blob: 23f91645b0a0e905e15bcdb5515ab51e96c8fc34 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/sem/type.h"
#include "src/tint/sem/abstract_float.h"
#include "src/tint/sem/abstract_int.h"
#include "src/tint/sem/array.h"
#include "src/tint/sem/bool.h"
#include "src/tint/sem/f16.h"
#include "src/tint/sem/f32.h"
#include "src/tint/sem/i32.h"
#include "src/tint/sem/matrix.h"
#include "src/tint/sem/pointer.h"
#include "src/tint/sem/reference.h"
#include "src/tint/sem/sampler.h"
#include "src/tint/sem/texture.h"
#include "src/tint/sem/u32.h"
#include "src/tint/sem/vector.h"
TINT_INSTANTIATE_TYPEINFO(tint::sem::Type);
namespace tint::sem {
Type::Type() = default;
Type::Type(Type&&) = default;
Type::~Type() = default;
const Type* Type::UnwrapPtr() const {
auto* type = this;
while (auto* ptr = type->As<sem::Pointer>()) {
type = ptr->StoreType();
}
return type;
}
const Type* Type::UnwrapRef() const {
auto* type = this;
if (auto* ref = type->As<sem::Reference>()) {
type = ref->StoreType();
}
return type;
}
uint32_t Type::Size() const {
return 0;
}
uint32_t Type::Align() const {
return 0;
}
bool Type::IsConstructible() const {
return false;
}
bool Type::is_scalar() const {
return IsAnyOf<F16, F32, U32, I32, AbstractNumeric, Bool>();
}
bool Type::is_numeric_scalar() const {
return IsAnyOf<F16, F32, U32, I32, AbstractNumeric>();
}
bool Type::is_float_scalar() const {
return IsAnyOf<F16, F32, AbstractNumeric>();
}
bool Type::is_float_matrix() const {
return Is([](const Matrix* m) { return m->type()->is_float_scalar(); });
}
bool Type::is_square_float_matrix() const {
return Is(
[](const Matrix* m) { return m->type()->is_float_scalar() && m->rows() == m->columns(); });
}
bool Type::is_float_vector() const {
return Is([](const Vector* v) { return v->type()->is_float_scalar(); });
}
bool Type::is_float_scalar_or_vector() const {
return is_float_scalar() || is_float_vector();
}
bool Type::is_float_scalar_or_vector_or_matrix() const {
return is_float_scalar() || is_float_vector() || is_float_matrix();
}
bool Type::is_integer_scalar() const {
return IsAnyOf<U32, I32>();
}
bool Type::is_signed_integer_scalar() const {
return IsAnyOf<I32, AbstractInt>();
}
bool Type::is_unsigned_integer_scalar() const {
return Is<U32>();
}
bool Type::is_signed_integer_vector() const {
return Is([](const Vector* v) { return v->type()->IsAnyOf<I32, AbstractInt>(); });
}
bool Type::is_unsigned_integer_vector() const {
return Is([](const Vector* v) { return v->type()->Is<U32>(); });
}
bool Type::is_unsigned_scalar_or_vector() const {
return Is<U32>() || is_unsigned_integer_vector();
}
bool Type::is_signed_scalar_or_vector() const {
return IsAnyOf<I32, AbstractInt>() || is_signed_integer_vector();
}
bool Type::is_integer_scalar_or_vector() const {
return is_unsigned_scalar_or_vector() || is_signed_scalar_or_vector();
}
bool Type::is_abstract_integer_vector() const {
return Is([](const Vector* v) { return v->type()->Is<sem::AbstractInt>(); });
}
bool Type::is_abstract_float_vector() const {
return Is([](const Vector* v) { return v->type()->Is<sem::AbstractFloat>(); });
}
bool Type::is_abstract_integer_scalar_or_vector() const {
return Is<sem::AbstractInt>() || is_abstract_integer_vector();
}
bool Type::is_abstract_float_scalar_or_vector() const {
return Is<sem::AbstractFloat>() || is_abstract_float_vector();
}
bool Type::is_bool_vector() const {
return Is([](const Vector* v) { return v->type()->Is<Bool>(); });
}
bool Type::is_bool_scalar_or_vector() const {
return Is<Bool>() || is_bool_vector();
}
bool Type::is_numeric_vector() const {
return Is([](const Vector* v) { return v->type()->is_numeric_scalar(); });
}
bool Type::is_scalar_vector() const {
return Is([](const Vector* v) { return v->type()->is_scalar(); });
}
bool Type::is_numeric_scalar_or_vector() const {
return is_numeric_scalar() || is_numeric_vector();
}
bool Type::is_handle() const {
return IsAnyOf<Sampler, Texture>();
}
uint32_t Type::ConversionRank(const Type* from, const Type* to) {
if (from->UnwrapRef() == to) {
return 0;
}
return Switch(
from,
[&](const AbstractFloat*) {
return Switch(
to, //
[&](const F32*) { return 1; }, //
[&](const F16*) { return 2; }, //
[&](Default) { return kNoConversion; });
},
[&](const AbstractInt*) {
return Switch(
to, //
[&](const I32*) { return 3; }, //
[&](const U32*) { return 4; }, //
[&](const AbstractFloat*) { return 5; }, //
[&](const F32*) { return 6; }, //
[&](const F16*) { return 7; }, //
[&](Default) { return kNoConversion; });
},
[&](const Vector* from_vec) {
if (auto* to_vec = to->As<Vector>()) {
if (from_vec->Width() == to_vec->Width()) {
return ConversionRank(from_vec->type(), to_vec->type());
}
}
return kNoConversion;
},
[&](const Matrix* from_mat) {
if (auto* to_mat = to->As<Matrix>()) {
if (from_mat->columns() == to_mat->columns() &&
from_mat->rows() == to_mat->rows()) {
return ConversionRank(from_mat->type(), to_mat->type());
}
}
return kNoConversion;
},
[&](const Array* from_arr) {
if (auto* to_arr = to->As<Array>()) {
if (from_arr->Count() == to_arr->Count()) {
return ConversionRank(from_arr->ElemType(), to_arr->ElemType());
}
}
return kNoConversion;
},
[&](Default) { return kNoConversion; });
}
const Type* Type::ElementOf(const Type* ty, uint32_t* count /* = nullptr */) {
if (ty->is_scalar()) {
if (count) {
*count = 1;
}
return ty;
}
return Switch(
ty, //
[&](const Vector* v) {
if (count) {
*count = v->Width();
}
return v->type();
},
[&](const Matrix* m) {
if (count) {
*count = m->columns();
}
return m->ColumnType();
},
[&](const Array* a) {
if (count) {
if (auto* const_count = std::get_if<ConstantArrayCount>(&a->Count())) {
*count = const_count->value;
}
}
return a->ElemType();
},
[&](Default) {
if (count) {
*count = 0;
}
return nullptr;
});
}
const Type* Type::DeepestElementOf(const Type* ty, uint32_t* count /* = nullptr */) {
auto el_ty = ElementOf(ty, count);
while (el_ty && ty != el_ty) {
ty = el_ty;
uint32_t n = 0;
el_ty = ElementOf(ty, &n);
if (count) {
*count *= n;
}
}
return el_ty;
}
const sem::Type* Type::Common(utils::VectorRef<const Type*> types) {
const auto count = types.Length();
if (count == 0) {
return nullptr;
}
const auto* common = types[0];
for (size_t i = 1; i < count; i++) {
auto* ty = types[i];
if (ty == common) {
continue; // ty == common
}
if (sem::Type::ConversionRank(ty, common) != sem::Type::kNoConversion) {
continue; // ty can be converted to common.
}
if (sem::Type::ConversionRank(common, ty) != sem::Type::kNoConversion) {
common = ty; // common can be converted to ty.
continue;
}
return nullptr; // Conversion is not valid.
}
return common;
}
} // namespace tint::sem