blob: 04af878899dab1f62f0f8ebbe056d8a01aafe4e6 [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/DawnTest.h"
#include <cstring>
class BufferMapReadTests : public DawnTest {
protected:
static void MapReadCallback(WGPUBufferMapAsyncStatus status,
const void* data,
uint64_t,
void* userdata) {
ASSERT_EQ(WGPUBufferMapAsyncStatus_Success, status);
ASSERT_NE(nullptr, data);
static_cast<BufferMapReadTests*>(userdata)->mappedData = data;
}
const void* MapReadAsyncAndWait(const wgpu::Buffer& buffer) {
buffer.MapReadAsync(MapReadCallback, this);
while (mappedData == nullptr) {
WaitABit();
}
return mappedData;
}
void UnmapBuffer(const wgpu::Buffer& buffer) {
buffer.Unmap();
mappedData = nullptr;
}
private:
const void* mappedData = nullptr;
};
// Test that the simplest map read works.
TEST_P(BufferMapReadTests, SmallReadAtZero) {
wgpu::BufferDescriptor descriptor;
descriptor.size = 4;
descriptor.usage = wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
uint32_t myData = 0x01020304;
buffer.SetSubData(0, sizeof(myData), &myData);
const void* mappedData = MapReadAsyncAndWait(buffer);
ASSERT_EQ(myData, *reinterpret_cast<const uint32_t*>(mappedData));
UnmapBuffer(buffer);
}
// Map, read and unmap twice. Test that both of these two iterations work.
TEST_P(BufferMapReadTests, MapTwice) {
wgpu::BufferDescriptor descriptor;
descriptor.size = 4;
descriptor.usage = wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
uint32_t myData = 0x01020304;
buffer.SetSubData(0, sizeof(myData), &myData);
const void* mappedData = MapReadAsyncAndWait(buffer);
EXPECT_EQ(myData, *reinterpret_cast<const uint32_t*>(mappedData));
UnmapBuffer(buffer);
myData = 0x05060708;
buffer.SetSubData(0, sizeof(myData), &myData);
const void* mappedData1 = MapReadAsyncAndWait(buffer);
EXPECT_EQ(myData, *reinterpret_cast<const uint32_t*>(mappedData1));
UnmapBuffer(buffer);
}
// Test mapping a large buffer.
TEST_P(BufferMapReadTests, LargeRead) {
constexpr uint32_t kDataSize = 1000 * 1000;
std::vector<uint32_t> myData;
for (uint32_t i = 0; i < kDataSize; ++i) {
myData.push_back(i);
}
wgpu::BufferDescriptor descriptor;
descriptor.size = static_cast<uint32_t>(kDataSize * sizeof(uint32_t));
descriptor.usage = wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
buffer.SetSubData(0, kDataSize * sizeof(uint32_t), myData.data());
const void* mappedData = MapReadAsyncAndWait(buffer);
ASSERT_EQ(0, memcmp(mappedData, myData.data(), kDataSize * sizeof(uint32_t)));
UnmapBuffer(buffer);
}
DAWN_INSTANTIATE_TEST(BufferMapReadTests, D3D12Backend(), MetalBackend(), OpenGLBackend(), VulkanBackend());
class BufferMapWriteTests : public DawnTest {
protected:
static void MapWriteCallback(WGPUBufferMapAsyncStatus status,
void* data,
uint64_t,
void* userdata) {
ASSERT_EQ(WGPUBufferMapAsyncStatus_Success, status);
ASSERT_NE(nullptr, data);
static_cast<BufferMapWriteTests*>(userdata)->mappedData = data;
}
void* MapWriteAsyncAndWait(const wgpu::Buffer& buffer) {
buffer.MapWriteAsync(MapWriteCallback, this);
while (mappedData == nullptr) {
WaitABit();
}
// Ensure the prior write's status is updated.
void* resultPointer = mappedData;
mappedData = nullptr;
return resultPointer;
}
void UnmapBuffer(const wgpu::Buffer& buffer) {
buffer.Unmap();
mappedData = nullptr;
}
private:
void* mappedData = nullptr;
};
// Test that the simplest map write works.
TEST_P(BufferMapWriteTests, SmallWriteAtZero) {
wgpu::BufferDescriptor descriptor;
descriptor.size = 4;
descriptor.usage = wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
uint32_t myData = 2934875;
void* mappedData = MapWriteAsyncAndWait(buffer);
memcpy(mappedData, &myData, sizeof(myData));
UnmapBuffer(buffer);
EXPECT_BUFFER_U32_EQ(myData, buffer, 0);
}
// Map, write and unmap twice. Test that both of these two iterations work.
TEST_P(BufferMapWriteTests, MapTwice) {
wgpu::BufferDescriptor descriptor;
descriptor.size = 4;
descriptor.usage = wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
uint32_t myData = 2934875;
void* mappedData = MapWriteAsyncAndWait(buffer);
memcpy(mappedData, &myData, sizeof(myData));
UnmapBuffer(buffer);
EXPECT_BUFFER_U32_EQ(myData, buffer, 0);
myData = 9999999;
void* mappedData1 = MapWriteAsyncAndWait(buffer);
memcpy(mappedData1, &myData, sizeof(myData));
UnmapBuffer(buffer);
EXPECT_BUFFER_U32_EQ(myData, buffer, 0);
}
// Test mapping a large buffer.
TEST_P(BufferMapWriteTests, LargeWrite) {
constexpr uint32_t kDataSize = 1000 * 1000;
std::vector<uint32_t> myData;
for (uint32_t i = 0; i < kDataSize; ++i) {
myData.push_back(i);
}
wgpu::BufferDescriptor descriptor;
descriptor.size = static_cast<uint32_t>(kDataSize * sizeof(uint32_t));
descriptor.usage = wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
void* mappedData = MapWriteAsyncAndWait(buffer);
memcpy(mappedData, myData.data(), kDataSize * sizeof(uint32_t));
UnmapBuffer(buffer);
EXPECT_BUFFER_U32_RANGE_EQ(myData.data(), buffer, 0, kDataSize);
}
// Stress test mapping many buffers.
TEST_P(BufferMapWriteTests, ManyWrites) {
constexpr uint32_t kDataSize = 1000;
std::vector<uint32_t> myData;
for (uint32_t i = 0; i < kDataSize; ++i) {
myData.push_back(i);
}
std::vector<wgpu::Buffer> buffers;
constexpr uint32_t kBuffers = 100;
for (uint32_t i = 0; i < kBuffers; ++i) {
wgpu::BufferDescriptor descriptor;
descriptor.size = static_cast<uint32_t>(kDataSize * sizeof(uint32_t));
descriptor.usage = wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
void* mappedData = MapWriteAsyncAndWait(buffer);
memcpy(mappedData, myData.data(), kDataSize * sizeof(uint32_t));
UnmapBuffer(buffer);
buffers.push_back(buffer); // Destroy buffers upon return.
}
for (uint32_t i = 0; i < kBuffers; ++i) {
EXPECT_BUFFER_U32_RANGE_EQ(myData.data(), buffers[i], 0, kDataSize);
}
}
DAWN_INSTANTIATE_TEST(BufferMapWriteTests, D3D12Backend(), MetalBackend(), OpenGLBackend(), VulkanBackend());
class BufferSetSubDataTests : public DawnTest {
};
// Test the simplest set sub data: setting one u32 at offset 0.
TEST_P(BufferSetSubDataTests, SmallDataAtZero) {
wgpu::BufferDescriptor descriptor;
descriptor.size = 4;
descriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
uint32_t value = 0x01020304;
buffer.SetSubData(0, sizeof(value), &value);
EXPECT_BUFFER_U32_EQ(value, buffer, 0);
}
// Test the simplest set sub data: setting nothing
TEST_P(BufferSetSubDataTests, ZeroSized) {
wgpu::BufferDescriptor descriptor;
descriptor.size = 4;
descriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
uint32_t initialValue = 0x42;
buffer.SetSubData(0, sizeof(initialValue), &initialValue);
buffer.SetSubData(0, 0, nullptr);
// The content of the buffer isn't changed
EXPECT_BUFFER_U32_EQ(initialValue, buffer, 0);
}
// Call SetSubData at offset 0 via a u32 twice. Test that data is updated accoordingly.
TEST_P(BufferSetSubDataTests, SetTwice) {
wgpu::BufferDescriptor descriptor;
descriptor.size = 4;
descriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
uint32_t value = 0x01020304;
buffer.SetSubData(0, sizeof(value), &value);
EXPECT_BUFFER_U32_EQ(value, buffer, 0);
value = 0x05060708;
buffer.SetSubData(0, sizeof(value), &value);
EXPECT_BUFFER_U32_EQ(value, buffer, 0);
}
// Test that SetSubData offset works.
TEST_P(BufferSetSubDataTests, SmallDataAtOffset) {
wgpu::BufferDescriptor descriptor;
descriptor.size = 4000;
descriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
constexpr uint64_t kOffset = 2000;
uint32_t value = 0x01020304;
buffer.SetSubData(kOffset, sizeof(value), &value);
EXPECT_BUFFER_U32_EQ(value, buffer, kOffset);
}
// Stress test for many calls to SetSubData
TEST_P(BufferSetSubDataTests, ManySetSubData) {
// Note: Increasing the size of the buffer will likely cause timeout issues.
// In D3D12, timeout detection occurs when the GPU scheduler tries but cannot preempt the task
// executing these commands in-flight. If this takes longer than ~2s, a device reset occurs and
// fails the test. Since GPUs may or may not complete by then, this test must be disabled OR
// modified to be well-below the timeout limit.
// TODO (jiawei.shao@intel.com): find out why this test fails on Intel Vulkan Linux bots.
DAWN_SKIP_TEST_IF(IsIntel() && IsVulkan() && IsLinux());
// TODO(https://bugs.chromium.org/p/dawn/issues/detail?id=228): Re-enable
// once the issue with Metal on 10.14.6 is fixed.
DAWN_SKIP_TEST_IF(IsMacOS() && IsIntel() && IsMetal());
constexpr uint64_t kSize = 4000 * 1000;
constexpr uint32_t kElements = 500 * 500;
wgpu::BufferDescriptor descriptor;
descriptor.size = kSize;
descriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
std::vector<uint32_t> expectedData;
for (uint32_t i = 0; i < kElements; ++i) {
buffer.SetSubData(i * sizeof(uint32_t), sizeof(i), &i);
expectedData.push_back(i);
}
EXPECT_BUFFER_U32_RANGE_EQ(expectedData.data(), buffer, 0, kElements);
}
// Test using SetSubData for lots of data
TEST_P(BufferSetSubDataTests, LargeSetSubData) {
constexpr uint64_t kSize = 4000 * 1000;
constexpr uint32_t kElements = 1000 * 1000;
wgpu::BufferDescriptor descriptor;
descriptor.size = kSize;
descriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
std::vector<uint32_t> expectedData;
for (uint32_t i = 0; i < kElements; ++i) {
expectedData.push_back(i);
}
buffer.SetSubData(0, kElements * sizeof(uint32_t), expectedData.data());
EXPECT_BUFFER_U32_RANGE_EQ(expectedData.data(), buffer, 0, kElements);
}
// Test using SetSubData for super large data block
TEST_P(BufferSetSubDataTests, SuperLargeSetSubData) {
constexpr uint64_t kSize = 12000 * 1000;
constexpr uint64_t kElements = 3000 * 1000;
wgpu::BufferDescriptor descriptor;
descriptor.size = kSize;
descriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&descriptor);
std::vector<uint32_t> expectedData;
for (uint32_t i = 0; i < kElements; ++i) {
expectedData.push_back(i);
}
buffer.SetSubData(0, kElements * sizeof(uint32_t), expectedData.data());
EXPECT_BUFFER_U32_RANGE_EQ(expectedData.data(), buffer, 0, kElements);
}
DAWN_INSTANTIATE_TEST(BufferSetSubDataTests,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
VulkanBackend());
// TODO(enga): These tests should use the testing toggle to initialize resources to 1.
class CreateBufferMappedTests : public DawnTest {
protected:
static void MapReadCallback(WGPUBufferMapAsyncStatus status,
const void* data,
uint64_t,
void* userdata) {
ASSERT_EQ(WGPUBufferMapAsyncStatus_Success, status);
ASSERT_NE(nullptr, data);
static_cast<CreateBufferMappedTests*>(userdata)->mappedData = data;
}
const void* MapReadAsyncAndWait(const wgpu::Buffer& buffer) {
buffer.MapReadAsync(MapReadCallback, this);
while (mappedData == nullptr) {
WaitABit();
}
return mappedData;
}
void UnmapBuffer(const wgpu::Buffer& buffer) {
buffer.Unmap();
mappedData = nullptr;
}
void CheckResultStartsZeroed(const wgpu::CreateBufferMappedResult& result, uint64_t size) {
ASSERT_EQ(result.dataLength, size);
for (uint64_t i = 0; i < result.dataLength; ++i) {
uint8_t value = *(reinterpret_cast<uint8_t*>(result.data) + i);
ASSERT_EQ(value, 0u);
}
}
wgpu::CreateBufferMappedResult CreateBufferMapped(wgpu::BufferUsage usage, uint64_t size) {
wgpu::BufferDescriptor descriptor = {};
descriptor.size = size;
descriptor.usage = usage;
wgpu::CreateBufferMappedResult result = device.CreateBufferMapped(&descriptor);
CheckResultStartsZeroed(result, size);
return result;
}
wgpu::CreateBufferMappedResult CreateBufferMappedWithData(wgpu::BufferUsage usage,
const std::vector<uint32_t>& data) {
size_t byteLength = data.size() * sizeof(uint32_t);
wgpu::CreateBufferMappedResult result = CreateBufferMapped(usage, byteLength);
memcpy(result.data, data.data(), byteLength);
return result;
}
private:
const void* mappedData = nullptr;
};
// Test that the simplest CreateBufferMapped works for MapWrite buffers.
TEST_P(CreateBufferMappedTests, MapWriteUsageSmall) {
uint32_t myData = 230502;
wgpu::CreateBufferMappedResult result = CreateBufferMappedWithData(
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, {myData});
UnmapBuffer(result.buffer);
EXPECT_BUFFER_U32_EQ(myData, result.buffer, 0);
}
// Test that the simplest CreateBufferMapped works for MapRead buffers.
TEST_P(CreateBufferMappedTests, MapReadUsageSmall) {
uint32_t myData = 230502;
wgpu::CreateBufferMappedResult result =
CreateBufferMappedWithData(wgpu::BufferUsage::MapRead, {myData});
UnmapBuffer(result.buffer);
const void* mappedData = MapReadAsyncAndWait(result.buffer);
ASSERT_EQ(myData, *reinterpret_cast<const uint32_t*>(mappedData));
UnmapBuffer(result.buffer);
}
// Test that the simplest CreateBufferMapped works for non-mappable buffers.
TEST_P(CreateBufferMappedTests, NonMappableUsageSmall) {
uint32_t myData = 4239;
wgpu::CreateBufferMappedResult result =
CreateBufferMappedWithData(wgpu::BufferUsage::CopySrc, {myData});
UnmapBuffer(result.buffer);
EXPECT_BUFFER_U32_EQ(myData, result.buffer, 0);
}
// Test CreateBufferMapped for a large MapWrite buffer
TEST_P(CreateBufferMappedTests, MapWriteUsageLarge) {
constexpr uint64_t kDataSize = 1000 * 1000;
std::vector<uint32_t> myData;
for (uint32_t i = 0; i < kDataSize; ++i) {
myData.push_back(i);
}
wgpu::CreateBufferMappedResult result = CreateBufferMappedWithData(
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, {myData});
UnmapBuffer(result.buffer);
EXPECT_BUFFER_U32_RANGE_EQ(myData.data(), result.buffer, 0, kDataSize);
}
// Test CreateBufferMapped for a large MapRead buffer
TEST_P(CreateBufferMappedTests, MapReadUsageLarge) {
constexpr uint64_t kDataSize = 1000 * 1000;
std::vector<uint32_t> myData;
for (uint32_t i = 0; i < kDataSize; ++i) {
myData.push_back(i);
}
wgpu::CreateBufferMappedResult result =
CreateBufferMappedWithData(wgpu::BufferUsage::MapRead, myData);
UnmapBuffer(result.buffer);
const void* mappedData = MapReadAsyncAndWait(result.buffer);
ASSERT_EQ(0, memcmp(mappedData, myData.data(), kDataSize * sizeof(uint32_t)));
UnmapBuffer(result.buffer);
}
// Test CreateBufferMapped for a large non-mappable buffer
TEST_P(CreateBufferMappedTests, NonMappableUsageLarge) {
constexpr uint64_t kDataSize = 1000 * 1000;
std::vector<uint32_t> myData;
for (uint32_t i = 0; i < kDataSize; ++i) {
myData.push_back(i);
}
wgpu::CreateBufferMappedResult result =
CreateBufferMappedWithData(wgpu::BufferUsage::CopySrc, {myData});
UnmapBuffer(result.buffer);
EXPECT_BUFFER_U32_RANGE_EQ(myData.data(), result.buffer, 0, kDataSize);
}
// Test that mapping a buffer is valid after CreateBufferMapped and Unmap
TEST_P(CreateBufferMappedTests, CreateThenMapSuccess) {
static uint32_t myData = 230502;
static uint32_t myData2 = 1337;
wgpu::CreateBufferMappedResult result = CreateBufferMappedWithData(
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, {myData});
UnmapBuffer(result.buffer);
EXPECT_BUFFER_U32_EQ(myData, result.buffer, 0);
bool done = false;
result.buffer.MapWriteAsync(
[](WGPUBufferMapAsyncStatus status, void* data, uint64_t, void* userdata) {
ASSERT_EQ(WGPUBufferMapAsyncStatus_Success, status);
ASSERT_NE(nullptr, data);
*static_cast<uint32_t*>(data) = myData2;
*static_cast<bool*>(userdata) = true;
},
&done);
while (!done) {
WaitABit();
}
UnmapBuffer(result.buffer);
EXPECT_BUFFER_U32_EQ(myData2, result.buffer, 0);
}
// Test that is is invalid to map a buffer twice when using CreateBufferMapped
TEST_P(CreateBufferMappedTests, CreateThenMapBeforeUnmapFailure) {
uint32_t myData = 230502;
wgpu::CreateBufferMappedResult result = CreateBufferMappedWithData(
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, {myData});
ASSERT_DEVICE_ERROR([&]() {
bool done = false;
result.buffer.MapWriteAsync(
[](WGPUBufferMapAsyncStatus status, void* data, uint64_t, void* userdata) {
ASSERT_EQ(WGPUBufferMapAsyncStatus_Error, status);
ASSERT_EQ(nullptr, data);
*static_cast<bool*>(userdata) = true;
},
&done);
while (!done) {
WaitABit();
}
}());
// CreateBufferMapped is unaffected by the MapWrite error.
UnmapBuffer(result.buffer);
EXPECT_BUFFER_U32_EQ(myData, result.buffer, 0);
}
// Test that creating a very large buffers fails gracefully.
TEST_P(CreateBufferMappedTests, LargeBufferFails) {
// TODO(http://crbug.com/dawn/27): Missing support.
DAWN_SKIP_TEST_IF(IsMetal() || IsOpenGL());
wgpu::BufferDescriptor descriptor;
descriptor.size = std::numeric_limits<uint64_t>::max();
descriptor.usage = wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst;
ASSERT_DEVICE_ERROR(device.CreateBuffer(&descriptor));
}
DAWN_INSTANTIATE_TEST(CreateBufferMappedTests,
D3D12Backend(),
D3D12Backend({}, {"use_d3d12_resource_heap_tier2"}),
MetalBackend(),
OpenGLBackend(),
VulkanBackend());
class BufferTests : public DawnTest {};
TEST_P(BufferTests, ZeroSizedBuffer) {
wgpu::BufferDescriptor desc;
desc.size = 0;
desc.usage = wgpu::BufferUsage::CopyDst;
device.CreateBuffer(&desc);
}
DAWN_INSTANTIATE_TEST(BufferTests,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
VulkanBackend());