blob: 40b575971278fb7e8aff689ed726c28244682104 [file] [log] [blame]
// Copyright 2019 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_wire/client/Buffer.h"
#include "dawn_wire/client/Client.h"
#include "dawn_wire/client/Device.h"
namespace dawn_wire { namespace client {
// static
WGPUBuffer Buffer::Create(Device* device, const WGPUBufferDescriptor* descriptor) {
Client* wireClient = device->client;
bool mappable =
(descriptor->usage & (WGPUBufferUsage_MapRead | WGPUBufferUsage_MapWrite)) != 0 ||
descriptor->mappedAtCreation;
if (mappable && descriptor->size >= std::numeric_limits<size_t>::max()) {
device->InjectError(WGPUErrorType_OutOfMemory, "Buffer is too large for map usage");
return device->CreateErrorBuffer();
}
std::unique_ptr<MemoryTransferService::WriteHandle> writeHandle = nullptr;
void* writeData = nullptr;
size_t writeHandleCreateInfoLength = 0;
// If the buffer is mapped at creation, create a write handle that will represent the
// mapping of the whole buffer.
if (descriptor->mappedAtCreation) {
// Create the handle.
writeHandle.reset(
wireClient->GetMemoryTransferService()->CreateWriteHandle(descriptor->size));
if (writeHandle == nullptr) {
device->InjectError(WGPUErrorType_OutOfMemory, "Buffer mapping allocation failed");
return device->CreateErrorBuffer();
}
// Open the handle, it may fail by returning a nullptr in writeData.
size_t writeDataLength = 0;
std::tie(writeData, writeDataLength) = writeHandle->Open();
if (writeData == nullptr) {
device->InjectError(WGPUErrorType_OutOfMemory, "Buffer mapping allocation failed");
return device->CreateErrorBuffer();
}
ASSERT(writeDataLength == descriptor->size);
// Get the serialization size of the write handle.
writeHandleCreateInfoLength = writeHandle->SerializeCreateSize();
}
// Create the buffer and send the creation command.
auto* bufferObjectAndSerial = wireClient->BufferAllocator().New(wireClient);
Buffer* buffer = bufferObjectAndSerial->object.get();
buffer->mDevice = device;
buffer->mSize = descriptor->size;
DeviceCreateBufferCmd cmd;
cmd.deviceId = device->id;
cmd.descriptor = descriptor;
cmd.result = ObjectHandle{buffer->id, bufferObjectAndSerial->generation};
cmd.handleCreateInfoLength = writeHandleCreateInfoLength;
cmd.handleCreateInfo = nullptr;
wireClient->SerializeCommand(cmd, writeHandleCreateInfoLength, [&](char* cmdSpace) {
if (descriptor->mappedAtCreation) {
// Serialize the WriteHandle into the space after the command.
writeHandle->SerializeCreate(cmdSpace);
// Set the buffer state for the mapping at creation. The buffer now owns the write
// handle..
buffer->mWriteHandle = std::move(writeHandle);
buffer->mMappedData = writeData;
buffer->mMapOffset = 0;
buffer->mMapSize = buffer->mSize;
}
});
return ToAPI(buffer);
}
// static
WGPUBuffer Buffer::CreateError(Device* device) {
auto* allocation = device->client->BufferAllocator().New(device->client);
allocation->object->mDevice = device;
DeviceCreateErrorBufferCmd cmd;
cmd.self = ToAPI(device);
cmd.result = ObjectHandle{allocation->object->id, allocation->generation};
device->client->SerializeCommand(cmd);
return ToAPI(allocation->object.get());
}
Buffer::~Buffer() {
// Callbacks need to be fired in all cases, as they can handle freeing resources
// so we call them with "DestroyedBeforeCallback" status.
for (auto& it : mRequests) {
if (it.second.callback) {
it.second.callback(WGPUBufferMapAsyncStatus_DestroyedBeforeCallback, it.second.userdata);
}
}
mRequests.clear();
}
void Buffer::CancelCallbacksForDisconnect() {
for (auto& it : mRequests) {
if (it.second.callback) {
it.second.callback(WGPUBufferMapAsyncStatus_DeviceLost, it.second.userdata);
}
}
mRequests.clear();
}
void Buffer::MapAsync(WGPUMapModeFlags mode,
size_t offset,
size_t size,
WGPUBufferMapCallback callback,
void* userdata) {
if (client->IsDisconnected()) {
return callback(WGPUBufferMapAsyncStatus_DeviceLost, userdata);
}
// Handle the defaulting of size required by WebGPU.
if (size == 0 && offset < mSize) {
size = mSize - offset;
}
bool isReadMode = mode & WGPUMapMode_Read;
bool isWriteMode = mode & WGPUMapMode_Write;
// Step 1. Do early validation of READ ^ WRITE because the server rejects mode = 0.
if (!(isReadMode ^ isWriteMode)) {
mDevice->InjectError(WGPUErrorType_Validation,
"MapAsync mode must be exactly one of Read or Write");
if (callback != nullptr) {
callback(WGPUBufferMapAsyncStatus_Error, userdata);
}
return;
}
// Step 2. Create the request structure that will hold information while this mapping is
// in flight.
uint32_t serial = mRequestSerial++;
ASSERT(mRequests.find(serial) == mRequests.end());
Buffer::MapRequestData request = {};
request.callback = callback;
request.userdata = userdata;
request.size = size;
request.offset = offset;
// Step 2a: Create the read / write handles for this request.
if (isReadMode) {
request.readHandle.reset(client->GetMemoryTransferService()->CreateReadHandle(size));
if (request.readHandle == nullptr) {
mDevice->InjectError(WGPUErrorType_OutOfMemory, "Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, userdata);
return;
}
} else {
ASSERT(isWriteMode);
request.writeHandle.reset(client->GetMemoryTransferService()->CreateWriteHandle(size));
if (request.writeHandle == nullptr) {
mDevice->InjectError(WGPUErrorType_OutOfMemory, "Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, userdata);
return;
}
}
// Step 3. Serialize the command to send to the server.
BufferMapAsyncCmd cmd;
cmd.bufferId = this->id;
cmd.requestSerial = serial;
cmd.mode = mode;
cmd.offset = offset;
cmd.size = size;
cmd.handleCreateInfo = nullptr;
// Step 3a. Fill the handle create info in the command.
if (isReadMode) {
cmd.handleCreateInfoLength = request.readHandle->SerializeCreateSize();
client->SerializeCommand(cmd, cmd.handleCreateInfoLength, [&](char* cmdSpace) {
request.readHandle->SerializeCreate(cmdSpace);
});
} else {
ASSERT(isWriteMode);
cmd.handleCreateInfoLength = request.writeHandle->SerializeCreateSize();
client->SerializeCommand(cmd, cmd.handleCreateInfoLength, [&](char* cmdSpace) {
request.writeHandle->SerializeCreate(cmdSpace);
});
}
// Step 4. Register this request so that we can retrieve it from its serial when the server
// sends the callback.
mRequests[serial] = std::move(request);
}
bool Buffer::OnMapAsyncCallback(uint32_t requestSerial,
uint32_t status,
uint64_t readInitialDataInfoLength,
const uint8_t* readInitialDataInfo) {
auto requestIt = mRequests.find(requestSerial);
if (requestIt == mRequests.end()) {
return false;
}
auto request = std::move(requestIt->second);
// Delete the request before calling the callback otherwise the callback could be fired a
// second time. If, for example, buffer.Unmap() is called inside the callback.
mRequests.erase(requestIt);
auto FailRequest = [&request]() -> bool {
if (request.callback != nullptr) {
request.callback(WGPUBufferMapAsyncStatus_DeviceLost, request.userdata);
}
return false;
};
bool isRead = request.readHandle != nullptr;
bool isWrite = request.writeHandle != nullptr;
ASSERT(isRead != isWrite);
// Take into account the client-side status of the request if the server says it is a success.
if (status == WGPUBufferMapAsyncStatus_Success) {
status = request.clientStatus;
}
size_t mappedDataLength = 0;
const void* mappedData = nullptr;
if (status == WGPUBufferMapAsyncStatus_Success) {
if (mReadHandle || mWriteHandle) {
// Buffer is already mapped.
return FailRequest();
}
if (isRead) {
if (readInitialDataInfoLength > std::numeric_limits<size_t>::max()) {
// This is the size of data deserialized from the command stream, which must be
// CPU-addressable.
return FailRequest();
}
// The server serializes metadata to initialize the contents of the ReadHandle.
// Deserialize the message and return a pointer and size of the mapped data for
// reading.
if (!request.readHandle->DeserializeInitialData(
readInitialDataInfo, static_cast<size_t>(readInitialDataInfoLength),
&mappedData, &mappedDataLength)) {
// Deserialization shouldn't fail. This is a fatal error.
return FailRequest();
}
ASSERT(mappedData != nullptr);
} else {
// Open the WriteHandle. This returns a pointer and size of mapped memory.
// On failure, |mappedData| may be null.
std::tie(mappedData, mappedDataLength) = request.writeHandle->Open();
if (mappedData == nullptr) {
return FailRequest();
}
}
// The MapAsync request was successful. The buffer now owns the Read/Write handles
// until Unmap().
mReadHandle = std::move(request.readHandle);
mWriteHandle = std::move(request.writeHandle);
}
mMapOffset = request.offset;
mMapSize = request.size;
mMappedData = const_cast<void*>(mappedData);
if (request.callback) {
request.callback(static_cast<WGPUBufferMapAsyncStatus>(status), request.userdata);
}
return true;
}
void* Buffer::GetMappedRange(size_t offset, size_t size) {
if (!IsMappedForWriting() || !CheckGetMappedRangeOffsetSize(offset, size)) {
return nullptr;
}
return static_cast<uint8_t*>(mMappedData) + (offset - mMapOffset);
}
const void* Buffer::GetConstMappedRange(size_t offset, size_t size) {
if (!(IsMappedForWriting() || IsMappedForReading()) ||
!CheckGetMappedRangeOffsetSize(offset, size)) {
return nullptr;
}
return static_cast<uint8_t*>(mMappedData) + (offset - mMapOffset);
}
void Buffer::Unmap() {
// Invalidate the local pointer, and cancel all other in-flight requests that would
// turn into errors anyway (you can't double map). This prevents race when the following
// happens, where the application code would have unmapped a buffer but still receive a
// callback:
// - Client -> Server: MapRequest1, Unmap, MapRequest2
// - Server -> Client: Result of MapRequest1
// - Unmap locally on the client
// - Server -> Client: Result of MapRequest2
if (mWriteHandle) {
// Writes need to be flushed before Unmap is sent. Unmap calls all associated
// in-flight callbacks which may read the updated data.
ASSERT(mReadHandle == nullptr);
// Get the serialization size of metadata to flush writes.
size_t writeFlushInfoLength = mWriteHandle->SerializeFlushSize();
BufferUpdateMappedDataCmd cmd;
cmd.bufferId = id;
cmd.writeFlushInfoLength = writeFlushInfoLength;
cmd.writeFlushInfo = nullptr;
client->SerializeCommand(cmd, writeFlushInfoLength, [&](char* cmdSpace) {
// Serialize flush metadata into the space after the command.
// This closes the handle for writing.
mWriteHandle->SerializeFlush(cmdSpace);
});
mWriteHandle = nullptr;
} else if (mReadHandle) {
mReadHandle = nullptr;
}
mMappedData = nullptr;
mMapOffset = 0;
mMapSize = 0;
// Tag all mapping requests still in flight as unmapped before callback.
for (auto& it : mRequests) {
if (it.second.clientStatus == WGPUBufferMapAsyncStatus_Success) {
it.second.clientStatus = WGPUBufferMapAsyncStatus_UnmappedBeforeCallback;
}
}
BufferUnmapCmd cmd;
cmd.self = ToAPI(this);
client->SerializeCommand(cmd);
}
void Buffer::Destroy() {
// Remove the current mapping.
mWriteHandle = nullptr;
mReadHandle = nullptr;
mMappedData = nullptr;
// Tag all mapping requests still in flight as destroyed before callback.
for (auto& it : mRequests) {
if (it.second.clientStatus == WGPUBufferMapAsyncStatus_Success) {
it.second.clientStatus = WGPUBufferMapAsyncStatus_DestroyedBeforeCallback;
}
}
BufferDestroyCmd cmd;
cmd.self = ToAPI(this);
client->SerializeCommand(cmd);
}
bool Buffer::IsMappedForReading() const {
return mReadHandle != nullptr;
}
bool Buffer::IsMappedForWriting() const {
return mWriteHandle != nullptr;
}
bool Buffer::CheckGetMappedRangeOffsetSize(size_t offset, size_t size) const {
if (offset % 8 != 0 || size % 4 != 0) {
return false;
}
if (size > mMapSize || offset < mMapOffset) {
return false;
}
size_t offsetInMappedRange = offset - mMapOffset;
return offsetInMappedRange <= mMapSize - size;
}
}} // namespace dawn_wire::client