blob: 616fe4fed3f3304d921f2b25a921dafe42d2d2fe [file] [log] [blame]
// Copyright 2017 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "dawn/common/Math.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include "dawn/common/Assert.h"
#include "dawn/common/Platform.h"
#if DAWN_COMPILER_IS(MSVC)
#include <intrin.h>
#endif
namespace dawn {
uint32_t ScanForward(uint32_t bits) {
DAWN_ASSERT(bits != 0);
#if DAWN_COMPILER_IS(MSVC)
// NOLINTNEXTLINE(runtime/int)
unsigned long firstBitIndex = 0ul;
unsigned char ret = _BitScanForward(&firstBitIndex, bits);
DAWN_ASSERT(ret != 0);
return firstBitIndex;
#else
return static_cast<uint32_t>(__builtin_ctz(bits));
#endif
}
uint32_t Log2(uint32_t value) {
DAWN_ASSERT(value != 0);
#if DAWN_COMPILER_IS(MSVC)
// NOLINTNEXTLINE(runtime/int)
unsigned long firstBitIndex = 0ul;
unsigned char ret = _BitScanReverse(&firstBitIndex, value);
DAWN_ASSERT(ret != 0);
return firstBitIndex;
#else
return 31 - static_cast<uint32_t>(__builtin_clz(value));
#endif
}
uint32_t Log2(uint64_t value) {
DAWN_ASSERT(value != 0);
#if DAWN_COMPILER_IS(MSVC)
#if DAWN_PLATFORM_IS(64_BIT)
// NOLINTNEXTLINE(runtime/int)
unsigned long firstBitIndex = 0ul;
unsigned char ret = _BitScanReverse64(&firstBitIndex, value);
DAWN_ASSERT(ret != 0);
return firstBitIndex;
#else // DAWN_PLATFORM_IS(64_BIT)
// NOLINTNEXTLINE(runtime/int)
unsigned long firstBitIndex = 0ul;
if (_BitScanReverse(&firstBitIndex, value >> 32)) {
return firstBitIndex + 32;
}
unsigned char ret = _BitScanReverse(&firstBitIndex, value & 0xFFFFFFFF);
DAWN_ASSERT(ret != 0);
return firstBitIndex;
#endif // DAWN_PLATFORM_IS(64_BIT)
#else // DAWN_COMPILER_IS(MSVC)
return 63 - static_cast<uint32_t>(__builtin_clzll(value));
#endif // DAWN_COMPILER_IS(MSVC)
}
uint64_t NextPowerOfTwo(uint64_t n) {
if (n <= 1) {
return 1;
}
return 1ull << (Log2(n - 1) + 1);
}
bool IsPowerOfTwo(uint64_t n) {
DAWN_ASSERT(n != 0);
return (n & (n - 1)) == 0;
}
bool IsPtrAligned(const void* ptr, size_t alignment) {
DAWN_ASSERT(IsPowerOfTwo(alignment));
DAWN_ASSERT(alignment != 0);
return (reinterpret_cast<size_t>(ptr) & (alignment - 1)) == 0;
}
bool IsAligned(uint32_t value, size_t alignment) {
DAWN_ASSERT(alignment <= UINT32_MAX);
DAWN_ASSERT(IsPowerOfTwo(alignment));
DAWN_ASSERT(alignment != 0);
uint32_t alignment32 = static_cast<uint32_t>(alignment);
return (value & (alignment32 - 1)) == 0;
}
uint16_t Float32ToFloat16(float fp32) {
uint32_t fp32i = BitCast<uint32_t>(fp32);
uint32_t sign16 = (fp32i & 0x80000000) >> 16;
uint32_t mantissaAndExponent = fp32i & 0x7FFFFFFF;
if (mantissaAndExponent > 0x7F800000) { // NaN
return 0x7FFF;
} else if (mantissaAndExponent > 0x47FFEFFF) { // Infinity
return static_cast<uint16_t>(sign16 | 0x7C00);
} else if (mantissaAndExponent < 0x38800000) { // Denormal
uint32_t mantissa = (mantissaAndExponent & 0x007FFFFF) | 0x00800000;
int32_t exponent = 113 - (mantissaAndExponent >> 23);
if (exponent < 24) {
mantissaAndExponent = mantissa >> exponent;
} else {
mantissaAndExponent = 0;
}
return static_cast<uint16_t>(
sign16 | (mantissaAndExponent + 0x00000FFF + ((mantissaAndExponent >> 13) & 1)) >> 13);
} else {
return static_cast<uint16_t>(sign16 | (mantissaAndExponent + 0xC8000000 + 0x00000FFF +
((mantissaAndExponent >> 13) & 1)) >>
13);
}
}
float Float16ToFloat32(uint16_t fp16) {
uint32_t tmp = (fp16 & 0x7fff) << 13 | (fp16 & 0x8000) << 16;
float tmp2 = *reinterpret_cast<float*>(&tmp);
return pow(2, 127 - 15) * tmp2;
}
bool IsFloat16NaN(uint16_t fp16) {
return (fp16 & 0x7FFF) > 0x7C00;
}
// Based on the Khronos Data Format Specification 1.2 Section 13.3 sRGB transfer functions
float SRGBToLinear(float srgb) {
// sRGB is always used in unsigned normalized formats so clamp to [0.0, 1.0]
if (srgb <= 0.0f) {
return 0.0f;
} else if (srgb > 1.0f) {
return 1.0f;
}
if (srgb < 0.04045f) {
return srgb / 12.92f;
} else {
return std::pow((srgb + 0.055f) / 1.055f, 2.4f);
}
}
uint64_t RoundUp(uint64_t n, uint64_t m) {
DAWN_ASSERT(m > 0);
DAWN_ASSERT(n > 0);
DAWN_ASSERT(m <= std::numeric_limits<uint64_t>::max() - n);
return ((n + m - 1) / m) * m;
}
} // namespace dawn