blob: 1c857cdc1e54b6e4d237e3cfb4382b0088c675af [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gmock/gmock.h"
#include "src/tint/resolver/resolver_test_helper.h"
#include "src/tint/sem/reference.h"
#include "src/tint/sem/type_constructor.h"
#include "src/tint/sem/type_conversion.h"
using namespace tint::number_suffixes; // NOLINT
namespace tint::resolver {
namespace {
using ::testing::HasSubstr;
// Helpers and typedefs
using builder::alias;
using builder::alias1;
using builder::alias2;
using builder::alias3;
using builder::CreatePtrs;
using builder::CreatePtrsFor;
using builder::DataType;
using builder::mat2x2;
using builder::mat2x3;
using builder::mat3x2;
using builder::mat3x3;
using builder::mat4x4;
using builder::vec2;
using builder::vec3;
using builder::vec4;
class ResolverTypeConstructorValidationTest : public resolver::TestHelper, public testing::Test {};
namespace InferTypeTest {
struct Params {
builder::ast_type_func_ptr create_rhs_ast_type;
builder::ast_expr_func_ptr create_rhs_ast_value;
builder::sem_type_func_ptr create_rhs_sem_type;
};
template <typename T>
constexpr Params ParamsFor() {
return Params{DataType<T>::AST, DataType<T>::Expr, DataType<T>::Sem};
}
TEST_F(ResolverTypeConstructorValidationTest, InferTypeTest_Simple) {
// var a = 1i;
// var b = a;
auto* a = Var("a", nullptr, ast::StorageClass::kNone, Expr(1_i));
auto* b = Var("b", nullptr, ast::StorageClass::kNone, Expr("a"));
auto* a_ident = Expr("a");
auto* b_ident = Expr("b");
WrapInFunction(a, b, Assign(a_ident, "a"), Assign(b_ident, "b"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(a_ident)->Is<sem::Reference>());
EXPECT_TRUE(TypeOf(a_ident)->As<sem::Reference>()->StoreType()->Is<sem::I32>());
EXPECT_EQ(TypeOf(a_ident)->As<sem::Reference>()->StorageClass(), ast::StorageClass::kFunction);
ASSERT_TRUE(TypeOf(b_ident)->Is<sem::Reference>());
EXPECT_TRUE(TypeOf(b_ident)->As<sem::Reference>()->StoreType()->Is<sem::I32>());
EXPECT_EQ(TypeOf(b_ident)->As<sem::Reference>()->StorageClass(), ast::StorageClass::kFunction);
}
using InferTypeTest_FromConstructorExpression = ResolverTestWithParam<Params>;
TEST_P(InferTypeTest_FromConstructorExpression, All) {
// e.g. for vec3<f32>
// {
// var a = vec3<f32>(0.0, 0.0, 0.0)
// }
auto& params = GetParam();
Enable(ast::Extension::kF16);
auto* constructor_expr = params.create_rhs_ast_value(*this, 0);
auto* a = Var("a", nullptr, ast::StorageClass::kNone, constructor_expr);
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* got = TypeOf(a_ident);
auto* expected = create<sem::Reference>(params.create_rhs_sem_type(*this),
ast::StorageClass::kFunction, ast::Access::kReadWrite);
ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n"
<< "expected: " << FriendlyName(expected) << "\n";
}
static constexpr Params from_constructor_expression_cases[] = {
ParamsFor<bool>(),
ParamsFor<i32>(),
ParamsFor<u32>(),
ParamsFor<f32>(),
ParamsFor<f16>(),
ParamsFor<vec3<i32>>(),
ParamsFor<vec3<u32>>(),
ParamsFor<vec3<f32>>(),
ParamsFor<vec3<f16>>(),
ParamsFor<mat3x3<f32>>(),
ParamsFor<mat3x3<f16>>(),
ParamsFor<alias<bool>>(),
ParamsFor<alias<i32>>(),
ParamsFor<alias<u32>>(),
ParamsFor<alias<f32>>(),
ParamsFor<alias<f16>>(),
ParamsFor<alias<vec3<i32>>>(),
ParamsFor<alias<vec3<u32>>>(),
ParamsFor<alias<vec3<f32>>>(),
ParamsFor<alias<vec3<f16>>>(),
ParamsFor<alias<mat3x3<f32>>>(),
ParamsFor<alias<mat3x3<f16>>>(),
};
INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest,
InferTypeTest_FromConstructorExpression,
testing::ValuesIn(from_constructor_expression_cases));
using InferTypeTest_FromArithmeticExpression = ResolverTestWithParam<Params>;
TEST_P(InferTypeTest_FromArithmeticExpression, All) {
// e.g. for vec3<f32>
// {
// var a = vec3<f32>(2.0, 2.0, 2.0) * 3.0;
// }
auto& params = GetParam();
auto* arith_lhs_expr = params.create_rhs_ast_value(*this, 2);
auto* arith_rhs_expr = params.create_rhs_ast_value(*this, 3);
auto* constructor_expr = Mul(arith_lhs_expr, arith_rhs_expr);
auto* a = Var("a", nullptr, constructor_expr);
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* got = TypeOf(a_ident);
auto* expected = create<sem::Reference>(params.create_rhs_sem_type(*this),
ast::StorageClass::kFunction, ast::Access::kReadWrite);
ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n"
<< "expected: " << FriendlyName(expected) << "\n";
}
static constexpr Params from_arithmetic_expression_cases[] = {
ParamsFor<i32>(),
ParamsFor<u32>(),
ParamsFor<f32>(),
ParamsFor<vec3<f32>>(),
ParamsFor<mat3x3<f32>>(),
ParamsFor<alias<i32>>(),
ParamsFor<alias<u32>>(),
ParamsFor<alias<f32>>(),
ParamsFor<alias<vec3<f32>>>(),
ParamsFor<alias<mat3x3<f32>>>(),
};
INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest,
InferTypeTest_FromArithmeticExpression,
testing::ValuesIn(from_arithmetic_expression_cases));
using InferTypeTest_FromCallExpression = ResolverTestWithParam<Params>;
TEST_P(InferTypeTest_FromCallExpression, All) {
// e.g. for vec3<f32>
//
// fn foo() -> vec3<f32> {
// return vec3<f32>();
// }
//
// fn bar()
// {
// var a = foo();
// }
auto& params = GetParam();
Enable(ast::Extension::kF16);
Func("foo", {}, params.create_rhs_ast_type(*this),
{Return(Construct(params.create_rhs_ast_type(*this)))}, {});
auto* a = Var("a", nullptr, Call("foo"));
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* got = TypeOf(a_ident);
auto* expected = create<sem::Reference>(params.create_rhs_sem_type(*this),
ast::StorageClass::kFunction, ast::Access::kReadWrite);
ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n"
<< "expected: " << FriendlyName(expected) << "\n";
}
static constexpr Params from_call_expression_cases[] = {
ParamsFor<bool>(),
ParamsFor<i32>(),
ParamsFor<u32>(),
ParamsFor<f32>(),
ParamsFor<f16>(),
ParamsFor<vec3<i32>>(),
ParamsFor<vec3<u32>>(),
ParamsFor<vec3<f32>>(),
ParamsFor<vec3<f16>>(),
ParamsFor<mat3x3<f32>>(),
ParamsFor<mat3x3<f16>>(),
ParamsFor<alias<bool>>(),
ParamsFor<alias<i32>>(),
ParamsFor<alias<u32>>(),
ParamsFor<alias<f32>>(),
ParamsFor<alias<f16>>(),
ParamsFor<alias<vec3<i32>>>(),
ParamsFor<alias<vec3<u32>>>(),
ParamsFor<alias<vec3<f32>>>(),
ParamsFor<alias<vec3<f16>>>(),
ParamsFor<alias<mat3x3<f32>>>(),
ParamsFor<alias<mat3x3<f16>>>(),
};
INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest,
InferTypeTest_FromCallExpression,
testing::ValuesIn(from_call_expression_cases));
} // namespace InferTypeTest
namespace ConversionConstructTest {
enum class Kind {
Construct,
Conversion,
};
struct Params {
Kind kind;
builder::ast_type_func_ptr lhs_type;
builder::ast_type_func_ptr rhs_type;
builder::ast_expr_func_ptr rhs_value_expr;
};
template <typename LhsType, typename RhsType>
constexpr Params ParamsFor(Kind kind) {
return Params{kind, DataType<LhsType>::AST, DataType<RhsType>::AST, DataType<RhsType>::Expr};
}
static constexpr Params valid_cases[] = {
// Identity
ParamsFor<bool, bool>(Kind::Construct), //
ParamsFor<i32, i32>(Kind::Construct), //
ParamsFor<u32, u32>(Kind::Construct), //
ParamsFor<f32, f32>(Kind::Construct), //
ParamsFor<f16, f16>(Kind::Construct), //
ParamsFor<vec3<bool>, vec3<bool>>(Kind::Construct), //
ParamsFor<vec3<i32>, vec3<i32>>(Kind::Construct), //
ParamsFor<vec3<u32>, vec3<u32>>(Kind::Construct), //
ParamsFor<vec3<f32>, vec3<f32>>(Kind::Construct), //
ParamsFor<vec3<f16>, vec3<f16>>(Kind::Construct), //
ParamsFor<mat3x3<f32>, mat3x3<f32>>(Kind::Construct), //
ParamsFor<mat2x3<f32>, mat2x3<f32>>(Kind::Construct), //
ParamsFor<mat3x2<f32>, mat3x2<f32>>(Kind::Construct), //
ParamsFor<mat3x3<f16>, mat3x3<f16>>(Kind::Construct), //
ParamsFor<mat2x3<f16>, mat2x3<f16>>(Kind::Construct), //
ParamsFor<mat3x2<f16>, mat3x2<f16>>(Kind::Construct), //
// Splat
ParamsFor<vec3<bool>, bool>(Kind::Construct), //
ParamsFor<vec3<i32>, i32>(Kind::Construct), //
ParamsFor<vec3<u32>, u32>(Kind::Construct), //
ParamsFor<vec3<f32>, f32>(Kind::Construct), //
ParamsFor<vec3<f16>, f16>(Kind::Construct), //
ParamsFor<mat3x3<f32>, f32>(Kind::Construct), //
ParamsFor<mat2x3<f32>, f32>(Kind::Construct), //
ParamsFor<mat3x2<f32>, f32>(Kind::Construct), //
// Conversion
ParamsFor<bool, u32>(Kind::Conversion), //
ParamsFor<bool, i32>(Kind::Conversion), //
ParamsFor<bool, f32>(Kind::Conversion), //
ParamsFor<bool, f16>(Kind::Conversion), //
ParamsFor<i32, bool>(Kind::Conversion), //
ParamsFor<i32, u32>(Kind::Conversion), //
ParamsFor<i32, f32>(Kind::Conversion), //
ParamsFor<i32, f16>(Kind::Conversion), //
ParamsFor<u32, bool>(Kind::Conversion), //
ParamsFor<u32, i32>(Kind::Conversion), //
ParamsFor<u32, f32>(Kind::Conversion), //
ParamsFor<u32, f16>(Kind::Conversion), //
ParamsFor<f32, bool>(Kind::Conversion), //
ParamsFor<f32, u32>(Kind::Conversion), //
ParamsFor<f32, i32>(Kind::Conversion), //
ParamsFor<f32, f16>(Kind::Conversion), //
ParamsFor<f16, bool>(Kind::Conversion), //
ParamsFor<f16, u32>(Kind::Conversion), //
ParamsFor<f16, i32>(Kind::Conversion), //
ParamsFor<f16, f32>(Kind::Conversion), //
ParamsFor<vec3<bool>, vec3<u32>>(Kind::Conversion), //
ParamsFor<vec3<bool>, vec3<i32>>(Kind::Conversion), //
ParamsFor<vec3<bool>, vec3<f32>>(Kind::Conversion), //
ParamsFor<vec3<bool>, vec3<f16>>(Kind::Conversion), //
ParamsFor<vec3<i32>, vec3<bool>>(Kind::Conversion), //
ParamsFor<vec3<i32>, vec3<u32>>(Kind::Conversion), //
ParamsFor<vec3<i32>, vec3<f32>>(Kind::Conversion), //
ParamsFor<vec3<i32>, vec3<f16>>(Kind::Conversion), //
ParamsFor<vec3<u32>, vec3<bool>>(Kind::Conversion), //
ParamsFor<vec3<u32>, vec3<i32>>(Kind::Conversion), //
ParamsFor<vec3<u32>, vec3<f32>>(Kind::Conversion), //
ParamsFor<vec3<u32>, vec3<f16>>(Kind::Conversion), //
ParamsFor<vec3<f32>, vec3<bool>>(Kind::Conversion), //
ParamsFor<vec3<f32>, vec3<u32>>(Kind::Conversion), //
ParamsFor<vec3<f32>, vec3<i32>>(Kind::Conversion), //
ParamsFor<vec3<f32>, vec3<f16>>(Kind::Conversion), //
ParamsFor<vec3<f16>, vec3<bool>>(Kind::Conversion), //
ParamsFor<vec3<f16>, vec3<u32>>(Kind::Conversion), //
ParamsFor<vec3<f16>, vec3<i32>>(Kind::Conversion), //
ParamsFor<vec3<f16>, vec3<f32>>(Kind::Conversion), //
ParamsFor<mat3x3<f16>, mat3x3<f32>>(Kind::Conversion), //
ParamsFor<mat2x3<f16>, mat2x3<f32>>(Kind::Conversion), //
ParamsFor<mat3x2<f16>, mat3x2<f32>>(Kind::Conversion), //
ParamsFor<mat3x3<f32>, mat3x3<f16>>(Kind::Conversion), //
ParamsFor<mat2x3<f32>, mat2x3<f16>>(Kind::Conversion), //
ParamsFor<mat3x2<f32>, mat3x2<f16>>(Kind::Conversion), //
};
using ConversionConstructorValidTest = ResolverTestWithParam<Params>;
TEST_P(ConversionConstructorValidTest, All) {
auto& params = GetParam();
Enable(ast::Extension::kF16);
// var a : <lhs_type1> = <lhs_type2>(<rhs_type>(<rhs_value_expr>));
auto* lhs_type1 = params.lhs_type(*this);
auto* lhs_type2 = params.lhs_type(*this);
auto* rhs_type = params.rhs_type(*this);
auto* rhs_value_expr = params.rhs_value_expr(*this, 0);
std::stringstream ss;
ss << FriendlyName(lhs_type1) << " = " << FriendlyName(lhs_type2) << "("
<< FriendlyName(rhs_type) << "(<rhs value expr>))";
SCOPED_TRACE(ss.str());
auto* arg = Construct(rhs_type, rhs_value_expr);
auto* tc = Construct(lhs_type2, arg);
auto* a = Var("a", lhs_type1, ast::StorageClass::kNone, tc);
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
switch (params.kind) {
case Kind::Construct: {
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_EQ(ctor->Parameters()[0]->Type(), TypeOf(arg));
break;
}
case Kind::Conversion: {
auto* conv = call->Target()->As<sem::TypeConversion>();
ASSERT_NE(conv, nullptr);
EXPECT_EQ(call->Type(), conv->ReturnType());
ASSERT_EQ(conv->Parameters().size(), 1u);
EXPECT_EQ(conv->Parameters()[0]->Type(), TypeOf(arg));
break;
}
}
}
INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest,
ConversionConstructorValidTest,
testing::ValuesIn(valid_cases));
constexpr CreatePtrs all_types[] = {
CreatePtrsFor<bool>(), //
CreatePtrsFor<u32>(), //
CreatePtrsFor<i32>(), //
CreatePtrsFor<f32>(), //
CreatePtrsFor<f16>(), //
CreatePtrsFor<vec3<bool>>(), //
CreatePtrsFor<vec3<i32>>(), //
CreatePtrsFor<vec3<u32>>(), //
CreatePtrsFor<vec3<f32>>(), //
CreatePtrsFor<vec3<f16>>(), //
CreatePtrsFor<mat3x3<i32>>(), //
CreatePtrsFor<mat3x3<u32>>(), //
CreatePtrsFor<mat3x3<f32>>(), //
CreatePtrsFor<mat3x3<f16>>(), //
CreatePtrsFor<mat2x3<i32>>(), //
CreatePtrsFor<mat2x3<u32>>(), //
CreatePtrsFor<mat2x3<f32>>(), //
CreatePtrsFor<mat2x3<f16>>(), //
CreatePtrsFor<mat3x2<i32>>(), //
CreatePtrsFor<mat3x2<u32>>(), //
CreatePtrsFor<mat3x2<f32>>(), //
CreatePtrsFor<mat3x2<f16>>(), //
};
using ConversionConstructorInvalidTest = ResolverTestWithParam<std::tuple<CreatePtrs, // lhs
CreatePtrs // rhs
>>;
TEST_P(ConversionConstructorInvalidTest, All) {
auto& params = GetParam();
auto& lhs_params = std::get<0>(params);
auto& rhs_params = std::get<1>(params);
// Skip test for valid cases
for (auto& v : valid_cases) {
if (v.lhs_type == lhs_params.ast && v.rhs_type == rhs_params.ast &&
v.rhs_value_expr == rhs_params.expr) {
return;
}
}
// Skip non-conversions
if (lhs_params.ast == rhs_params.ast) {
return;
}
// var a : <lhs_type1> = <lhs_type2>(<rhs_type>(<rhs_value_expr>));
auto* lhs_type1 = lhs_params.ast(*this);
auto* lhs_type2 = lhs_params.ast(*this);
auto* rhs_type = rhs_params.ast(*this);
auto* rhs_value_expr = rhs_params.expr(*this, 0);
std::stringstream ss;
ss << FriendlyName(lhs_type1) << " = " << FriendlyName(lhs_type2) << "("
<< FriendlyName(rhs_type) << "(<rhs value expr>))";
SCOPED_TRACE(ss.str());
Enable(ast::Extension::kF16);
auto* a = Var("a", lhs_type1, ast::StorageClass::kNone,
Construct(lhs_type2, Construct(rhs_type, rhs_value_expr)));
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_FALSE(r()->Resolve());
}
INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest,
ConversionConstructorInvalidTest,
testing::Combine(testing::ValuesIn(all_types),
testing::ValuesIn(all_types)));
TEST_F(ResolverTypeConstructorValidationTest, ConversionConstructorInvalid_TooManyInitializers) {
auto* a = Var("a", ty.f32(), ast::StorageClass::kNone,
Construct(Source{{12, 34}}, ty.f32(), Expr(1_f), Expr(2_f)));
WrapInFunction(a);
ASSERT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for f32(f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, ConversionConstructorInvalid_InvalidInitializer) {
auto* a = Var("a", ty.f32(), ast::StorageClass::kNone,
Construct(Source{{12, 34}}, ty.f32(), Construct(ty.array<f32, 4>())));
WrapInFunction(a);
ASSERT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for f32(array<f32, 4>)"));
}
} // namespace ConversionConstructTest
namespace ArrayConstructor {
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_ZeroValue_Pass) {
// array<u32, 10u>();
auto* tc = array<u32, 10>();
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<sem::Array>());
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 0u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_type_match) {
// array<u32, 3u>(0u, 10u. 20u);
auto* tc = array<u32, 3>(Expr(0_u), Expr(10_u), Expr(20_u));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<sem::Array>());
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::U32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::U32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_type_Mismatch_U32F32) {
// array<u32, 3u>(0u, 1.0f, 20u);
auto* tc = array<u32, 3>(Expr(0_u), Expr(Source{{12, 34}}, 1_f), Expr(20_u));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: "
"expected 'u32', found 'f32'");
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Array_ScalarArgumentTypeMismatch_F32I32) {
// array<f32, 1u>(1i);
auto* tc = array<f32, 1>(Expr(Source{{12, 34}}, 1_i));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: "
"expected 'f32', found 'i32'");
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Array_ScalarArgumentTypeMismatch_U32I32) {
// array<u32, 1u>(1i, 0u, 0u, 0u, 0u, 0u);
auto* tc =
array<u32, 1>(Expr(Source{{12, 34}}, 1_i), Expr(0_u), Expr(0_u), Expr(0_u), Expr(0_u));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: "
"expected 'u32', found 'i32'");
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Array_ScalarArgumentTypeMismatch_Vec2) {
// array<i32, 3u>(1i, vec2<i32>());
auto* tc = array<i32, 3>(Expr(1_i), Construct(Source{{12, 34}}, ty.vec2<i32>()));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: "
"expected 'i32', found 'vec2<i32>'");
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_ArrayOfVector_SubElemTypeMismatch_I32U32) {
// array<vec3<i32>, 2u>(vec3<i32>(), vec3<u32>());
auto* e0 = vec3<i32>();
SetSource(Source::Location({12, 34}));
auto* e1 = vec3<u32>();
auto* t = Construct(ty.array(ty.vec3<i32>(), 2_i), e0, e1);
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: "
"expected 'vec3<i32>', found 'vec3<u32>'");
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_ArrayOfVector_SubElemTypeMismatch_I32Bool) {
// array<vec3<i32>, 2u>(vec3<i32>(), vec3<bool>(true, true, false));
SetSource(Source::Location({12, 34}));
auto* e0 = vec3<bool>(true, true, false);
auto* e1 = vec3<i32>();
auto* t = Construct(ty.array(ty.vec3<i32>(), 2_i), e0, e1);
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: "
"expected 'vec3<i32>', found 'vec3<bool>'");
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_ArrayOfArray_SubElemSizeMismatch) {
// array<array<i32, 2u>, 2u>(array<i32, 3u>(), array<i32, 2u>());
SetSource(Source::Location({12, 34}));
auto* e0 = array<i32, 3>();
auto* e1 = array<i32, 2>();
auto* t = Construct(ty.array(ty.array<i32, 2>(), 2_i), e0, e1);
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: "
"expected 'array<i32, 2>', found 'array<i32, 3>'");
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_ArrayOfArray_SubElemTypeMismatch) {
// array<array<i32, 2u>, 2u>(array<i32, 2u>(), array<u32, 2u>());
auto* e0 = array<i32, 2>();
SetSource(Source::Location({12, 34}));
auto* e1 = array<u32, 2>();
auto* t = Construct(ty.array(ty.array<i32, 2>(), 2_i), e0, e1);
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: "
"expected 'array<i32, 2>', found 'array<u32, 2>'");
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_TooFewElements) {
// array<i32, 4u>(1i, 2i, 3i);
SetSource(Source::Location({12, 34}));
auto* tc = array<i32, 4>(Expr(1_i), Expr(2_i), Expr(3_i));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: array constructor has too few elements: expected 4, found 3");
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_TooManyElements) {
// array<i32, 4u>(1i, 2i, 3i, 4i, 5i);
SetSource(Source::Location({12, 34}));
auto* tc = array<i32, 4>(Expr(1_i), Expr(2_i), Expr(3_i), Expr(4_i), Expr(5_i));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: array constructor has too many "
"elements: expected 4, "
"found 5");
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_Runtime) {
// array<i32>(1i);
auto* tc = array(ty.i32(), nullptr, Expr(Source{{12, 34}}, 1_i));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "error: cannot init a runtime-sized array");
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_RuntimeZeroValue) {
// array<i32>();
auto* tc = array(ty.i32(), nullptr);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "error: cannot init a runtime-sized array");
}
} // namespace ArrayConstructor
namespace ScalarConstructor {
TEST_F(ResolverTypeConstructorValidationTest, Expr_Construct_i32_Success) {
auto* expr = Construct<i32>(Expr(123_i));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<sem::I32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::I32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Construct_u32_Success) {
auto* expr = Construct<u32>(Expr(123_u));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<sem::U32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Construct_f32_Success) {
auto* expr = Construct<f32>(Expr(1.23_f));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<sem::F32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Construct_f16_Success) {
Enable(ast::Extension::kF16);
auto* expr = Construct<f16>(Expr(1.5_h));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<sem::F16>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F16>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Convert_f32_to_i32_Success) {
auto* expr = Construct<i32>(1.23_f);
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<sem::I32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Convert_i32_to_u32_Success) {
auto* expr = Construct<u32>(123_i);
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<sem::U32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::I32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Convert_u32_to_f16_Success) {
Enable(ast::Extension::kF16);
auto* expr = Construct<f16>(123_u);
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<sem::F16>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Convert_f16_to_f32_Success) {
Enable(ast::Extension::kF16);
auto* expr = Construct<f32>(123_h);
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<sem::F32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F16>());
}
} // namespace ScalarConstructor
namespace VectorConstructor {
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec2F32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<f32>(), 1_i, 2_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(i32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec2F16_Error_ScalarArgumentTypeMismatch) {
Enable(ast::Extension::kF16);
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<f16>(), 1_h, 2_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f16>(f16, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec2U32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<u32>(), 1_u, 2_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<u32>(u32, i32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec2I32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<i32>(), 1_u, 2_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<i32>(u32, i32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec2Bool_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<bool>(), true, 1_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<bool>(bool, i32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec2_Error_Vec3ArgumentCardinalityTooLarge) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<f32>(), vec3<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(vec3<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec2_Error_Vec4ArgumentCardinalityTooLarge) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<f32>(), vec4<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(vec4<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2_Error_TooManyArgumentsScalar) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<f32>(), 1_f, 2_f, 3_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(f32, f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2_Error_TooManyArgumentsVector) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<f32>(), vec2<f32>(), vec2<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(vec2<f32>, vec2<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec2_Error_TooManyArgumentsVectorAndScalar) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<f32>(), vec2<f32>(), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(vec2<f32>, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2_Error_InvalidArgumentType) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec2<f32>(), mat2x2<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(mat2x2<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2_Success_ZeroValue) {
auto* tc = vec2<f32>();
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 0u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2F32_Success_Scalar) {
auto* tc = vec2<f32>(1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::F32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2F16_Success_Scalar) {
Enable(ast::Extension::kF16);
auto* tc = vec2<f16>(1_h, 1_h);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F16>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::F16>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2U32_Success_Scalar) {
auto* tc = vec2<u32>(1_u, 1_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::U32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2I32_Success_Scalar) {
auto* tc = vec2<i32>(1_i, 1_i);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::I32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::I32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2Bool_Success_Scalar) {
auto* tc = vec2<bool>(true, false);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Bool>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::Bool>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2_Success_Identity) {
auto* tc = vec2<f32>(vec2<f32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec2_Success_Vec2TypeConversion) {
auto* tc = vec2<f32>(vec2<i32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>());
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec3F32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f32>(), 1_f, 2_f, 3_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(f32, f32, i32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec3F16_Error_ScalarArgumentTypeMismatch) {
Enable(ast::Extension::kF16);
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f16>(), 1_h, 2_h, 3_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f16>(f16, f16, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec3U32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<u32>(), 1_u, 2_i, 3_u));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<u32>(u32, i32, u32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec3I32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<i32>(), 1_i, 2_u, 3_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<i32>(i32, u32, i32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec3Bool_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<bool>(), false, 1_i, true));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<bool>(bool, i32, bool)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec3_Error_Vec4ArgumentCardinalityTooLarge) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f32>(), vec4<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec4<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Error_TooFewArgumentsScalar) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f32>(), 1_f, 2_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Error_TooManyArgumentsScalar) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f32>(), 1_f, 2_f, 3_f, 4_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(f32, f32, f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Error_TooFewArgumentsVec2) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f32>(), vec2<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec2<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Error_TooManyArgumentsVec2) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f32>(), vec2<f32>(), vec2<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec2<f32>, vec2<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec3_Error_TooManyArgumentsVec2AndScalar) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f32>(), vec2<f32>(), 1_f, 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec2<f32>, f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Error_TooManyArgumentsVec3) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f32>(), vec3<f32>(), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec3<f32>, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Error_InvalidArgumentType) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<f32>(), mat2x2<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(mat2x2<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Success_ZeroValue) {
auto* tc = vec3<f32>();
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 0u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3F32_Success_Scalar) {
auto* tc = vec3<f32>(1_f, 1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::F32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::F32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3F16_Success_Scalar) {
Enable(ast::Extension::kF16);
auto* tc = vec3<f16>(1_h, 1_h, 1_h);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F16>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::F16>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::F16>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3U32_Success_Scalar) {
auto* tc = vec3<u32>(1_u, 1_u, 1_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::U32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::U32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3I32_Success_Scalar) {
auto* tc = vec3<i32>(1_i, 1_i, 1_i);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::I32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::I32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::I32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3Bool_Success_Scalar) {
auto* tc = vec3<bool>(true, false, true);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Bool>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::Bool>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::Bool>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Success_Vec2AndScalar) {
auto* tc = vec3<f32>(vec2<f32>(), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::F32>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Success_ScalarAndVec2) {
auto* tc = vec3<f32>(1_f, vec2<f32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::Vector>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Success_Identity) {
auto* tc = vec3<f32>(vec3<f32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>());
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec3_Success_Vec3TypeConversion) {
auto* tc = vec3<f32>(vec3<i32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::TypeConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().size(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>());
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4F32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), 1_f, 1_f, 1_i, 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(f32, f32, i32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4F16_Error_ScalarArgumentTypeMismatch) {
Enable(ast::Extension::kF16);
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f16>(), 1_h, 1_h, 1_f, 1_h));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f16>(f16, f16, f32, f16)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4U32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<u32>(), 1_u, 1_u, 1_i, 1_u));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<u32>(u32, u32, i32, u32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4I32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<i32>(), 1_i, 1_i, 1_u, 1_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<i32>(i32, i32, u32, i32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4Bool_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<bool>(), true, false, 1_i, true));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<bool>(bool, bool, i32, bool)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Error_TooFewArgumentsScalar) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), 1_f, 2_f, 3_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(f32, f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Error_TooManyArgumentsScalar) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), 1_f, 2_f, 3_f, 4_f, 5_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(f32, f32, f32, f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4_Error_TooFewArgumentsVec2AndScalar) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), vec2<f32>(), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec2<f32>, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4_Error_TooManyArgumentsVec2AndScalars) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), vec2<f32>(), 1_f, 2_f, 3_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec2<f32>, f32, f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4_Error_TooManyArgumentsVec2Vec2Scalar) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), vec2<f32>(), vec2<f32>(), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec2<f32>, vec2<f32>, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4_Error_TooManyArgumentsVec2Vec2Vec2) {
WrapInFunction(
Construct(Source{{12, 34}}, ty.vec4<f32>(), vec2<f32>(), vec2<f32>(), vec2<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr(
"12:34 error: no matching constructor for vec4<f32>(vec2<f32>, vec2<f32>, vec2<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Error_TooFewArgumentsVec3) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), vec3<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec3<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4_Error_TooManyArgumentsVec3AndScalars) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), vec3<f32>(), 1_f, 2_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec3<f32>, f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4_Error_TooManyArgumentsVec3AndVec2) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), vec3<f32>(), vec2<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec3<f32>, vec2<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4_Error_TooManyArgumentsVec2AndVec3) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), vec2<f32>(), vec3<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec2<f32>, vec3<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vec4_Error_TooManyArgumentsVec3AndVec3) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), vec3<f32>(), vec3<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec3<f32>, vec3<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Error_InvalidArgumentType) {
WrapInFunction(Construct(Source{{12, 34}}, ty.vec4<f32>(), mat2x2<f32>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(mat2x2<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Success_ZeroValue) {
auto* tc = vec4<f32>();
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4F32_Success_Scalar) {
auto* tc = vec4<f32>(1_f, 1_f, 1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4F16_Success_Scalar) {
Enable(ast::Extension::kF16);
auto* tc = vec4<f16>(1_h, 1_h, 1_h, 1_h);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4U32_Success_Scalar) {
auto* tc = vec4<u32>(1_u, 1_u, 1_u, 1_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4I32_Success_Scalar) {
auto* tc = vec4<i32>(1_i, 1_i, 1_i, 1_i);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4Bool_Success_Scalar) {
auto* tc = vec4<bool>(true, false, true, false);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Success_Vec2ScalarScalar) {
auto* tc = vec4<f32>(vec2<f32>(), 1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Success_ScalarVec2Scalar) {
auto* tc = vec4<f32>(1_f, vec2<f32>(), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Success_ScalarScalarVec2) {
auto* tc = vec4<f32>(1_f, 1_f, vec2<f32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Success_Vec2AndVec2) {
auto* tc = vec4<f32>(vec2<f32>(), vec2<f32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Success_Vec3AndScalar) {
auto* tc = vec4<f32>(vec3<f32>(), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Success_ScalarAndVec3) {
auto* tc = vec4<f32>(1_f, vec3<f32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Success_Identity) {
auto* tc = vec4<f32>(vec4<f32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vec4_Success_Vec4TypeConversion) {
auto* tc = vec4<f32>(vec4<i32>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_NestedVectorConstructors_InnerError) {
WrapInFunction(vec4<f32>(vec4<f32>(1_f, 1_f, //
Construct(Source{{12, 34}}, ty.vec3<f32>(), 1_f, 1_f)),
1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(f32, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_NestedVectorConstructors_Success) {
auto* tc = vec4<f32>(vec3<f32>(vec2<f32>(1_f, 1_f), 1_f), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vector_Alias_Argument_Error) {
auto* alias = Alias("UnsignedInt", ty.u32());
GlobalVar("uint_var", ty.Of(alias), ast::StorageClass::kPrivate);
auto* tc = Construct(Source{{12, 34}}, ty.vec2<f32>(), "uint_var");
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2<f32>(u32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vector_Alias_Argument_Success) {
auto* f32_alias = Alias("Float32", ty.f32());
auto* vec2_alias = Alias("VectorFloat2", ty.vec2<f32>());
GlobalVar("my_f32", ty.Of(f32_alias), ast::StorageClass::kPrivate);
GlobalVar("my_vec2", ty.Of(vec2_alias), ast::StorageClass::kPrivate);
auto* tc = vec3<f32>("my_vec2", "my_f32");
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vector_ElementTypeAlias_Error) {
auto* f32_alias = Alias("Float32", ty.f32());
// vec2<Float32>(1.0f, 1u)
auto* vec_type = ty.vec(ty.Of(f32_alias), 2);
WrapInFunction(Construct(Source{{12, 34}}, vec_type, 1_f, 1_u));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(f32, u32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Vector_ElementTypeAlias_Success) {
auto* f32_alias = Alias("Float32", ty.f32());
// vec2<Float32>(1.0f, 1.0f)
auto* vec_type = ty.vec(ty.Of(f32_alias), 2);
auto* tc = Construct(Source{{12, 34}}, vec_type, 1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vector_ArgumentElementTypeAlias_Error) {
auto* f32_alias = Alias("Float32", ty.f32());
// vec3<u32>(vec<Float32>(), 1.0f)
auto* vec_type = ty.vec(ty.Of(f32_alias), 2);
WrapInFunction(Construct(Source{{12, 34}}, ty.vec3<u32>(), Construct(vec_type), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<u32>(vec2<f32>, f32)"));
}
TEST_F(ResolverTypeConstructorValidationTest,
Expr_Constructor_Vector_ArgumentElementTypeAlias_Success) {
auto* f32_alias = Alias("Float32", ty.f32());
// vec3<f32>(vec<Float32>(), 1.0f)
auto* vec_type = ty.vec(ty.Of(f32_alias), 2);
auto* tc = vec3<f32>(Construct(Source{{12, 34}}, vec_type), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTypeConstructorValidationTest, InferVec2ElementTypeFromScalars) {
Enable(ast::Extension::kF16);
auto* vec2_bool = Construct(create<ast::Vector>(nullptr, 2u), Expr(true), Expr(false));
auto* vec2_i32 = Construct(create<ast::Vector>(nullptr, 2u), Expr(1_i), Expr(2_i));
auto* vec2_u32 = Construct(create<ast::Vector>(nullptr, 2u), Expr(1_u), Expr(2_u));
auto* vec2_f32 = Construct(create<ast::Vector>(nullptr, 2u), Expr(1_f), Expr(2_f));
auto* vec2_f16 = Construct(create<ast::Vector>(nullptr, 2u), Expr(1_h), Expr(2_h));
WrapInFunction(vec2_bool, vec2_i32, vec2_u32, vec2_f32, vec2_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec2_bool)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec2_i32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec2_u32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec2_f32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec2_f16)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(vec2_bool)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(vec2_i32)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_TRUE(TypeOf(vec2_u32)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_TRUE(TypeOf(vec2_f32)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(vec2_f16)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(vec2_bool)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_i32)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_u32)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_f32)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_f16)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_bool), TypeOf(vec2_bool->target.type));
EXPECT_EQ(TypeOf(vec2_i32), TypeOf(vec2_i32->target.type));
EXPECT_EQ(TypeOf(vec2_u32), TypeOf(vec2_u32->target.type));
EXPECT_EQ(TypeOf(vec2_f32), TypeOf(vec2_f32->target.type));
EXPECT_EQ(TypeOf(vec2_f16), TypeOf(vec2_f16->target.type));
}
TEST_F(ResolverTypeConstructorValidationTest, InferVec2ElementTypeFromVec2) {
Enable(ast::Extension::kF16);
auto* vec2_bool = Construct(create<ast::Vector>(nullptr, 2u), vec2<bool>(true, false));
auto* vec2_i32 = Construct(create<ast::Vector>(nullptr, 2u), vec2<i32>(1_i, 2_i));
auto* vec2_u32 = Construct(create<ast::Vector>(nullptr, 2u), vec2<u32>(1_u, 2_u));
auto* vec2_f32 = Construct(create<ast::Vector>(nullptr, 2u), vec2<f32>(1_f, 2_f));
auto* vec2_f16 = Construct(create<ast::Vector>(nullptr, 2u), vec2<f16>(1_h, 2_h));
WrapInFunction(vec2_bool, vec2_i32, vec2_u32, vec2_f32, vec2_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec2_bool)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec2_i32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec2_u32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec2_f32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec2_f16)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(vec2_bool)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(vec2_i32)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_TRUE(TypeOf(vec2_u32)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_TRUE(TypeOf(vec2_f32)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(vec2_f16)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(vec2_bool)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_i32)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_u32)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_f32)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_f16)->As<sem::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_bool), TypeOf(vec2_bool->target.type));
EXPECT_EQ(TypeOf(vec2_i32), TypeOf(vec2_i32->target.type));
EXPECT_EQ(TypeOf(vec2_u32), TypeOf(vec2_u32->target.type));
EXPECT_EQ(TypeOf(vec2_f32), TypeOf(vec2_f32->target.type));
EXPECT_EQ(TypeOf(vec2_f16), TypeOf(vec2_f16->target.type));
}
TEST_F(ResolverTypeConstructorValidationTest, InferVec3ElementTypeFromScalars) {
Enable(ast::Extension::kF16);
auto* vec3_bool =
Construct(create<ast::Vector>(nullptr, 3u), Expr(true), Expr(false), Expr(true));
auto* vec3_i32 = Construct(create<ast::Vector>(nullptr, 3u), Expr(1_i), Expr(2_i), Expr(3_i));
auto* vec3_u32 = Construct(create<ast::Vector>(nullptr, 3u), Expr(1_u), Expr(2_u), Expr(3_u));
auto* vec3_f32 = Construct(create<ast::Vector>(nullptr, 3u), Expr(1_f), Expr(2_f), Expr(3_f));
auto* vec3_f16 = Construct(create<ast::Vector>(nullptr, 3u), Expr(1_h), Expr(2_h), Expr(3_h));
WrapInFunction(vec3_bool, vec3_i32, vec3_u32, vec3_f32, vec3_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec3_bool)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_i32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_u32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_f32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_f16)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(vec3_bool)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(vec3_i32)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_TRUE(TypeOf(vec3_u32)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_TRUE(TypeOf(vec3_f32)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(vec3_f16)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(vec3_bool)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_i32)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_u32)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f32)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f16)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_bool), TypeOf(vec3_bool->target.type));
EXPECT_EQ(TypeOf(vec3_i32), TypeOf(vec3_i32->target.type));
EXPECT_EQ(TypeOf(vec3_u32), TypeOf(vec3_u32->target.type));
EXPECT_EQ(TypeOf(vec3_f32), TypeOf(vec3_f32->target.type));
EXPECT_EQ(TypeOf(vec3_f16), TypeOf(vec3_f16->target.type));
}
TEST_F(ResolverTypeConstructorValidationTest, InferVec3ElementTypeFromVec3) {
Enable(ast::Extension::kF16);
auto* vec3_bool = Construct(create<ast::Vector>(nullptr, 3u), vec3<bool>(true, false, true));
auto* vec3_i32 = Construct(create<ast::Vector>(nullptr, 3u), vec3<i32>(1_i, 2_i, 3_i));
auto* vec3_u32 = Construct(create<ast::Vector>(nullptr, 3u), vec3<u32>(1_u, 2_u, 3_u));
auto* vec3_f32 = Construct(create<ast::Vector>(nullptr, 3u), vec3<f32>(1_f, 2_f, 3_f));
auto* vec3_f16 = Construct(create<ast::Vector>(nullptr, 3u), vec3<f16>(1_h, 2_h, 3_h));
WrapInFunction(vec3_bool, vec3_i32, vec3_u32, vec3_f32, vec3_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec3_bool)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_i32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_u32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_f32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_f16)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(vec3_bool)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(vec3_i32)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_TRUE(TypeOf(vec3_u32)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_TRUE(TypeOf(vec3_f32)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(vec3_f16)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(vec3_bool)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_i32)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_u32)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f32)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f16)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_bool), TypeOf(vec3_bool->target.type));
EXPECT_EQ(TypeOf(vec3_i32), TypeOf(vec3_i32->target.type));
EXPECT_EQ(TypeOf(vec3_u32), TypeOf(vec3_u32->target.type));
EXPECT_EQ(TypeOf(vec3_f32), TypeOf(vec3_f32->target.type));
EXPECT_EQ(TypeOf(vec3_f16), TypeOf(vec3_f16->target.type));
}
TEST_F(ResolverTypeConstructorValidationTest, InferVec3ElementTypeFromScalarAndVec2) {
Enable(ast::Extension::kF16);
auto* vec3_bool =
Construct(create<ast::Vector>(nullptr, 3u), Expr(true), vec2<bool>(false, true));
auto* vec3_i32 = Construct(create<ast::Vector>(nullptr, 3u), Expr(1_i), vec2<i32>(2_i, 3_i));
auto* vec3_u32 = Construct(create<ast::Vector>(nullptr, 3u), Expr(1_u), vec2<u32>(2_u, 3_u));
auto* vec3_f32 = Construct(create<ast::Vector>(nullptr, 3u), Expr(1_f), vec2<f32>(2_f, 3_f));
auto* vec3_f16 = Construct(create<ast::Vector>(nullptr, 3u), Expr(1_h), vec2<f16>(2_h, 3_h));
WrapInFunction(vec3_bool, vec3_i32, vec3_u32, vec3_f32, vec3_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec3_bool)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_i32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_u32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_f32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec3_f16)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(vec3_bool)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(vec3_i32)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_TRUE(TypeOf(vec3_u32)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_TRUE(TypeOf(vec3_f32)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(vec3_f16)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(vec3_bool)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_i32)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_u32)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f32)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f16)->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_bool), TypeOf(vec3_bool->target.type));
EXPECT_EQ(TypeOf(vec3_i32), TypeOf(vec3_i32->target.type));
EXPECT_EQ(TypeOf(vec3_u32), TypeOf(vec3_u32->target.type));
EXPECT_EQ(TypeOf(vec3_f32), TypeOf(vec3_f32->target.type));
EXPECT_EQ(TypeOf(vec3_f16), TypeOf(vec3_f16->target.type));
}
TEST_F(ResolverTypeConstructorValidationTest, InferVec4ElementTypeFromScalars) {
Enable(ast::Extension::kF16);
auto* vec4_bool = Construct(create<ast::Vector>(nullptr, 4u), Expr(true), Expr(false),
Expr(true), Expr(false));
auto* vec4_i32 =
Construct(create<ast::Vector>(nullptr, 4u), Expr(1_i), Expr(2_i), Expr(3_i), Expr(4_i));
auto* vec4_u32 =
Construct(create<ast::Vector>(nullptr, 4u), Expr(1_u), Expr(2_u), Expr(3_u), Expr(4_u));
auto* vec4_f32 =
Construct(create<ast::Vector>(nullptr, 4u), Expr(1_f), Expr(2_f), Expr(3_f), Expr(4_f));
auto* vec4_f16 =
Construct(create<ast::Vector>(nullptr, 4u), Expr(1_h), Expr(2_h), Expr(3_h), Expr(4_h));
WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec4_bool)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_i32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_u32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_f32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_f16)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(vec4_bool)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(vec4_i32)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_TRUE(TypeOf(vec4_u32)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_TRUE(TypeOf(vec4_f32)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(vec4_f16)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(vec4_bool)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_i32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_u32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f16)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_bool), TypeOf(vec4_bool->target.type));
EXPECT_EQ(TypeOf(vec4_i32), TypeOf(vec4_i32->target.type));
EXPECT_EQ(TypeOf(vec4_u32), TypeOf(vec4_u32->target.type));
EXPECT_EQ(TypeOf(vec4_f32), TypeOf(vec4_f32->target.type));
EXPECT_EQ(TypeOf(vec4_f16), TypeOf(vec4_f16->target.type));
}
TEST_F(ResolverTypeConstructorValidationTest, InferVec4ElementTypeFromVec4) {
Enable(ast::Extension::kF16);
auto* vec4_bool =
Construct(create<ast::Vector>(nullptr, 4u), vec4<bool>(true, false, true, false));
auto* vec4_i32 = Construct(create<ast::Vector>(nullptr, 4u), vec4<i32>(1_i, 2_i, 3_i, 4_i));
auto* vec4_u32 = Construct(create<ast::Vector>(nullptr, 4u), vec4<u32>(1_u, 2_u, 3_u, 4_u));
auto* vec4_f32 = Construct(create<ast::Vector>(nullptr, 4u), vec4<f32>(1_f, 2_f, 3_f, 4_f));
auto* vec4_f16 = Construct(create<ast::Vector>(nullptr, 4u), vec4<f16>(1_h, 2_h, 3_h, 4_h));
WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec4_bool)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_i32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_u32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_f32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_f16)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(vec4_bool)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(vec4_i32)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_TRUE(TypeOf(vec4_u32)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_TRUE(TypeOf(vec4_f32)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(vec4_f16)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(vec4_bool)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_i32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_u32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f16)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_bool), TypeOf(vec4_bool->target.type));
EXPECT_EQ(TypeOf(vec4_i32), TypeOf(vec4_i32->target.type));
EXPECT_EQ(TypeOf(vec4_u32), TypeOf(vec4_u32->target.type));
EXPECT_EQ(TypeOf(vec4_f32), TypeOf(vec4_f32->target.type));
EXPECT_EQ(TypeOf(vec4_f16), TypeOf(vec4_f16->target.type));
}
TEST_F(ResolverTypeConstructorValidationTest, InferVec4ElementTypeFromScalarAndVec3) {
Enable(ast::Extension::kF16);
auto* vec4_bool =
Construct(create<ast::Vector>(nullptr, 4u), Expr(true), vec3<bool>(false, true, false));
auto* vec4_i32 =
Construct(create<ast::Vector>(nullptr, 4u), Expr(1_i), vec3<i32>(2_i, 3_i, 4_i));
auto* vec4_u32 =
Construct(create<ast::Vector>(nullptr, 4u), Expr(1_u), vec3<u32>(2_u, 3_u, 4_u));
auto* vec4_f32 =
Construct(create<ast::Vector>(nullptr, 4u), Expr(1_f), vec3<f32>(2_f, 3_f, 4_f));
auto* vec4_f16 =
Construct(create<ast::Vector>(nullptr, 4u), Expr(1_h), vec3<f16>(2_h, 3_h, 4_h));
WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec4_bool)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_i32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_u32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_f32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_f16)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(vec4_bool)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(vec4_i32)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_TRUE(TypeOf(vec4_u32)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_TRUE(TypeOf(vec4_f32)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(vec4_f16)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(vec4_bool)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_i32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_u32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f16)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_bool), TypeOf(vec4_bool->target.type));
EXPECT_EQ(TypeOf(vec4_i32), TypeOf(vec4_i32->target.type));
EXPECT_EQ(TypeOf(vec4_u32), TypeOf(vec4_u32->target.type));
EXPECT_EQ(TypeOf(vec4_f32), TypeOf(vec4_f32->target.type));
EXPECT_EQ(TypeOf(vec4_f16), TypeOf(vec4_f16->target.type));
}
TEST_F(ResolverTypeConstructorValidationTest, InferVec4ElementTypeFromVec2AndVec2) {
Enable(ast::Extension::kF16);
auto* vec4_bool = Construct(create<ast::Vector>(nullptr, 4u), vec2<bool>(true, false),
vec2<bool>(true, false));
auto* vec4_i32 =
Construct(create<ast::Vector>(nullptr, 4u), vec2<i32>(1_i, 2_i), vec2<i32>(3_i, 4_i));
auto* vec4_u32 =
Construct(create<ast::Vector>(nullptr, 4u), vec2<u32>(1_u, 2_u), vec2<u32>(3_u, 4_u));
auto* vec4_f32 =
Construct(create<ast::Vector>(nullptr, 4u), vec2<f32>(1_f, 2_f), vec2<f32>(3_f, 4_f));
auto* vec4_f16 =
Construct(create<ast::Vector>(nullptr, 4u), vec2<f16>(1_h, 2_h), vec2<f16>(3_h, 4_h));
WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec4_bool)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_i32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_u32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_f32)->Is<sem::Vector>());
ASSERT_TRUE(TypeOf(vec4_f16)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(vec4_bool)->As<sem::Vector>()->type()->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(vec4_i32)->As<sem::Vector>()->type()->Is<sem::I32>());
EXPECT_TRUE(TypeOf(vec4_u32)->As<sem::Vector>()->type()->Is<sem::U32>());
EXPECT_TRUE(TypeOf(vec4_f32)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(vec4_f16)->As<sem::Vector>()->type()->Is<sem::F16>());
EXPECT_EQ(TypeOf(vec4_bool)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_i32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_u32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f32)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f16)->As<sem::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_bool), TypeOf(vec4_bool->target.type));
EXPECT_EQ(TypeOf(vec4_i32), TypeOf(vec4_i32->target.type));
EXPECT_EQ(TypeOf(vec4_u32), TypeOf(vec4_u32->target.type));
EXPECT_EQ(TypeOf(vec4_f32), TypeOf(vec4_f32->target.type));
EXPECT_EQ(TypeOf(vec4_f16), TypeOf(vec4_f16->target.type));
}
TEST_F(ResolverTypeConstructorValidationTest, CannotInferVectorElementTypeWithoutArgs) {
WrapInFunction(Construct(Source{{12, 34}}, create<ast::Vector>(nullptr, 3u)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3()"));
}
TEST_F(ResolverTypeConstructorValidationTest, CannotInferVec2ElementTypeFromScalarsMismatch) {
WrapInFunction(Construct(Source{{1, 1}}, create<ast::Vector>(nullptr, 2u),
Expr(Source{{1, 2}}, 1_i), //
Expr(Source{{1, 3}}, 2_u)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("1:1 error: no matching constructor for vec2(i32, u32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, CannotInferVec3ElementTypeFromScalarsMismatch) {
WrapInFunction(Construct(Source{{1, 1}}, create<ast::Vector>(nullptr, 3u),
Expr(Source{{1, 2}}, 1_i), //
Expr(Source{{1, 3}}, 2_u), //
Expr(Source{{1, 4}}, 3_i)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec3(i32, u32, i32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, CannotInferVec3ElementTypeFromScalarAndVec2Mismatch) {
WrapInFunction(Construct(Source{{1, 1}}, create<ast::Vector>(nullptr, 3u),
Expr(Source{{1, 2}}, 1_i), //
Construct(Source{{1, 3}}, ty.vec2<f32>(), 2_f, 3_f)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec3(i32, vec2<f32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, CannotInferVec4ElementTypeFromScalarsMismatch) {
WrapInFunction(Construct(Source{{1, 1}}, create<ast::Vector>(nullptr, 4u),
Expr(Source{{1, 2}}, 1_i), //
Expr(Source{{1, 3}}, 2_i), //
Expr(Source{{1, 4}}, 3_f), //
Expr(Source{{1, 5}}, 4_i)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec4(i32, i32, f32, i32)"));
}
TEST_F(ResolverTypeConstructorValidationTest, CannotInferVec4ElementTypeFromScalarAndVec3Mismatch) {
WrapInFunction(Construct(Source{{1, 1}}, create<ast::Vector>(nullptr, 4u),
Expr(Source{{1, 2}}, 1_i), //
Construct(Source{{1, 3}}, ty.vec3<u32>(), 2_u, 3_u, 4_u)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec4(i32, vec3<u32>)"));
}
TEST_F(ResolverTypeConstructorValidationTest, CannotInferVec4ElementTypeFromVec2AndVec2Mismatch) {
WrapInFunction(Construct(Source{{1, 1}}, create<ast::Vector>(nullptr, 4u),
Construct(Source{{1, 2}}, ty.vec2<i32>(), 3_i, 4_i), //
Construct(Source{{1, 3}}, ty.vec2<u32>(), 3_u, 4_u)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec4(vec2<i32>, vec2<u32>)"));
}
} // namespace VectorConstructor
namespace MatrixConstructor {
struct MatrixParams {
using name_func_ptr = std::string (*)();
uint32_t rows;
uint32_t columns;
name_func_ptr get_element_type_name;
builder::ast_type_func_ptr create_element_ast_type;
builder::ast_expr_func_ptr create_element_ast_value;
builder::ast_type_func_ptr create_column_ast_type;
builder::ast_type_func_ptr create_mat_ast_type;
};
template <typename T, uint32_t R, uint32_t C>
constexpr MatrixParams MatrixParamsFor() {
return MatrixParams{
R,
C,
DataType<T>::Name,
DataType<T>::AST,
DataType<T>::Expr,
DataType<tint::resolver::builder::vec<R, T>>::AST,
DataType<tint::resolver::builder::mat<C, R, T>>::AST,
};
}
static std::string MatrixStr(const MatrixParams& param) {
return "mat" + std::to_string(param.columns) + "x" + std::to_string(param.rows) + "<" +
param.get_element_type_name() + ">";
}
using MatrixConstructorTest = ResolverTestWithParam<MatrixParams>;
TEST_P(MatrixConstructorTest, Expr_ColumnConstructor_Error_TooFewArguments) {
// matNxM<f32>(vecM<f32>(), ...); with N - 1 arguments
// matNxM<f16>(vecM<f16>(), ...); with N - 1 arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns - 1; i++) {
auto* vec_type = param.create_column_ast_type(*this);
args.push_back(Construct(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<" + element_type_name + ">";
}
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_ElementConstructor_Error_TooFewArguments) {
// matNxM<f32>(f32,...,f32); with N*M - 1 arguments
// matNxM<f16>(f16,...,f16); with N*M - 1 arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns * param.rows - 1; i++) {
args.push_back(Construct(param.create_element_ast_type(*this)));
if (i > 0) {
args_tys << ", ";
}
args_tys << element_type_name;
}
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_ColumnConstructor_Error_TooManyArguments) {
// matNxM<f32>(vecM<f32>(), ...); with N + 1 arguments
// matNxM<f16>(vecM<f16>(), ...); with N + 1 arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns + 1; i++) {
auto* vec_type = param.create_column_ast_type(*this);
args.push_back(Construct(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<" + element_type_name + ">";
}
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_ElementConstructor_Error_TooManyArguments) {
// matNxM<f32>(f32,...,f32); with N*M + 1 arguments
// matNxM<f16>(f16,...,f16); with N*M + 1 arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns * param.rows + 1; i++) {
args.push_back(Construct(param.create_element_ast_type(*this)));
if (i > 0) {
args_tys << ", ";
}
args_tys << element_type_name;
}
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_ColumnConstructor_Error_InvalidArgumentType) {
// matNxM<f32>(vec<u32>, vec<u32>, ...); N arguments
// matNxM<f16>(vec<u32>, vec<u32>, ...); N arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
auto* vec_type = ty.vec<u32>(param.rows);
args.push_back(Construct(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<u32>";
}
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_ElementConstructor_Error_InvalidArgumentType) {
// matNxM<f32>(u32, u32, ...); N*M arguments
// matNxM<f16>(u32, u32, ...); N*M arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
args.push_back(Expr(1_u));
if (i > 0) {
args_tys << ", ";
}
args_tys << "u32";
}
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_ColumnConstructor_Error_TooFewRowsInVectorArgument) {
// matNxM<f32>(vecM<f32>(),...,vecM-1<f32>());
// matNxM<f16>(vecM<f16>(),...,vecM-1<f32>());
const auto param = GetParam();
// Skip the test if parameters would have resulted in an invalid vec1 type.
if (param.rows == 2) {
return;
}
Enable(ast::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
auto* valid_vec_type = param.create_column_ast_type(*this);
args.push_back(Construct(valid_vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<" + element_type_name + ">";
}
const size_t kInvalidLoc = 2 * (param.columns - 1);
auto* invalid_vec_type = ty.vec(param.create_element_ast_type(*this), param.rows - 1);
args.push_back(Construct(Source{{12, kInvalidLoc}}, invalid_vec_type));
args_tys << ", vec" << (param.rows - 1) << "<" + element_type_name + ">";
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_ColumnConstructor_Error_TooManyRowsInVectorArgument) {
// matNxM<f32>(vecM<f32>(),...,vecM+1<f32>());
// matNxM<f16>(vecM<f16>(),...,vecM+1<f16>());
const auto param = GetParam();
// Skip the test if parameters would have resulted in an invalid vec5 type.
if (param.rows == 4) {
return;
}
Enable(ast::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
auto* valid_vec_type = param.create_column_ast_type(*this);
args.push_back(Construct(valid_vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<" + element_type_name + ">";
}
auto* invalid_vec_type = ty.vec(param.create_element_ast_type(*this), param.rows + 1);
args.push_back(Construct(invalid_vec_type));
args_tys << ", vec" << (param.rows + 1) << "<" + element_type_name + ">";
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_Constructor_ZeroValue_Success) {
// matNxM<f32>();
// matNxM<f16>();
const auto param = GetParam();
Enable(ast::Extension::kF16);
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{{12, 40}}, matrix_type);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, Expr_Constructor_WithColumns_Success) {
// matNxM<f32>(vecM<f32>(), ...); with N arguments
// matNxM<f16>(vecM<f16>(), ...); with N arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
auto* vec_type = param.create_column_ast_type(*this);
args.push_back(Construct(vec_type));
}
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, Expr_Constructor_WithElements_Success) {
// matNxM<f32>(f32,...,f32); with N*M arguments
// matNxM<f16>(f16,...,f16); with N*M arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns * param.rows; i++) {
args.push_back(Construct(param.create_element_ast_type(*this)));
}
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, Expr_Constructor_ElementTypeAlias_Error) {
// matNxM<Float32>(vecM<u32>(), ...); with N arguments
// matNxM<Float16>(vecM<u32>(), ...); with N arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
auto* elem_type_alias = Alias("ElemType", param.create_element_ast_type(*this));
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
auto* vec_type = ty.vec(ty.u32(), param.rows);
args.push_back(Construct(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<u32>";
}
auto* matrix_type = ty.mat(ty.Of(elem_type_alias), param.columns, param.rows);
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_Constructor_ElementTypeAlias_Success) {
// matNxM<Float32>(vecM<f32>(), ...); with N arguments
// matNxM<Float16>(vecM<f16>(), ...); with N arguments
const auto param = GetParam();
Enable(ast::Extension::kF16);
auto* elem_type_alias = Alias("ElemType", param.create_element_ast_type(*this));
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
auto* vec_type = param.create_column_ast_type(*this);
args.push_back(Construct(vec_type));
}
auto* matrix_type = ty.mat(ty.Of(elem_type_alias), param.columns, param.rows);
auto* tc = Construct(Source{}, matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_MatrixConstructor_ArgumentTypeAlias_Error) {
auto* alias = Alias("VectorUnsigned2", ty.vec2<u32>());
auto* tc = Construct(Source{{12, 34}}, ty.mat2x2<f32>(), Construct(ty.Of(alias)), vec2<f32>());
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for mat2x2<f32>(vec2<u32>, vec2<f32>)"));
}
TEST_P(MatrixConstructorTest, Expr_Constructor_ArgumentTypeAlias_Success) {
const auto param = GetParam();
Enable(ast::Extension::kF16);
auto* matrix_type = param.create_mat_ast_type(*this);
auto* vec_type = param.create_column_ast_type(*this);
auto* vec_alias = Alias("ColVectorAlias", vec_type);
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
args.push_back(Construct(ty.Of(vec_alias)));
}
auto* tc = Construct(Source{}, matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, Expr_Constructor_ArgumentElementTypeAlias_Error) {
const auto param = GetParam();
Enable(ast::Extension::kF16);
auto* matrix_type = param.create_mat_ast_type(*this);
auto* u32_type_alias = Alias("UnsignedInt", ty.u32());
std::stringstream args_tys;
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
auto* vec_type = ty.vec(ty.Of(u32_type_alias), param.rows);
args.push_back(Construct(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<u32>";
}
auto* tc = Construct(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, Expr_Constructor_ArgumentElementTypeAlias_Success) {
const auto param = GetParam();
Enable(ast::Extension::kF16);
auto* elem_type_alias = Alias("ElemType", param.create_element_ast_type(*this));
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
auto* vec_type = ty.vec(ty.Of(elem_type_alias), param.rows);
args.push_back(Construct(vec_type));
}
auto* matrix_type = param.create_mat_ast_type(*this);
auto* tc = Construct(Source{}, matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, InferElementTypeFromVectors) {
const auto param = GetParam();
Enable(ast::Extension::kF16);
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
args.push_back(Construct(param.create_column_ast_type(*this)));
}
auto* matrix_type = create<ast::Matrix>(nullptr, param.rows, param.columns);
auto* tc = Construct(Source{}, matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, InferElementTypeFromScalars) {
const auto param = GetParam();
Enable(ast::Extension::kF16);
ast::ExpressionList args;
for (uint32_t i = 0; i < param.rows * param.columns; i++) {
args.push_back(param.create_element_ast_value(*this, static_cast<double>(i)));
}
auto* matrix_type = create<ast::Matrix>(nullptr, param.rows, param.columns);
WrapInFunction(Construct(Source{{12, 34}}, matrix_type, std::move(args)));
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, CannotInferElementTypeFromVectors_Mismatch) {
const auto param = GetParam();
Enable(ast::Extension::kF16);
std::stringstream err;
err << "12:34 error: no matching constructor for mat" << param.columns << "x" << param.rows
<< "(";
ast::ExpressionList args;
for (uint32_t i = 0; i < param.columns; i++) {
if (i > 0) {
err << ", ";
}
if (i == 1) {
// Odd one out
args.push_back(Construct(ty.vec<i32>(param.rows)));
err << "vec" << param.rows << "<i32>";
} else {
args.push_back(Construct(param.create_column_ast_type(*this)));
err << "vec" << param.rows << "<" + param.get_element_type_name() + ">";
}
}
auto* matrix_type = create<ast::Matrix>(nullptr, param.rows, param.columns);
WrapInFunction(Construct(Source{{12, 34}}, matrix_type, std::move(args)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr(err.str()));
}
TEST_P(MatrixConstructorTest, CannotInferElementTypeFromScalars_Mismatch) {
const auto param = GetParam();
Enable(ast::Extension::kF16);
std::stringstream err;
err << "12:34 error: no matching constructor for mat" << param.columns << "x" << param.rows
<< "(";
ast::ExpressionList args;
for (uint32_t i = 0; i < param.rows * param.columns; i++) {
if (i > 0) {
err << ", ";
}
if (i == 3) {
args.push_back(Expr(static_cast<i32>(i))); // The odd one out
err << "i32";
} else {
args.push_back(param.create_element_ast_value(*this, static_cast<double>(i)));
err << param.get_element_type_name();
}
}
err << ")";
auto* matrix_type = create<ast::Matrix>(nullptr, param.rows, param.columns);
WrapInFunction(Construct(Source{{12, 34}}, matrix_type, std::move(args)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr(err.str()));
}
INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest,
MatrixConstructorTest,
testing::Values(MatrixParamsFor<f32, 2, 2>(),
MatrixParamsFor<f32, 3, 2>(),
MatrixParamsFor<f32, 4, 2>(),
MatrixParamsFor<f32, 2, 3>(),
MatrixParamsFor<f32, 3, 3>(),
MatrixParamsFor<f32, 4, 3>(),
MatrixParamsFor<f32, 2, 4>(),
MatrixParamsFor<f32, 3, 4>(),
MatrixParamsFor<f32, 4, 4>(),
MatrixParamsFor<f16, 2, 2>(),
MatrixParamsFor<f16, 3, 2>(),
MatrixParamsFor<f16, 4, 2>(),
MatrixParamsFor<f16, 2, 3>(),
MatrixParamsFor<f16, 3, 3>(),
MatrixParamsFor<f16, 4, 3>(),
MatrixParamsFor<f16, 2, 4>(),
MatrixParamsFor<f16, 3, 4>(),
MatrixParamsFor<f16, 4, 4>()));
} // namespace MatrixConstructor
namespace StructConstructor {
using builder::CreatePtrs;
using builder::CreatePtrsFor;
using builder::mat2x2;
using builder::mat3x3;
using builder::mat4x4;
using builder::vec2;
using builder::vec3;
using builder::vec4;
constexpr CreatePtrs all_types[] = {
CreatePtrsFor<bool>(), //
CreatePtrsFor<u32>(), //
CreatePtrsFor<i32>(), //
CreatePtrsFor<f32>(), //
CreatePtrsFor<f16>(), //
CreatePtrsFor<vec4<bool>>(), //
CreatePtrsFor<vec2<i32>>(), //
CreatePtrsFor<vec3<u32>>(), //
CreatePtrsFor<vec4<f32>>(), //
CreatePtrsFor<vec4<f16>>(), //
CreatePtrsFor<mat2x2<f32>>(), //
CreatePtrsFor<mat3x3<f32>>(), //
CreatePtrsFor<mat4x4<f32>>(), //
CreatePtrsFor<mat2x2<f16>>(), //
CreatePtrsFor<mat3x3<f16>>(), //
CreatePtrsFor<mat4x4<f16>>() //
};
auto number_of_members = testing::Values(2u, 32u, 64u);
using StructConstructorInputsTest =
ResolverTestWithParam<std::tuple<CreatePtrs, // struct member type
uint32_t>>; // number of struct members
TEST_P(StructConstructorInputsTest, TooFew) {
auto& param = GetParam();
auto& str_params = std::get<0>(param);
uint32_t N = std::get<1>(param);
Enable(ast::Extension::kF16);
ast::StructMemberList members;
ast::ExpressionList values;
for (uint32_t i = 0; i < N; i++) {
auto* struct_type = str_params.ast(*this);
members.push_back(Member("member_" + std::to_string(i), struct_type));
if (i < N - 1) {
auto* ctor_value_expr = str_params.expr(*this, 0);
values.push_back(ctor_value_expr);
}
}
auto* s = Structure("s", members);
auto* tc = Construct(Source{{12, 34}}, ty.Of(s), values);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: struct constructor has too few inputs: expected " +
std::to_string(N) + ", found " + std::to_string(N - 1));
}
TEST_P(StructConstructorInputsTest, TooMany) {
auto& param = GetParam();
auto& str_params = std::get<0>(param);
uint32_t N = std::get<1>(param);
Enable(ast::Extension::kF16);
ast::StructMemberList members;
ast::ExpressionList values;
for (uint32_t i = 0; i < N + 1; i++) {
if (i < N) {
auto* struct_type = str_params.ast(*this);
members.push_back(Member("member_" + std::to_string(i), struct_type));
}
auto* ctor_value_expr = str_params.expr(*this, 0);
values.push_back(ctor_value_expr);
}
auto* s = Structure("s", members);
auto* tc = Construct(Source{{12, 34}}, ty.Of(s), values);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: struct constructor has too many inputs: expected " +
std::to_string(N) + ", found " + std::to_string(N + 1));
}
INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest,
StructConstructorInputsTest,
testing::Combine(testing::ValuesIn(all_types), number_of_members));
using StructConstructorTypeTest =
ResolverTestWithParam<std::tuple<CreatePtrs, // struct member type
CreatePtrs, // constructor value type
uint32_t>>; // number of struct members
TEST_P(StructConstructorTypeTest, AllTypes) {
auto& param = GetParam();
auto& str_params = std::get<0>(param);
auto& ctor_params = std::get<1>(param);
uint32_t N = std::get<2>(param);
Enable(ast::Extension::kF16);
if (str_params.ast == ctor_params.ast) {
return;
}
ast::StructMemberList members;
ast::ExpressionList values;
// make the last value of the constructor to have a different type
uint32_t constructor_value_with_different_type = N - 1;
for (uint32_t i = 0; i < N; i++) {
auto* struct_type = str_params.ast(*this);
members.push_back(Member("member_" + std::to_string(i), struct_type));
auto* ctor_value_expr = (i == constructor_value_with_different_type)
? ctor_params.expr(*this, 0)
: str_params.expr(*this, 0);
values.push_back(ctor_value_expr);
}
auto* s = Structure("s", members);
auto* tc = Construct(ty.Of(s), values);
WrapInFunction(tc);
std::string found = FriendlyName(ctor_params.ast(*this));
std::string expected = FriendlyName(str_params.ast(*this));
std::stringstream err;
err << "error: type in struct constructor does not match struct member ";
err << "type: expected '" << expected << "', found '" << found << "'";
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), err.str());
}
INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest,
StructConstructorTypeTest,
testing::Combine(testing::ValuesIn(all_types),
testing::ValuesIn(all_types),
number_of_members));
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Struct_Nested) {
auto* inner_m = Member("m", ty.i32());
auto* inner_s = Structure("inner_s", {inner_m});
auto* m0 = Member("m0", ty.i32());
auto* m1 = Member("m1", ty.Of(inner_s));
auto* m2 = Member("m2", ty.i32());
auto* s = Structure("s", {m0, m1, m2});
auto* tc = Construct(Source{{12, 34}}, ty.Of(s), 1_i, 1_i, 1_i);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"error: type in struct constructor does not match struct member "
"type: expected 'inner_s', found 'i32'");
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Struct) {
auto* m = Member("m", ty.i32());
auto* s = Structure("MyInputs", {m});
auto* tc = Construct(Source{{12, 34}}, ty.Of(s));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Struct_Empty) {
auto* str = Structure("S", {
Member("a", ty.i32()),
Member("b", ty.f32()),
Member("c", ty.vec3<i32>()),
});
WrapInFunction(Construct(ty.Of(str)));
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
} // namespace StructConstructor
TEST_F(ResolverTypeConstructorValidationTest, NonConstructibleType_Atomic) {
WrapInFunction(Assign(Phony(), Construct(Source{{12, 34}}, ty.atomic(ty.i32()))));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: type is not constructible");
}
TEST_F(ResolverTypeConstructorValidationTest, NonConstructibleType_AtomicArray) {
WrapInFunction(
Assign(Phony(), Construct(Source{{12, 34}}, ty.array(ty.atomic(ty.i32()), 4_i))));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: array constructor has non-constructible element type");
}
TEST_F(ResolverTypeConstructorValidationTest, NonConstructibleType_AtomicStructMember) {
auto* str = Structure("S", {Member("a", ty.atomic(ty.i32()))});
WrapInFunction(Assign(Phony(), Construct(Source{{12, 34}}, ty.Of(str))));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: struct constructor has non-constructible type");
}
TEST_F(ResolverTypeConstructorValidationTest, NonConstructibleType_Sampler) {
WrapInFunction(
Assign(Phony(), Construct(Source{{12, 34}}, ty.sampler(ast::SamplerKind::kSampler))));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: type is not constructible");
}
TEST_F(ResolverTypeConstructorValidationTest, TypeConstructorAsStatement) {
WrapInFunction(CallStmt(Construct(Source{{12, 34}}, ty.vec2<f32>(), 1_f, 2_f)));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: type constructor evaluated but not used");
}
TEST_F(ResolverTypeConstructorValidationTest, TypeConversionAsStatement) {
WrapInFunction(CallStmt(Construct(Source{{12, 34}}, ty.f32(), 1_i)));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: type conversion evaluated but not used");
}
} // namespace
} // namespace tint::resolver