blob: 729632a31f5078832da87e9322736c4bf875688d [file] [log] [blame]
// Copyright 2019 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <vector>
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/WGPUHelpers.h"
namespace dawn {
namespace {
class ComputeStorageBufferBarrierTests : public DawnTest {
protected:
static constexpr uint32_t kNumValues = 100;
static constexpr uint32_t kIterations = 100;
};
// Test that multiple dispatches to increment values in a storage buffer are synchronized.
TEST_P(ComputeStorageBufferBarrierTests, AddIncrement) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expected(kNumValues, 0x1234 * kIterations);
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer buffer = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
struct Buf {
data : array<u32, 100>
}
@group(0) @binding(0) var<storage, read_write> buf : Buf;
@compute @workgroup_size(1)
fn main(@builtin(global_invocation_id) GlobalInvocationID : vec3u) {
buf.data[GlobalInvocationID.x] = buf.data[GlobalInvocationID.x] + 0x1234u;
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.compute.module = module;
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, buffer, 0, bufferSize}});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
for (uint32_t i = 0; i < kIterations; ++i) {
pass.DispatchWorkgroups(kNumValues);
}
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expected.data(), buffer, 0, kNumValues);
}
// Test that multiple dispatches to increment values by ping-ponging between two storage buffers
// are synchronized.
TEST_P(ComputeStorageBufferBarrierTests, AddPingPong) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expectedA(kNumValues, 0x1234 * kIterations);
std::vector<uint32_t> expectedB(kNumValues, 0x1234 * (kIterations - 1));
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer bufferA = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::Buffer bufferB = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
struct Buf {
data : array<u32, 100>
}
@group(0) @binding(0) var<storage, read_write> src : Buf;
@group(0) @binding(1) var<storage, read_write> dst : Buf;
@compute @workgroup_size(1)
fn main(@builtin(global_invocation_id) GlobalInvocationID : vec3u) {
dst.data[GlobalInvocationID.x] = src.data[GlobalInvocationID.x] + 0x1234u;
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.compute.module = module;
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferA, 0, bufferSize},
{1, bufferB, 0, bufferSize},
});
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferB, 0, bufferSize},
{1, bufferA, 0, bufferSize},
});
wgpu::BindGroup bindGroups[2] = {bindGroupA, bindGroupB};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
for (uint32_t i = 0; i < kIterations / 2; ++i) {
pass.SetBindGroup(0, bindGroups[0]);
pass.DispatchWorkgroups(kNumValues);
pass.SetBindGroup(0, bindGroups[1]);
pass.DispatchWorkgroups(kNumValues);
}
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expectedA.data(), bufferA, 0, kNumValues);
EXPECT_BUFFER_U32_RANGE_EQ(expectedB.data(), bufferB, 0, kNumValues);
}
// Test that multiple dispatches to increment values by ping-ponging between storage buffers and
// read-only storage buffers are synchronized in one compute pass.
TEST_P(ComputeStorageBufferBarrierTests, StorageAndReadonlyStoragePingPongInOnePass) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expectedA(kNumValues, 0x1234 * kIterations);
std::vector<uint32_t> expectedB(kNumValues, 0x1234 * (kIterations - 1));
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer bufferA = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::Buffer bufferB = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
struct Buf {
data : array<u32, 100>
}
@group(0) @binding(0) var<storage, read> src : Buf;
@group(0) @binding(1) var<storage, read_write> dst : Buf;
@compute @workgroup_size(1)
fn main(@builtin(global_invocation_id) GlobalInvocationID : vec3u) {
dst.data[GlobalInvocationID.x] = src.data[GlobalInvocationID.x] + 0x1234u;
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.compute.module = module;
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferA, 0, bufferSize},
{1, bufferB, 0, bufferSize},
});
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferB, 0, bufferSize},
{1, bufferA, 0, bufferSize},
});
wgpu::BindGroup bindGroups[2] = {bindGroupA, bindGroupB};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
for (uint32_t i = 0; i < kIterations / 2; ++i) {
pass.SetBindGroup(0, bindGroups[0]);
pass.DispatchWorkgroups(kNumValues);
pass.SetBindGroup(0, bindGroups[1]);
pass.DispatchWorkgroups(kNumValues);
}
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expectedA.data(), bufferA, 0, kNumValues);
EXPECT_BUFFER_U32_RANGE_EQ(expectedB.data(), bufferB, 0, kNumValues);
}
// Test that Storage to Uniform buffer transitions work and synchronize correctly
// by ping-ponging between Storage/Uniform usage in sequential compute passes.
TEST_P(ComputeStorageBufferBarrierTests, UniformToStorageAddPingPong) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expectedA(kNumValues, 0x1234 * kIterations);
std::vector<uint32_t> expectedB(kNumValues, 0x1234 * (kIterations - 1));
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer bufferA = utils::CreateBufferFromData(
device, data.data(), bufferSize,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopySrc);
wgpu::Buffer bufferB = utils::CreateBufferFromData(
device, data.data(), bufferSize,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
struct Buf {
data : array<vec4u, 25>
}
@group(0) @binding(0) var<uniform> src : Buf;
@group(0) @binding(1) var<storage, read_write> dst : Buf;
@compute @workgroup_size(1)
fn main(@builtin(global_invocation_id) GlobalInvocationID : vec3u) {
dst.data[GlobalInvocationID.x] = src.data[GlobalInvocationID.x] +
vec4u(0x1234u, 0x1234u, 0x1234u, 0x1234u);
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.compute.module = module;
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferA, 0, bufferSize},
{1, bufferB, 0, bufferSize},
});
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferB, 0, bufferSize},
{1, bufferA, 0, bufferSize},
});
wgpu::BindGroup bindGroups[2] = {bindGroupA, bindGroupB};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
for (uint32_t i = 0, b = 0; i < kIterations; ++i, b = 1 - b) {
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroups[b]);
pass.DispatchWorkgroups(kNumValues / 4);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expectedA.data(), bufferA, 0, kNumValues);
EXPECT_BUFFER_U32_RANGE_EQ(expectedB.data(), bufferB, 0, kNumValues);
}
// Test that Storage to Uniform buffer transitions work and synchronize correctly
// by ping-ponging between Storage/Uniform usage in one compute pass.
TEST_P(ComputeStorageBufferBarrierTests, UniformToStorageAddPingPongInOnePass) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expectedA(kNumValues, 0x1234 * kIterations);
std::vector<uint32_t> expectedB(kNumValues, 0x1234 * (kIterations - 1));
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer bufferA = utils::CreateBufferFromData(
device, data.data(), bufferSize,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopySrc);
wgpu::Buffer bufferB = utils::CreateBufferFromData(
device, data.data(), bufferSize,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
struct Buf {
data : array<vec4u, 25>
}
@group(0) @binding(0) var<uniform> src : Buf;
@group(0) @binding(1) var<storage, read_write> dst : Buf;
@compute @workgroup_size(1)
fn main(@builtin(global_invocation_id) GlobalInvocationID : vec3u) {
dst.data[GlobalInvocationID.x] = src.data[GlobalInvocationID.x] +
vec4u(0x1234u, 0x1234u, 0x1234u, 0x1234u);
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.compute.module = module;
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferA, 0, bufferSize},
{1, bufferB, 0, bufferSize},
});
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferB, 0, bufferSize},
{1, bufferA, 0, bufferSize},
});
wgpu::BindGroup bindGroups[2] = {bindGroupA, bindGroupB};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
for (uint32_t i = 0; i < kIterations; ++i) {
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroups[i % 2]);
pass.DispatchWorkgroups(kNumValues / 4);
}
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expectedA.data(), bufferA, 0, kNumValues);
EXPECT_BUFFER_U32_RANGE_EQ(expectedB.data(), bufferB, 0, kNumValues);
}
// Test that barriers for dispatches correctly combine Indirect | Storage in backends with explicit
// barriers. Do this by:
// 1 - Initializing an indirect buffer with zeros.
// 2 - Write ones into it with a compute shader.
// 3 - Use the indirect buffer in a Dispatch while also reading its data.
TEST_P(ComputeStorageBufferBarrierTests, IndirectBufferCorrectBarrier) {
wgpu::ComputePipelineDescriptor step2PipelineDesc;
step2PipelineDesc.compute.module = utils::CreateShaderModule(device, R"(
struct Buf {
data : array<u32, 3>
}
@group(0) @binding(0) var<storage, read_write> buf : Buf;
@compute @workgroup_size(1) fn main() {
buf.data = array(1u, 1u, 1u);
}
)");
wgpu::ComputePipeline step2Pipeline = device.CreateComputePipeline(&step2PipelineDesc);
wgpu::ComputePipelineDescriptor step3PipelineDesc;
step3PipelineDesc.compute.module = utils::CreateShaderModule(device, R"(
struct Buf {
data : array<u32, 3>
}
@group(0) @binding(0) var<storage, read> buf : Buf;
struct Result {
data : u32
}
@group(0) @binding(1) var<storage, read_write> result : Result;
@compute @workgroup_size(1) fn main() {
result.data = 2u;
if (buf.data[0] == 1u && buf.data[1] == 1u && buf.data[2] == 1u) {
result.data = 1u;
}
}
)");
wgpu::ComputePipeline step3Pipeline = device.CreateComputePipeline(&step3PipelineDesc);
// 1 - Initializing an indirect buffer with zeros.
wgpu::Buffer buf = utils::CreateBufferFromData<uint32_t>(
device, wgpu::BufferUsage::Storage | wgpu::BufferUsage::Indirect, {0u, 0u, 0u});
// 2 - Write ones into it with a compute shader.
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
wgpu::BindGroup step2Group =
utils::MakeBindGroup(device, step2Pipeline.GetBindGroupLayout(0), {{0, buf}});
pass.SetPipeline(step2Pipeline);
pass.SetBindGroup(0, step2Group);
pass.DispatchWorkgroups(1);
// 3 - Use the indirect buffer in a Dispatch while also reading its data.
wgpu::Buffer resultBuffer = utils::CreateBufferFromData<uint32_t>(
device, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc, {0u});
wgpu::BindGroup step3Group = utils::MakeBindGroup(device, step3Pipeline.GetBindGroupLayout(0),
{{0, buf}, {1, resultBuffer}});
pass.SetPipeline(step3Pipeline);
pass.SetBindGroup(0, step3Group);
pass.DispatchWorkgroupsIndirect(buf, 0);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_EQ(1u, resultBuffer, 0);
}
DAWN_INSTANTIATE_TEST(ComputeStorageBufferBarrierTests,
D3D11Backend(),
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
} // anonymous namespace
} // namespace dawn