TEST_F(ResolverTest, UnaryOp_Not) {
GlobalVar("ident", ty.vec4<f32>(), core::AddressSpace::kPrivate);
auto* der =
create<ast::UnaryOpExpression>(core::UnaryOp::kNot, Expr(Source{{12, 34}}, "ident"));
WrapInFunction(der);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("error: no matching overload for 'operator ! (vec4<f32>)"));
}
TEST_F(ResolverTest, UnaryOp_Complement) {
GlobalVar("ident", ty.vec4<f32>(), core::AddressSpace::kPrivate);
auto* der =
create<ast::UnaryOpExpression>(core::UnaryOp::kComplement, Expr(Source{{12, 34}}, "ident"));
WrapInFunction(der);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("error: no matching overload for 'operator ~ (vec4<f32>)"));
}
TEST_F(ResolverTest, UnaryOp_Negation) {
GlobalVar("ident", ty.u32(), core::AddressSpace::kPrivate);
auto* der =
create<ast::UnaryOpExpression>(core::UnaryOp::kNegation, Expr(Source{{12, 34}}, "ident"));
WrapInFunction(der);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("error: no matching overload for 'operator - (u32)"));
}
TEST_F(ResolverTest, TextureSampler_TextureSample) {
GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a),
Binding(1_a));
GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a));
auto* call = Call("textureSample", "t", "s", Call<vec2<f32>>(1_f, 2_f));
const ast::Function* f =
Func("test_function", tint::Empty, ty.void_(), Vector{Assign(Phony(), call)},
Vector{Stage(ast::PipelineStage::kFragment)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
const sem::Function* sf = Sem().Get(f);
auto pairs = sf->TextureSamplerPairs();
ASSERT_EQ(pairs.Length(), 1u);
EXPECT_TRUE(pairs[0].first != nullptr);
EXPECT_TRUE(pairs[0].second != nullptr);
}
TEST_F(ResolverTest, TextureSampler_TextureSampleInFunction) {
GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a),
Binding(1_a));
GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a));
auto* inner_call = Assign(Phony(), Call("textureSample", "t", "s", Call<vec2<f32>>(1_f, 2_f)));
const ast::Function* inner_func =
Func("inner_func", tint::Empty, ty.void_(), Vector{inner_call});
auto* outer_call = CallStmt(Call("inner_func"));
const ast::Function* outer_func =
Func("outer_func", tint::Empty, ty.void_(), Vector{outer_call},
Vector{Stage(ast::PipelineStage::kFragment)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto inner_pairs = Sem().Get(inner_func)->TextureSamplerPairs();
ASSERT_EQ(inner_pairs.Length(), 1u);
EXPECT_TRUE(inner_pairs[0].first != nullptr);
EXPECT_TRUE(inner_pairs[0].second != nullptr);
auto outer_pairs = Sem().Get(outer_func)->TextureSamplerPairs();
ASSERT_EQ(outer_pairs.Length(), 1u);
EXPECT_TRUE(outer_pairs[0].first != nullptr);
EXPECT_TRUE(outer_pairs[0].second != nullptr);
}
TEST_F(ResolverTest, TextureSampler_TextureSampleFunctionDiamondSameVariables) {
GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a),
Binding(1_a));
GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a));
auto* inner_call_1 =
Assign(Phony(), Call("textureSample", "t", "s", Call<vec2<f32>>(1_f, 2_f)));
const ast::Function* inner_func_1 =
Func("inner_func_1", tint::Empty, ty.void_(), Vector{inner_call_1});
auto* inner_call_2 =
Assign(Phony(), Call("textureSample", "t", "s", Call<vec2<f32>>(3_f, 4_f)));
const ast::Function* inner_func_2 =
Func("inner_func_2", tint::Empty, ty.void_(), Vector{inner_call_2});
auto* outer_call_1 = CallStmt(Call("inner_func_1"));
auto* outer_call_2 = CallStmt(Call("inner_func_2"));
const ast::Function* outer_func =
Func("outer_func", tint::Empty, ty.void_(), Vector{outer_call_1, outer_call_2},
Vector{Stage(ast::PipelineStage::kFragment)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto inner_pairs_1 = Sem().Get(inner_func_1)->TextureSamplerPairs();
ASSERT_EQ(inner_pairs_1.Length(), 1u);
EXPECT_TRUE(inner_pairs_1[0].first != nullptr);
EXPECT_TRUE(inner_pairs_1[0].second != nullptr);
auto inner_pairs_2 = Sem().Get(inner_func_2)->TextureSamplerPairs();
ASSERT_EQ(inner_pairs_1.Length(), 1u);
EXPECT_TRUE(inner_pairs_2[0].first != nullptr);
EXPECT_TRUE(inner_pairs_2[0].second != nullptr);
auto outer_pairs = Sem().Get(outer_func)->TextureSamplerPairs();
ASSERT_EQ(outer_pairs.Length(), 1u);
EXPECT_TRUE(outer_pairs[0].first != nullptr);
EXPECT_TRUE(outer_pairs[0].second != nullptr);
}
TEST_F(ResolverTest, TextureSampler_TextureSampleFunctionDiamondDifferentVariables) {
GlobalVar("t1", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a),
Binding(1_a));
GlobalVar("t2", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a),
Binding(2_a));
GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(3_a));
auto* inner_call_1 =
Assign(Phony(), Call("textureSample", "t1", "s", Call<vec2<f32>>(1_f, 2_f)));
const ast::Function* inner_func_1 =
Func("inner_func_1", tint::Empty, ty.void_(), Vector{inner_call_1});
auto* inner_call_2 =
Assign(Phony(), Call("textureSample", "t2", "s", Call<vec2<f32>>(3_f, 4_f)));
const ast::Function* inner_func_2 =
Func("inner_func_2", tint::Empty, ty.void_(), Vector{inner_call_2});
auto* outer_call_1 = CallStmt(Call("inner_func_1"));
auto* outer_call_2 = CallStmt(Call("inner_func_2"));
const ast::Function* outer_func =
Func("outer_func", tint::Empty, ty.void_(), Vector{outer_call_1, outer_call_2},
Vector{Stage(ast::PipelineStage::kFragment)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto inner_pairs_1 = Sem().Get(inner_func_1)->TextureSamplerPairs();
ASSERT_EQ(inner_pairs_1.Length(), 1u);
EXPECT_TRUE(inner_pairs_1[0].first != nullptr);
EXPECT_TRUE(inner_pairs_1[0].second != nullptr);
auto inner_pairs_2 = Sem().Get(inner_func_2)->TextureSamplerPairs();
ASSERT_EQ(inner_pairs_2.Length(), 1u);
EXPECT_TRUE(inner_pairs_2[0].first != nullptr);
EXPECT_TRUE(inner_pairs_2[0].second != nullptr);
auto outer_pairs = Sem().Get(outer_func)->TextureSamplerPairs();
ASSERT_EQ(outer_pairs.Length(), 2u);
EXPECT_TRUE(outer_pairs[0].first == inner_pairs_1[0].first);
EXPECT_TRUE(outer_pairs[0].second == inner_pairs_1[0].second);
EXPECT_TRUE(outer_pairs[1].first == inner_pairs_2[0].first);
EXPECT_TRUE(outer_pairs[1].second == inner_pairs_2[0].second);
}
TEST_F(ResolverTest, TextureSampler_TextureSampleInFunctionPassedAsArguments) {
GlobalVar("gt", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a),
Binding(1_a));
GlobalVar("gs", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a));
auto* inner_coords = Param("coords", ty.vec2<f32>());
auto* inner_t = Param("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()));
auto* inner_s = Param("s", ty.sampler(core::type::SamplerKind::kSampler));
auto* inner_call = Assign(Phony(), Call("textureSample", inner_t, inner_s, inner_coords));
const ast::Function* inner_func =
Func("inner_func", Vector{inner_coords, inner_t, inner_s}, ty.void_(), Vector{inner_call});
auto* middle_coords = Param("coords", ty.vec2<f32>());
auto* middle_s = Param("s", ty.sampler(core::type::SamplerKind::kSampler));
auto* middle_t = Param("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()));
auto* middle_call = CallStmt(Call("inner_func", middle_coords, "t", "s"));
const ast::Function* middle_func = Func(
"middle_func", Vector{middle_coords, middle_s, middle_t}, ty.void_(), Vector{middle_call});
auto* outer_call = CallStmt(Call("middle_func", Call<vec2<f32>>(1_f, 2_f), "gs", "gt"));
const ast::Function* outer_func =
Func("outer_func", tint::Empty, ty.void_(), Vector{outer_call},
Vector{Stage(ast::PipelineStage::kFragment)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto inner_pairs = Sem().Get(inner_func)->TextureSamplerPairs();
ASSERT_EQ(inner_pairs.Length(), 1u);
auto* inner_pair_texture = As<sem::Parameter>(inner_pairs[0].first);
ASSERT_NE(inner_pair_texture, nullptr);
EXPECT_EQ(inner_pair_texture->Index(), 1u);
auto* inner_pair_sampler = As<sem::Parameter>(inner_pairs[0].second);
ASSERT_NE(inner_pair_sampler, nullptr);
EXPECT_EQ(inner_pair_sampler->Index(), 2u);
auto middle_pairs = Sem().Get(middle_func)->TextureSamplerPairs();
ASSERT_EQ(middle_pairs.Length(), 1u);
auto* middle_pair_texture = As<sem::Parameter>(middle_pairs[0].first);
ASSERT_NE(middle_pair_texture, nullptr);
EXPECT_EQ(middle_pair_texture->Index(), 2u);
auto* middle_pair_sampler = As<sem::Parameter>(middle_pairs[0].second);
ASSERT_NE(middle_pair_sampler, nullptr);
EXPECT_EQ(middle_pair_sampler->Index(), 1u);
auto outer_pairs = Sem().Get(outer_func)->TextureSamplerPairs();
ASSERT_EQ(outer_pairs.Length(), 1u);
EXPECT_TRUE(outer_pairs[0].first != nullptr);
EXPECT_TRUE(outer_pairs[0].second != nullptr);
}
TEST_F(ResolverTest, TextureSampler_UnusedTextureSampleInFunctionPassedAsArguments) {
GlobalVar("gt", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a),
Binding(1_a));
GlobalVar("gs", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a));
auto* inner_coords = Param("coords", ty.vec2<f32>());
auto* inner_t = Param("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()));
auto* inner_s = Param("s", ty.sampler(core::type::SamplerKind::kSampler));
const ast::Function* inner_func =
Func("inner_func", Vector{inner_coords, inner_t, inner_s}, ty.void_(), Empty);
auto* middle_coords = Param("coords", ty.vec2<f32>());
auto* middle_s = Param("s", ty.sampler(core::type::SamplerKind::kSampler));
auto* middle_t = Param("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()));
auto* middle_call = CallStmt(Call("inner_func", middle_coords, "t", "s"));
const ast::Function* middle_func = Func(
"middle_func", Vector{middle_coords, middle_s, middle_t}, ty.void_(), Vector{middle_call});
auto* outer_call = CallStmt(Call("middle_func", Call<vec2<f32>>(1_f, 2_f), "gs", "gt"));
const ast::Function* outer_func =
Func("outer_func", tint::Empty, ty.void_(), Vector{outer_call},
Vector{Stage(ast::PipelineStage::kFragment)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto inner_pairs = Sem().Get(inner_func)->TextureSamplerPairs();
ASSERT_EQ(inner_pairs.Length(), 2u);
auto* inner_pair_texture = As<sem::Parameter>(inner_pairs[0].first);
ASSERT_NE(inner_pair_texture, nullptr);
EXPECT_EQ(inner_pair_texture->Index(), 1u);
auto* inner_pair_sampler = As<sem::Parameter>(inner_pairs[1].second);
ASSERT_NE(inner_pair_sampler, nullptr);
EXPECT_EQ(inner_pair_sampler->Index(), 2u);
auto middle_pairs = Sem().Get(middle_func)->TextureSamplerPairs();
ASSERT_EQ(middle_pairs.Length(), 2u);
auto* middle_pair_texture = As<sem::Parameter>(middle_pairs[0].first);
ASSERT_NE(middle_pair_texture, nullptr);
EXPECT_EQ(middle_pair_texture->Index(), 2u);
auto* middle_pair_sampler = As<sem::Parameter>(middle_pairs[1].second);
ASSERT_NE(middle_pair_sampler, nullptr);
EXPECT_EQ(middle_pair_sampler->Index(), 1u);
auto outer_pairs = Sem().Get(outer_func)->TextureSamplerPairs();
ASSERT_EQ(outer_pairs.Length(), 2u);
EXPECT_TRUE(outer_pairs[0].first != nullptr);
EXPECT_TRUE(outer_pairs[1].second != nullptr);
}
TEST_F(ResolverTest, TextureSampler_TextureDimensions) {
GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a),
Binding(2_a));
auto* call = Call("textureDimensions", "t");
const ast::Function* f = WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
const sem::Function* sf = Sem().Get(f);
auto pairs = sf->TextureSamplerPairs();
ASSERT_EQ(pairs.Length(), 1u);
EXPECT_TRUE(pairs[0].first != nullptr);
EXPECT_TRUE(pairs[0].second == nullptr);
}
TEST_F(ResolverTest, TextureSampler_Bug1715) { // crbug.com/tint/1715
// @binding(0) @group(0) var s: sampler;
// @binding(1) @group(0) var t: texture_2d<f32>;
// @binding(2) @group(0) var<uniform> c: vec2<f32>;
//
// @fragment
// fn main() -> @location(0) vec4<f32> {
// return helper(&s, &t);
// }
//
// fn helper(sl: ptr<function, sampler>, tl: ptr<function, texture_2d<f32>>) -> vec4<f32> {
// return textureSampleLevel(*tl, *sl, c, 0.0);
// }
GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(0_a), Binding(0_a));
GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(0_a),
Binding(1_a));
GlobalVar("c", ty.vec2<f32>(), core::AddressSpace::kUniform, Group(0_a), Binding(2_a));
Func("main", tint::Empty, ty.vec4<f32>(),
Vector{
Return(Call("helper", AddressOf("s"), AddressOf("t"))),
},
Vector{
Stage(ast::PipelineStage::kFragment),
},
Vector{
Location(0_u),
});
Func("helper",
Vector{
Param("sl", ty.ptr<function>(ty.sampler(core::type::SamplerKind::kSampler))),
Param("tl", ty.ptr<function>(
ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()))),
},
ty.vec4<f32>(),
Vector{
Return(Call("textureSampleLevel", Deref("tl"), Deref("sl"), "c", 0.0_a)),
});
ASSERT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "error: cannot take the address of 'var s' in handle address space");
}
TEST_F(ResolverTest, ModuleDependencyOrderedDeclarations) {
auto* f0 = Func("f0", tint::Empty, ty.void_(), tint::Empty);
auto* v0 = GlobalVar("v0", ty.i32(), core::AddressSpace::kPrivate);
auto* a0 = Alias("a0", ty.i32());
auto* s0 = Structure("s0", Vector{Member("m", ty.i32())});
auto* f1 = Func("f1", tint::Empty, ty.void_(), tint::Empty);
auto* v1 = GlobalVar("v1", ty.i32(), core::AddressSpace::kPrivate);
auto* a1 = Alias("a1", ty.i32());
auto* s1 = Structure("s1", Vector{Member("m", ty.i32())});
auto* f2 = Func("f2", tint::Empty, ty.void_(), tint::Empty);
auto* v2 = GlobalVar("v2", ty.i32(), core::AddressSpace::kPrivate);
auto* a2 = Alias("a2", ty.i32());
auto* s2 = Structure("s2", Vector{Member("m", ty.i32())});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(Sem().Module(), nullptr);
EXPECT_THAT(Sem().Module()->DependencyOrderedDeclarations(),
ElementsAre(f0, v0, a0, s0, f1, v1, a1, s1, f2, v2, a2, s2));
}
constexpr size_t kMaxExpressionDepth = 512U;
TEST_F(ResolverTest, MaxExpressionDepth_Pass) {
auto* b = Var("b", ty.i32());
const ast::Expression* chain = nullptr;
for (size_t i = 0; i < kMaxExpressionDepth; ++i) {
chain = Add(chain ? chain : Expr("b"), Expr("b"));
}
auto* a = Let("a", chain);
WrapInFunction(b, a);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxExpressionDepth_Fail) {
auto* b = Var("b", ty.i32());
const ast::Expression* chain = nullptr;
for (size_t i = 0; i < kMaxExpressionDepth + 1; ++i) {
chain = Add(chain ? chain : Expr("b"), Expr("b"));
}
auto* a = Let("a", chain);
WrapInFunction(b, a);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("error: reached max expression depth of " +
std::to_string(kMaxExpressionDepth)));
}
// Windows debug builds have significantly smaller stack than other builds, and these tests will
// stack overflow.
#if !defined(NDEBUG)
TEST_F(ResolverTest, ScopeDepth_NestedBlocks) {
const ast::Statement* stmt = Return();
for (uint32_t i = 0; i < 150; i++) {
stmt = Block(Source{{i, 1}}, stmt);
}
WrapInFunction(stmt);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"23:1 error: statement nesting depth / chaining length exceeds limit of 127");
}
TEST_F(ResolverTest, ScopeDepth_NestedIf) {
const ast::Statement* stmt = Return();
for (uint32_t i = 0; i < 150; i++) {
stmt = If(Source{{i, 1}}, false, Block(Source{{i, 2}}, stmt));
}
WrapInFunction(stmt);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"86:1 error: statement nesting depth / chaining length exceeds limit of 127");
}
TEST_F(ResolverTest, ScopeDepth_IfElseChain) {
const ast::Statement* stmt = nullptr;
for (uint32_t i = 0; i < 150; i++) {
stmt = If(Source{{i, 1}}, false, Block(Source{{i, 2}}), Else(stmt));
}
WrapInFunction(stmt);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"24:2 error: statement nesting depth / chaining length exceeds limit of 127");
}
#endif // !defined(NDEBUG)
const size_t kMaxNumStructMembers = 16383;
TEST_F(ResolverTest, MaxNumStructMembers_Valid) {
Vector<const ast::StructMember*, 0> members;
members.Reserve(kMaxNumStructMembers);
for (size_t i = 0; i < kMaxNumStructMembers; ++i) {
members.Push(Member("m" + std::to_string(i), ty.i32()));
}
Structure("S", std::move(members));
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxNumStructMembers_Invalid) {
Vector<const ast::StructMember*, 0> members;
members.Reserve(kMaxNumStructMembers + 1);
for (size_t i = 0; i < kMaxNumStructMembers + 1; ++i) {
members.Push(Member("m" + std::to_string(i), ty.i32()));
}
Structure(Source{{12, 34}}, "S", std::move(members));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: 'struct S' has 16384 members, maximum is 16383");
}
TEST_F(ResolverTest, MaxNumStructMembers_WithIgnoreStructMemberLimit_Valid) {
Vector<const ast::StructMember*, 0> members;
members.Reserve(kMaxNumStructMembers);
for (size_t i = 0; i < kMaxNumStructMembers; ++i) {
members.Push(Member("m" + std::to_string(i), ty.i32()));
}
// Add 10 more members, but we set the limit to be ignored on the struct
for (size_t i = 0; i < 10; ++i) {
members.Push(Member("ignored" + std::to_string(i), ty.i32()));
}
Structure("S", std::move(members),
Vector{Disable(ast::DisabledValidation::kIgnoreStructMemberLimit)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
uint32_t kMaxNestDepthOfCompositeType = 255;
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_Structs_Valid) {
auto* s = Structure("S", Vector{Member("m", ty.i32())});
uint32_t depth = 1; // Depth of struct
uint32_t iterations = kMaxNestDepthOfCompositeType - depth;
for (uint32_t i = 0; i < iterations; ++i) {
s = Structure("S" + std::to_string(i), Vector{Member("m", ty.Of(s))});
}
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_Structs_Invalid) {
auto* s = Structure("S", Vector{Member("m", ty.i32())});
uint32_t depth = 1; // Depth of struct
uint32_t iterations = kMaxNestDepthOfCompositeType - depth + 1;
for (uint32_t i = 0; i < iterations; ++i) {
auto source = i == iterations - 1 ? Source{{12, 34}} : Source{{0, i}};
s = Structure(source, "S" + std::to_string(i), Vector{Member("m", ty.Of(s))});
}
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: 'struct S254' has nesting depth of 256, maximum is 255");
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsWithVector_Valid) {
auto* s = Structure("S", Vector{Member("m", ty.vec3<i32>())});
uint32_t depth = 2; // Despth of struct + vector
uint32_t iterations = kMaxNestDepthOfCompositeType - depth;
for (uint32_t i = 0; i < iterations; ++i) {
s = Structure("S" + std::to_string(i), Vector{Member("m", ty.Of(s))});
}
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsWithVector_Invalid) {
auto* s = Structure("S", Vector{Member("m", ty.vec3<i32>())});
uint32_t depth = 2; // Despth of struct + vector
uint32_t iterations = kMaxNestDepthOfCompositeType - depth + 1;
for (uint32_t i = 0; i < iterations; ++i) {
auto source = i == iterations - 1 ? Source{{12, 34}} : Source{{0, i}};
s = Structure(source, "S" + std::to_string(i), Vector{Member("m", ty.Of(s))});
}
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: 'struct S253' has nesting depth of 256, maximum is 255");
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsWithMatrix_Valid) {
auto* s = Structure("S", Vector{Member("m", ty.mat3x3<f32>())});
uint32_t depth = 3; // Depth of struct + matrix
uint32_t iterations = kMaxNestDepthOfCompositeType - depth;
for (uint32_t i = 0; i < iterations; ++i) {
s = Structure("S" + std::to_string(i), Vector{Member("m", ty.Of(s))});
}
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsWithMatrix_Invalid) {
auto* s = Structure("S", Vector{Member("m", ty.mat3x3<f32>())});
uint32_t depth = 3; // Depth of struct + matrix
uint32_t iterations = kMaxNestDepthOfCompositeType - depth + 1;
for (uint32_t i = 0; i < iterations; ++i) {
auto source = i == iterations - 1 ? Source{{12, 34}} : Source{{0, i}};
s = Structure(source, "S" + std::to_string(i), Vector{Member("m", ty.Of(s))});
}
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: 'struct S252' has nesting depth of 256, maximum is 255");
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_Arrays_Valid) {
auto a = ty.array(ty.i32(), 10_u);
uint32_t depth = 1; // Depth of array
uint32_t iterations = kMaxNestDepthOfCompositeType - depth;
for (uint32_t i = 0; i < iterations; ++i) {
a = ty.array(a, 1_u);
}
Alias("a", a);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_Arrays_Invalid) {
auto a = ty.array(Source{{99, 88}}, ty.i32(), 10_u);
uint32_t depth = 1; // Depth of array
uint32_t iterations = kMaxNestDepthOfCompositeType - depth + 1;
for (uint32_t i = 0; i < iterations; ++i) {
auto source = (i == iterations - 1) ? Source{{12, 34}} : Source{{0, i}};
a = ty.array(source, a, 1_u);
}
Alias("a", a);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: array has nesting depth of 256, maximum is 255");
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfVector_Valid) {
auto a = ty.array<vec3<i32>, 10>();
uint32_t depth = 2; // Depth of array + vector
uint32_t iterations = kMaxNestDepthOfCompositeType - depth;
for (uint32_t i = 0; i < iterations; ++i) {
a = ty.array(a, 1_u);
}
Alias("a", a);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfVector_Invalid) {
auto a = ty.array(Source{{99, 88}}, ty.vec3<i32>(), 10_u);
uint32_t depth = 2; // Depth of array + vector
uint32_t iterations = kMaxNestDepthOfCompositeType - depth + 1;
for (uint32_t i = 0; i < iterations; ++i) {
auto source = (i == iterations - 1) ? Source{{12, 34}} : Source{{0, i}};
a = ty.array(source, a, 1_u);
}
Alias("a", a);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: array has nesting depth of 256, maximum is 255");
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfMatrix_Valid) {
auto a = ty.array(ty.mat3x3<f32>(), 10_u);
uint32_t depth = 3; // Depth of array + matrix
uint32_t iterations = kMaxNestDepthOfCompositeType - depth;
for (uint32_t i = 0; i < iterations; ++i) {
a = ty.array(a, 1_u);
}
Alias("a", a);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfMatrix_Invalid) {
auto a = ty.array(ty.mat3x3<f32>(), 10_u);
uint32_t depth = 3; // Depth of array + matrix
uint32_t iterations = kMaxNestDepthOfCompositeType - depth + 1;
for (uint32_t i = 0; i < iterations; ++i) {
auto source = (i == iterations - 1) ? Source{{12, 34}} : Source{{0, i}};
a = ty.array(source, a, 1_u);
}
Alias("a", a);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: array has nesting depth of 256, maximum is 255");
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsOfArray_Valid) {
auto a = ty.array(ty.mat3x3<f32>(), 10_u);
auto* s = Structure("S", Vector{Member("m", a)});
uint32_t depth = 4; // Depth of struct + array + matrix
uint32_t iterations = kMaxNestDepthOfCompositeType - depth;
for (uint32_t i = 0; i < iterations; ++i) {
s = Structure("S" + std::to_string(i), Vector{Member("m", ty.Of(s))});
}
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsOfArray_Invalid) {
auto a = ty.array(ty.mat3x3<f32>(), 10_u);
auto* s = Structure("S", Vector{Member("m", a)});
uint32_t depth = 4; // Depth of struct + array + matrix
uint32_t iterations = kMaxNestDepthOfCompositeType - depth + 1;
for (uint32_t i = 0; i < iterations; ++i) {
auto source = i == iterations - 1 ? Source{{12, 34}} : Source{{0, i}};
s = Structure(source, "S" + std::to_string(i), Vector{Member("m", ty.Of(s))});
}
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: 'struct S251' has nesting depth of 256, maximum is 255");
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfStruct_Valid) {
auto* s = Structure("S", Vector{Member("m", ty.mat3x3<f32>())});
auto a = ty.array(ty.Of(s), 10_u);
uint32_t depth = 4; // Depth of array + struct + matrix
uint32_t iterations = kMaxNestDepthOfCompositeType - depth;
for (uint32_t i = 0; i < iterations; ++i) {
a = ty.array(a, 1_u);
}
Alias("a", a);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfStruct_Invalid) {
auto* s = Structure("S", Vector{Member("m", ty.mat3x3<f32>())});
auto a = ty.array(ty.Of(s), 10_u);
uint32_t depth = 4; // Depth of array + struct + matrix
uint32_t iterations = kMaxNestDepthOfCompositeType - depth + 1;
for (uint32_t i = 0; i < iterations; ++i) {
auto source = (i == iterations - 1) ? Source{{12, 34}} : Source{{0, i}};
a = ty.array(source, a, 1_u);
}
Alias("a", a);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: array has nesting depth of 256, maximum is 255");
}
} // namespace
} // namespace tint::resolver