blob: a513ee006468ccb628ffb01cc8f85676f50171f9 [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/unittests/validation/ValidationTest.h"
#include "common/Constants.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/WGPUHelpers.h"
#include <cmath>
#include <sstream>
class RenderPipelineValidationTest : public ValidationTest {
protected:
void SetUp() override {
ValidationTest::SetUp();
vsModule = utils::CreateShaderModule(device, utils::SingleShaderStage::Vertex, R"(
#version 450
void main() {
gl_Position = vec4(0.0, 0.0, 0.0, 1.0);
})");
fsModule = utils::CreateShaderModule(device, utils::SingleShaderStage::Fragment, R"(
#version 450
layout(location = 0) out vec4 fragColor;
void main() {
fragColor = vec4(0.0, 1.0, 0.0, 1.0);
})");
}
wgpu::ShaderModule vsModule;
wgpu::ShaderModule fsModule;
};
// Test cases where creation should succeed
TEST_F(RenderPipelineValidationTest, CreationSuccess) {
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
device.CreateRenderPipeline(&descriptor);
}
{
// Vertex input should be optional
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.vertexState = nullptr;
device.CreateRenderPipeline(&descriptor);
}
{
// Rasterization state should be optional
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.rasterizationState = nullptr;
device.CreateRenderPipeline(&descriptor);
}
}
// Tests that depth bias parameters must not be NaN.
TEST_F(RenderPipelineValidationTest, DepthBiasParameterNotBeNaN) {
// Control case, depth bias parameters in ComboRenderPipeline default to 0 which is finite
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
device.CreateRenderPipeline(&descriptor);
}
// Infinite depth bias clamp is valid
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.cRasterizationState.depthBiasClamp = INFINITY;
device.CreateRenderPipeline(&descriptor);
}
// NAN depth bias clamp is invalid
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.cRasterizationState.depthBiasClamp = NAN;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Infinite depth bias slope is valid
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.cRasterizationState.depthBiasSlopeScale = INFINITY;
device.CreateRenderPipeline(&descriptor);
}
// NAN depth bias slope is invalid
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.cRasterizationState.depthBiasSlopeScale = NAN;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that at least one color state is required.
TEST_F(RenderPipelineValidationTest, ColorStateRequired) {
{
// This one succeeds because attachment 0 is the color attachment
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.colorStateCount = 1;
device.CreateRenderPipeline(&descriptor);
}
{ // Fail because lack of color states (and depth/stencil state)
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.colorStateCount = 0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the color formats must be renderable.
TEST_F(RenderPipelineValidationTest, NonRenderableFormat) {
{
// Succeeds because RGBA8Unorm is renderable
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.cColorStates[0].format = wgpu::TextureFormat::RGBA8Unorm;
device.CreateRenderPipeline(&descriptor);
}
{
// Fails because RG11B10Float is non-renderable
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.cColorStates[0].format = wgpu::TextureFormat::RG11B10Float;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the format of the color state descriptor must match the output of the fragment shader.
TEST_F(RenderPipelineValidationTest, FragmentOutputFormatCompatibility) {
constexpr uint32_t kNumTextureFormatBaseType = 3u;
std::array<const char*, kNumTextureFormatBaseType> kVecPreFix = {{"", "i", "u"}};
std::array<wgpu::TextureFormat, kNumTextureFormatBaseType> kColorFormats = {
{wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Sint,
wgpu::TextureFormat::RGBA8Uint}};
for (size_t i = 0; i < kNumTextureFormatBaseType; ++i) {
for (size_t j = 0; j < kNumTextureFormatBaseType; ++j) {
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cColorStates[0].format = kColorFormats[j];
std::ostringstream stream;
stream << R"(
#version 450
layout(location = 0) out )"
<< kVecPreFix[i] << R"(vec4 fragColor;
void main() {
})";
descriptor.cFragmentStage.module = utils::CreateShaderModule(
device, utils::SingleShaderStage::Fragment, stream.str().c_str());
if (i == j) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
/// Tests that the sample count of the render pipeline must be valid.
TEST_F(RenderPipelineValidationTest, SampleCount) {
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.sampleCount = 4;
device.CreateRenderPipeline(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.sampleCount = 3;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the sample count of the render pipeline must be equal to the one of every attachments
// in the render pass.
TEST_F(RenderPipelineValidationTest, SampleCountCompatibilityWithRenderPass) {
constexpr uint32_t kMultisampledCount = 4;
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8;
wgpu::TextureDescriptor baseTextureDescriptor;
baseTextureDescriptor.size.width = 4;
baseTextureDescriptor.size.height = 4;
baseTextureDescriptor.size.depth = 1;
baseTextureDescriptor.mipLevelCount = 1;
baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D;
baseTextureDescriptor.usage = wgpu::TextureUsage::OutputAttachment;
utils::ComboRenderPipelineDescriptor nonMultisampledPipelineDescriptor(device);
nonMultisampledPipelineDescriptor.sampleCount = 1;
nonMultisampledPipelineDescriptor.vertexStage.module = vsModule;
nonMultisampledPipelineDescriptor.cFragmentStage.module = fsModule;
wgpu::RenderPipeline nonMultisampledPipeline =
device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor);
nonMultisampledPipelineDescriptor.colorStateCount = 0;
nonMultisampledPipelineDescriptor.depthStencilState =
&nonMultisampledPipelineDescriptor.cDepthStencilState;
wgpu::RenderPipeline nonMultisampledPipelineWithDepthStencilOnly =
device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor);
utils::ComboRenderPipelineDescriptor multisampledPipelineDescriptor(device);
multisampledPipelineDescriptor.sampleCount = kMultisampledCount;
multisampledPipelineDescriptor.vertexStage.module = vsModule;
multisampledPipelineDescriptor.cFragmentStage.module = fsModule;
wgpu::RenderPipeline multisampledPipeline =
device.CreateRenderPipeline(&multisampledPipelineDescriptor);
multisampledPipelineDescriptor.colorStateCount = 0;
multisampledPipelineDescriptor.depthStencilState =
&multisampledPipelineDescriptor.cDepthStencilState;
wgpu::RenderPipeline multisampledPipelineWithDepthStencilOnly =
device.CreateRenderPipeline(&multisampledPipelineDescriptor);
// It is not allowed to use multisampled render pass and non-multisampled render pipeline.
{
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = kMultisampledCount;
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{multisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(nonMultisampledPipeline);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = kMultisampledCount;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture =
device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(nonMultisampledPipelineWithDepthStencilOnly);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// It is allowed to use multisampled render pass and multisampled render pipeline.
{
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = kMultisampledCount;
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{multisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipeline);
renderPass.EndPass();
encoder.Finish();
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = kMultisampledCount;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture =
device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
renderPass.EndPass();
encoder.Finish();
}
}
// It is not allowed to use non-multisampled render pass and multisampled render pipeline.
{
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = 1;
wgpu::Texture nonMultisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor nonMultisampledRenderPassDescriptor(
{nonMultisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass =
encoder.BeginRenderPass(&nonMultisampledRenderPassDescriptor);
renderPass.SetPipeline(multisampledPipeline);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = 1;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture =
device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
}
// Tests that the texture component type in shader must match the bind group layout.
TEST_F(RenderPipelineValidationTest, TextureComponentTypeCompatibility) {
constexpr uint32_t kNumTextureComponentType = 3u;
std::array<const char*, kNumTextureComponentType> kTexturePrefix = {{"", "i", "u"}};
std::array<wgpu::TextureComponentType, kNumTextureComponentType> kTextureComponentTypes = {{
wgpu::TextureComponentType::Float,
wgpu::TextureComponentType::Sint,
wgpu::TextureComponentType::Uint,
}};
for (size_t i = 0; i < kNumTextureComponentType; ++i) {
for (size_t j = 0; j < kNumTextureComponentType; ++j) {
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
std::ostringstream stream;
stream << R"(
#version 450
layout(set = 0, binding = 0) uniform )"
<< kTexturePrefix[i] << R"(texture2D tex;
void main() {
})";
descriptor.cFragmentStage.module = utils::CreateShaderModule(
device, utils::SingleShaderStage::Fragment, stream.str().c_str());
wgpu::BindGroupLayout bgl =
utils::MakeBindGroupLayout(device, {{0,
wgpu::ShaderStage::Fragment,
wgpu::BindingType::SampledTexture,
false,
false,
wgpu::TextureViewDimension::e2D,
kTextureComponentTypes[j]}});
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
if (i == j) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
// Tests that the texture view dimension in shader must match the bind group layout.
TEST_F(RenderPipelineValidationTest, TextureViewDimensionCompatibility) {
constexpr uint32_t kNumTextureViewDimensions = 6u;
std::array<const char*, kNumTextureViewDimensions> kTextureKeywords = {{
"texture1D",
"texture2D",
"texture2DArray",
"textureCube",
"textureCubeArray",
"texture3D",
}};
std::array<wgpu::TextureViewDimension, kNumTextureViewDimensions> kTextureViewDimensions = {{
wgpu::TextureViewDimension::e1D,
wgpu::TextureViewDimension::e2D,
wgpu::TextureViewDimension::e2DArray,
wgpu::TextureViewDimension::Cube,
wgpu::TextureViewDimension::CubeArray,
wgpu::TextureViewDimension::e3D,
}};
for (size_t i = 0; i < kNumTextureViewDimensions; ++i) {
for (size_t j = 0; j < kNumTextureViewDimensions; ++j) {
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
std::ostringstream stream;
stream << R"(
#version 450
layout(set = 0, binding = 0) uniform )"
<< kTextureKeywords[i] << R"( tex;
void main() {
})";
descriptor.cFragmentStage.module = utils::CreateShaderModule(
device, utils::SingleShaderStage::Fragment, stream.str().c_str());
wgpu::BindGroupLayout bgl =
utils::MakeBindGroupLayout(device, {{0,
wgpu::ShaderStage::Fragment,
wgpu::BindingType::SampledTexture,
false,
false,
kTextureViewDimensions[j],
wgpu::TextureComponentType::Float}});
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
if (i == j) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
// Test that declaring a storage buffer in the vertex shader without setting pipeline layout won't
// cause crash.
TEST_F(RenderPipelineValidationTest, StorageBufferInVertexShaderNoLayout) {
wgpu::ShaderModule vsModuleWithStorageBuffer =
utils::CreateShaderModule(device, utils::SingleShaderStage::Vertex, R"(
#version 450
#define kNumValues 100
layout(std430, set = 0, binding = 0) buffer Dst { uint dst[kNumValues]; };
void main() {
uint index = gl_VertexIndex;
dst[index] = 0x1234;
gl_Position = vec4(1.f, 0.f, 0.f, 1.f);
})");
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.layout = nullptr;
descriptor.vertexStage.module = vsModuleWithStorageBuffer;
descriptor.cFragmentStage.module = fsModule;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Test that a pipeline with defaulted layout may not have multisampled array textures
// TODO(enga): Also test multisampled cube, cube array, and 3D. These have no GLSL keywords.
TEST_F(RenderPipelineValidationTest, MultisampledTexture) {
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.layout = nullptr;
descriptor.cFragmentStage.module = fsModule;
// Base case works.
descriptor.vertexStage.module =
utils::CreateShaderModule(device, utils::SingleShaderStage::Vertex, R"(
#version 450
layout(set = 0, binding = 0) uniform texture2DMS texture;
void main() {
})");
device.CreateRenderPipeline(&descriptor);
// texture2DMSArray invalid
descriptor.vertexStage.module =
utils::CreateShaderModule(device, utils::SingleShaderStage::Vertex, R"(
#version 450
layout(set = 0, binding = 0) uniform texture2DMSArray texture;
void main() {
})");
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}