blob: 8028d02bd554b1954ddd8f87241e006dcc2e7939 [file] [log] [blame]
// Copyright 2022 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_TINT_IR_BUILDER_H_
#define SRC_TINT_IR_BUILDER_H_
#include <utility>
#include "src/tint/constant/scalar.h"
#include "src/tint/ir/access.h"
#include "src/tint/ir/binary.h"
#include "src/tint/ir/bitcast.h"
#include "src/tint/ir/block_param.h"
#include "src/tint/ir/break_if.h"
#include "src/tint/ir/builtin_call.h"
#include "src/tint/ir/constant.h"
#include "src/tint/ir/construct.h"
#include "src/tint/ir/continue.h"
#include "src/tint/ir/convert.h"
#include "src/tint/ir/discard.h"
#include "src/tint/ir/exit_if.h"
#include "src/tint/ir/exit_loop.h"
#include "src/tint/ir/exit_switch.h"
#include "src/tint/ir/function.h"
#include "src/tint/ir/function_param.h"
#include "src/tint/ir/if.h"
#include "src/tint/ir/instruction_result.h"
#include "src/tint/ir/load.h"
#include "src/tint/ir/loop.h"
#include "src/tint/ir/module.h"
#include "src/tint/ir/multi_in_block.h"
#include "src/tint/ir/next_iteration.h"
#include "src/tint/ir/return.h"
#include "src/tint/ir/store.h"
#include "src/tint/ir/switch.h"
#include "src/tint/ir/swizzle.h"
#include "src/tint/ir/unary.h"
#include "src/tint/ir/unreachable.h"
#include "src/tint/ir/user_call.h"
#include "src/tint/ir/value.h"
#include "src/tint/ir/var.h"
#include "src/tint/switch.h"
#include "src/tint/type/bool.h"
#include "src/tint/type/f16.h"
#include "src/tint/type/f32.h"
#include "src/tint/type/i32.h"
#include "src/tint/type/pointer.h"
#include "src/tint/type/u32.h"
#include "src/tint/type/vector.h"
#include "src/tint/type/void.h"
namespace tint::ir {
/// Builds an ir::Module
class Builder {
/// A helper used to enable overloads if the first type in `TYPES` is a utils::Vector or
/// utils::VectorRef.
template <typename... TYPES>
using EnableIfVectorLike = utils::traits::EnableIf<
utils::IsVectorLike<utils::traits::Decay<utils::traits::NthTypeOf<0, TYPES..., void>>>>;
/// A helper used to disable overloads if the first type in `TYPES` is a utils::Vector or
/// utils::VectorRef.
template <typename... TYPES>
using DisableIfVectorLike = utils::traits::EnableIf<
!utils::IsVectorLike<utils::traits::Decay<utils::traits::NthTypeOf<0, TYPES..., void>>>>;
/// If set, any created instruction will be auto-appended to the block.
ir::Block* current_block_ = nullptr;
public:
/// Constructor
/// @param mod the ir::Module to wrap with this builder
explicit Builder(Module& mod);
/// Constructor
/// @param mod the ir::Module to wrap with this builder
/// @param block the block to insert too
Builder(Module& mod, ir::Block* block);
/// Destructor
~Builder();
/// Creates a new builder wrapping the given block
/// @param b the block to set as the current block
/// @returns the builder
Builder With(Block* b) { return Builder(ir, b); }
/// Appends and returns the instruction @p val to the current block. If there is no current
/// block bound, then @p val is just returned.
/// @param val the instruction to append
/// @returns the instruction
template <typename T>
T* Append(T* val) {
if (current_block_) {
current_block_->Append(val);
}
return val;
}
/// @returns a new block
ir::Block* Block();
/// @returns a new multi-in block
ir::MultiInBlock* MultiInBlock();
/// Creates a function instruction
/// @param name the function name
/// @param return_type the function return type
/// @param stage the function stage
/// @param wg_size the workgroup_size
/// @returns the instruction
ir::Function* Function(std::string_view name,
const type::Type* return_type,
Function::PipelineStage stage = Function::PipelineStage::kUndefined,
std::optional<std::array<uint32_t, 3>> wg_size = {});
/// Creates an if instruction
/// @param condition the if condition
/// @returns the instruction
template <typename T>
ir::If* If(T&& condition) {
return Append(
ir.instructions.Create<ir::If>(Value(std::forward<T>(condition)), Block(), Block()));
}
/// Creates a loop instruction
/// @returns the instruction
ir::Loop* Loop();
/// Creates a switch instruction
/// @param condition the switch condition
/// @returns the instruction
template <typename T>
ir::Switch* Switch(T&& condition) {
return Append(ir.instructions.Create<ir::Switch>(Value(std::forward<T>(condition))));
}
/// Creates a case for the switch @p s with the given selectors
/// @param s the switch to create the case into
/// @param selectors the case selectors for the case statement
/// @returns the start block for the case instruction
ir::Block* Case(ir::Switch* s, utils::VectorRef<Switch::CaseSelector> selectors);
/// Creates a case for the switch @p s with the given selectors
/// @param s the switch to create the case into
/// @param selectors the case selectors for the case statement
/// @returns the start block for the case instruction
ir::Block* Case(ir::Switch* s, std::initializer_list<Switch::CaseSelector> selectors);
/// Creates a new ir::Constant
/// @param val the constant value
/// @returns the new constant
ir::Constant* Constant(const constant::Value* val) {
return ir.constants.GetOrCreate(val, [&]() { return ir.values.Create<ir::Constant>(val); });
}
/// Creates a ir::Constant for an i32 Scalar
/// @param v the value
/// @returns the new constant
ir::Constant* Constant(i32 v) { return Constant(ir.constant_values.Get(v)); }
/// Creates a ir::Constant for a u32 Scalar
/// @param v the value
/// @returns the new constant
ir::Constant* Constant(u32 v) { return Constant(ir.constant_values.Get(v)); }
/// Creates a ir::Constant for a f32 Scalar
/// @param v the value
/// @returns the new constant
ir::Constant* Constant(f32 v) { return Constant(ir.constant_values.Get(v)); }
/// Creates a ir::Constant for a f16 Scalar
/// @param v the value
/// @returns the new constant
ir::Constant* Constant(f16 v) { return Constant(ir.constant_values.Get(v)); }
/// Creates a ir::Constant for a bool Scalar
/// @param v the value
/// @returns the new constant
ir::Constant* Constant(bool v) { return Constant(ir.constant_values.Get(v)); }
/// Creates a ir::Constant for the given number
/// @param number the number value
/// @returns the new constant
template <typename T, typename = std::enable_if_t<IsNumeric<T>>>
ir::Constant* Value(T&& number) {
return Constant(std::forward<T>(number));
}
/// Pass-through overload for nullptr values
/// @returns nullptr
ir::Value* Value(std::nullptr_t) { return nullptr; }
/// Pass-through overload for Value()
/// @param v the ir::Value pointer
/// @returns @p v
ir::Value* Value(ir::Value* v) { return v; }
/// Extract the first result from the instruction
/// @param inst the instruction
/// @returns the result value
ir::Value* Value(ir::Instruction* inst) {
TINT_ASSERT(IR, inst->HasResults() && !inst->HasMultiResults());
return inst->Result();
}
/// Creates a value from the given number
/// @param n the number
/// @returns the value
template <typename T>
ir::Value* Value(Number<T> n) {
return Constant(n);
}
/// Pass-through overload for Values() with vector-like argument
/// @param vec the vector of ir::Value*
/// @return @p vec
template <typename VEC, typename = EnableIfVectorLike<utils::traits::Decay<VEC>>>
auto Values(VEC&& vec) {
return std::forward<VEC>(vec);
}
/// Overload for Values() with utils::Empty argument
/// @return utils::Empty
utils::EmptyType Values(utils::EmptyType) { return utils::Empty; }
/// Overload for Values() with no arguments
/// @return utils::Empty
utils::EmptyType Values() { return utils::Empty; }
/// @param args the arguments to pass to Value()
/// @returns a vector of ir::Value* built from transforming the arguments with Value()
template <typename... ARGS, typename = DisableIfVectorLike<ARGS...>>
auto Values(ARGS&&... args) {
return utils::Vector{Value(std::forward<ARGS>(args))...};
}
/// Creates an op for `lhs kind rhs`
/// @param kind the kind of operation
/// @param type the result type of the binary expression
/// @param lhs the left-hand-side of the operation
/// @param rhs the right-hand-side of the operation
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* Binary(enum Binary::Kind kind, const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Append(ir.instructions.Create<ir::Binary>(InstructionResult(type), kind,
Value(std::forward<LHS>(lhs)),
Value(std::forward<RHS>(rhs))));
}
/// Creates an And operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* And(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kAnd, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs));
}
/// Creates an Or operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* Or(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kOr, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs));
}
/// Creates an Xor operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* Xor(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kXor, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs));
}
/// Creates an Equal operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* Equal(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kEqual, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an NotEqual operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* NotEqual(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kNotEqual, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an LessThan operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* LessThan(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kLessThan, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an GreaterThan operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* GreaterThan(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kGreaterThan, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an LessThanEqual operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* LessThanEqual(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kLessThanEqual, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an GreaterThanEqual operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* GreaterThanEqual(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kGreaterThanEqual, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an ShiftLeft operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* ShiftLeft(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kShiftLeft, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an ShiftRight operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* ShiftRight(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kShiftRight, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an Add operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* Add(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kAdd, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs));
}
/// Creates an Subtract operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* Subtract(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kSubtract, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an Multiply operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* Multiply(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kMultiply, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an Divide operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* Divide(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kDivide, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an Modulo operation
/// @param type the result type of the expression
/// @param lhs the lhs of the add
/// @param rhs the rhs of the add
/// @returns the operation
template <typename LHS, typename RHS>
ir::Binary* Modulo(const type::Type* type, LHS&& lhs, RHS&& rhs) {
return Binary(ir::Binary::Kind::kModulo, type, std::forward<LHS>(lhs),
std::forward<RHS>(rhs));
}
/// Creates an op for `kind val`
/// @param kind the kind of operation
/// @param type the result type of the binary expression
/// @param val the value of the operation
/// @returns the operation
template <typename VAL>
ir::Unary* Unary(enum Unary::Kind kind, const type::Type* type, VAL&& val) {
return Append(ir.instructions.Create<ir::Unary>(InstructionResult(type), kind,
Value(std::forward<VAL>(val))));
}
/// Creates a Complement operation
/// @param type the result type of the expression
/// @param val the value
/// @returns the operation
template <typename VAL>
ir::Unary* Complement(const type::Type* type, VAL&& val) {
return Unary(ir::Unary::Kind::kComplement, type, std::forward<VAL>(val));
}
/// Creates a Negation operation
/// @param type the result type of the expression
/// @param val the value
/// @returns the operation
template <typename VAL>
ir::Unary* Negation(const type::Type* type, VAL&& val) {
return Unary(ir::Unary::Kind::kNegation, type, std::forward<VAL>(val));
}
/// Creates a Not operation
/// @param type the result type of the expression
/// @param val the value
/// @returns the operation
template <typename VAL>
ir::Binary* Not(const type::Type* type, VAL&& val) {
return Equal(type, std::forward<VAL>(val), Constant(false));
}
/// Creates a bitcast instruction
/// @param type the result type of the bitcast
/// @param val the value being bitcast
/// @returns the instruction
template <typename VAL>
ir::Bitcast* Bitcast(const type::Type* type, VAL&& val) {
return Append(ir.instructions.Create<ir::Bitcast>(InstructionResult(type),
Value(std::forward<VAL>(val))));
}
/// Creates a discard instruction
/// @returns the instruction
ir::Discard* Discard();
/// Creates a user function call instruction
/// @param type the return type of the call
/// @param func the function to call
/// @param args the call arguments
/// @returns the instruction
template <typename... ARGS>
ir::UserCall* Call(const type::Type* type, ir::Function* func, ARGS&&... args) {
return Append(ir.instructions.Create<ir::UserCall>(InstructionResult(type), func,
Values(std::forward<ARGS>(args)...)));
}
/// Creates a builtin call instruction
/// @param type the return type of the call
/// @param func the builtin function to call
/// @param args the call arguments
/// @returns the instruction
template <typename... ARGS>
ir::BuiltinCall* Call(const type::Type* type, builtin::Function func, ARGS&&... args) {
return Append(ir.instructions.Create<ir::BuiltinCall>(InstructionResult(type), func,
Values(std::forward<ARGS>(args)...)));
}
/// Creates a value conversion instruction
/// @param to the type converted to
/// @param val the value to be converted
/// @returns the instruction
template <typename VAL>
ir::Convert* Convert(const type::Type* to, VAL&& val) {
return Append(ir.instructions.Create<ir::Convert>(InstructionResult(to),
Value(std::forward<VAL>(val))));
}
/// Creates a value constructor instruction
/// @param type the type to constructed
/// @param args the arguments to the constructor
/// @returns the instruction
template <typename... ARGS>
ir::Construct* Construct(const type::Type* type, ARGS&&... args) {
return Append(ir.instructions.Create<ir::Construct>(InstructionResult(type),
Values(std::forward<ARGS>(args)...)));
}
/// Creates a load instruction
/// @param from the expression being loaded from
/// @returns the instruction
template <typename VAL>
ir::Load* Load(VAL&& from) {
auto* val = Value(std::forward<VAL>(from));
return Append(
ir.instructions.Create<ir::Load>(InstructionResult(val->Type()->UnwrapPtr()), val));
}
/// Creates a store instruction
/// @param to the expression being stored too
/// @param from the expression being stored
/// @returns the instruction
template <typename TO, typename ARG>
ir::Store* Store(TO&& to, ARG&& from) {
return Append(ir.instructions.Create<ir::Store>(Value(std::forward<TO>(to)),
Value(std::forward<ARG>(from))));
}
/// Creates a new `var` declaration
/// @param type the var type
/// @returns the instruction
ir::Var* Var(const type::Pointer* type);
/// Creates a return instruction
/// @param func the function being returned
/// @returns the instruction
ir::Return* Return(ir::Function* func) {
return Append(ir.instructions.Create<ir::Return>(func));
}
/// Creates a return instruction
/// @param func the function being returned
/// @param value the return value
/// @returns the instruction
template <typename ARG>
ir::Return* Return(ir::Function* func, ARG&& value) {
return Append(ir.instructions.Create<ir::Return>(func, Value(std::forward<ARG>(value))));
}
/// Creates a loop next iteration instruction
/// @param loop the loop being iterated
/// @param args the arguments for the target MultiInBlock
/// @returns the instruction
template <typename... ARGS>
ir::NextIteration* NextIteration(ir::Loop* loop, ARGS&&... args) {
return Append(
ir.instructions.Create<ir::NextIteration>(loop, Values(std::forward<ARGS>(args)...)));
}
/// Creates a loop break-if instruction
/// @param condition the break condition
/// @param loop the loop being iterated
/// @param args the arguments for the target MultiInBlock
/// @returns the instruction
template <typename CONDITION, typename... ARGS>
ir::BreakIf* BreakIf(CONDITION&& condition, ir::Loop* loop, ARGS&&... args) {
return Append(ir.instructions.Create<ir::BreakIf>(
Value(std::forward<CONDITION>(condition)), loop, Values(std::forward<ARGS>(args)...)));
}
/// Creates a continue instruction
/// @param loop the loop being continued
/// @param args the arguments for the target MultiInBlock
/// @returns the instruction
template <typename... ARGS>
ir::Continue* Continue(ir::Loop* loop, ARGS&&... args) {
return Append(
ir.instructions.Create<ir::Continue>(loop, Values(std::forward<ARGS>(args)...)));
}
/// Creates an exit switch instruction
/// @param sw the switch being exited
/// @param args the arguments for the target MultiInBlock
/// @returns the instruction
template <typename... ARGS>
ir::ExitSwitch* ExitSwitch(ir::Switch* sw, ARGS&&... args) {
return Append(
ir.instructions.Create<ir::ExitSwitch>(sw, Values(std::forward<ARGS>(args)...)));
}
/// Creates an exit loop instruction
/// @param loop the loop being exited
/// @param args the arguments for the target MultiInBlock
/// @returns the instruction
template <typename... ARGS>
ir::ExitLoop* ExitLoop(ir::Loop* loop, ARGS&&... args) {
return Append(
ir.instructions.Create<ir::ExitLoop>(loop, Values(std::forward<ARGS>(args)...)));
}
/// Creates an exit if instruction
/// @param i the if being exited
/// @param args the arguments for the target MultiInBlock
/// @returns the instruction
template <typename... ARGS>
ir::ExitIf* ExitIf(ir::If* i, ARGS&&... args) {
return Append(ir.instructions.Create<ir::ExitIf>(i, Values(std::forward<ARGS>(args)...)));
}
/// Creates an exit instruction for the given control instruction
/// @param inst the control instruction being exited
/// @param args the arguments for the target MultiInBlock
/// @returns the exit instruction, or nullptr if the control instruction is not supported.
template <typename... ARGS>
ir::Exit* Exit(ir::ControlInstruction* inst, ARGS&&... args) {
return tint::Switch(
inst, //
[&](ir::If* i) { return ExitIf(i, std::forward<ARGS>(args)...); },
[&](ir::Loop* i) { return ExitLoop(i, std::forward<ARGS>(args)...); },
[&](ir::Switch* i) { return ExitSwitch(i, std::forward<ARGS>(args)...); });
}
/// Creates a new `BlockParam`
/// @param type the parameter type
/// @returns the value
ir::BlockParam* BlockParam(const type::Type* type);
/// Creates a new `FunctionParam`
/// @param type the parameter type
/// @returns the value
ir::FunctionParam* FunctionParam(const type::Type* type);
/// Creates a new `Access`
/// @param type the return type
/// @param object the object being accessed
/// @param indices the access indices
/// @returns the instruction
template <typename OBJ, typename... ARGS>
ir::Access* Access(const type::Type* type, OBJ&& object, ARGS&&... indices) {
return Append(ir.instructions.Create<ir::Access>(InstructionResult(type),
Value(std::forward<OBJ>(object)),
Values(std::forward<ARGS>(indices)...)));
}
/// Creates a new `Swizzle`
/// @param type the return type
/// @param object the object being swizzled
/// @param indices the swizzle indices
/// @returns the instruction
template <typename OBJ>
ir::Swizzle* Swizzle(const type::Type* type, OBJ&& object, utils::VectorRef<uint32_t> indices) {
return Append(ir.instructions.Create<ir::Swizzle>(
InstructionResult(type), Value(std::forward<OBJ>(object)), std::move(indices)));
}
/// Creates a new `Swizzle`
/// @param type the return type
/// @param object the object being swizzled
/// @param indices the swizzle indices
/// @returns the instruction
template <typename OBJ>
ir::Swizzle* Swizzle(const type::Type* type,
OBJ&& object,
std::initializer_list<uint32_t> indices) {
return Append(ir.instructions.Create<ir::Swizzle>(InstructionResult(type),
Value(std::forward<OBJ>(object)),
utils::Vector<uint32_t, 4>(indices)));
}
/// Creates an unreachable instruction
/// @returns the instruction
ir::Unreachable* Unreachable();
/// Retrieves the root block for the module, creating if necessary
/// @returns the root block
ir::Block* RootBlock();
/// Creates a new runtime value
/// @param type the return type
/// @returns the value
ir::InstructionResult* InstructionResult(const type::Type* type) {
return ir.values.Create<ir::InstructionResult>(type);
}
/// The IR module.
Module& ir;
};
} // namespace tint::ir
#endif // SRC_TINT_IR_BUILDER_H_