blob: 211c321793633ef8bbab26ed028f46ac0b8f0915 [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/Device.h"
#include "common/Log.h"
#include "dawn_native/Adapter.h"
#include "dawn_native/AttachmentState.h"
#include "dawn_native/BindGroup.h"
#include "dawn_native/BindGroupLayout.h"
#include "dawn_native/Buffer.h"
#include "dawn_native/CommandBuffer.h"
#include "dawn_native/CommandEncoder.h"
#include "dawn_native/ComputePipeline.h"
#include "dawn_native/DynamicUploader.h"
#include "dawn_native/ErrorData.h"
#include "dawn_native/ErrorScope.h"
#include "dawn_native/ErrorScopeTracker.h"
#include "dawn_native/Fence.h"
#include "dawn_native/FenceSignalTracker.h"
#include "dawn_native/Instance.h"
#include "dawn_native/MapRequestTracker.h"
#include "dawn_native/PipelineLayout.h"
#include "dawn_native/QuerySet.h"
#include "dawn_native/Queue.h"
#include "dawn_native/RenderBundleEncoder.h"
#include "dawn_native/RenderPipeline.h"
#include "dawn_native/Sampler.h"
#include "dawn_native/ShaderModule.h"
#include "dawn_native/Surface.h"
#include "dawn_native/SwapChain.h"
#include "dawn_native/Texture.h"
#include "dawn_native/ValidationUtils_autogen.h"
#include <unordered_set>
namespace dawn_native {
// DeviceBase sub-structures
// The caches are unordered_sets of pointers with special hash and compare functions
// to compare the value of the objects, instead of the pointers.
template <typename Object>
using ContentLessObjectCache =
std::unordered_set<Object*, typename Object::HashFunc, typename Object::EqualityFunc>;
struct DeviceBase::Caches {
~Caches() {
ASSERT(attachmentStates.empty());
ASSERT(bindGroupLayouts.empty());
ASSERT(computePipelines.empty());
ASSERT(pipelineLayouts.empty());
ASSERT(renderPipelines.empty());
ASSERT(samplers.empty());
ASSERT(shaderModules.empty());
}
ContentLessObjectCache<AttachmentStateBlueprint> attachmentStates;
ContentLessObjectCache<BindGroupLayoutBase> bindGroupLayouts;
ContentLessObjectCache<ComputePipelineBase> computePipelines;
ContentLessObjectCache<PipelineLayoutBase> pipelineLayouts;
ContentLessObjectCache<RenderPipelineBase> renderPipelines;
ContentLessObjectCache<SamplerBase> samplers;
ContentLessObjectCache<ShaderModuleBase> shaderModules;
};
struct DeviceBase::DeprecationWarnings {
std::unordered_set<std::string> emitted;
size_t count = 0;
};
// DeviceBase
DeviceBase::DeviceBase(AdapterBase* adapter, const DeviceDescriptor* descriptor)
: mAdapter(adapter) {
if (descriptor != nullptr) {
ApplyToggleOverrides(descriptor);
ApplyExtensions(descriptor);
}
mFormatTable = BuildFormatTable(this);
SetDefaultToggles();
}
DeviceBase::~DeviceBase() {
}
MaybeError DeviceBase::Initialize(QueueBase* defaultQueue) {
mDefaultQueue = AcquireRef(defaultQueue);
mRootErrorScope = AcquireRef(new ErrorScope());
mCurrentErrorScope = mRootErrorScope.Get();
mCaches = std::make_unique<DeviceBase::Caches>();
mErrorScopeTracker = std::make_unique<ErrorScopeTracker>(this);
mFenceSignalTracker = std::make_unique<FenceSignalTracker>(this);
mMapRequestTracker = std::make_unique<MapRequestTracker>(this);
mDynamicUploader = std::make_unique<DynamicUploader>(this);
mDeprecationWarnings = std::make_unique<DeprecationWarnings>();
// Starting from now the backend can start doing reentrant calls so the device is marked as
// alive.
mState = State::Alive;
return {};
}
void DeviceBase::ShutDownBase() {
// Disconnect the device, depending on which state we are currently in.
switch (mState) {
case State::BeingCreated:
// The GPU timeline was never started so we don't have to wait.
break;
case State::Alive:
// Alive is the only state which can have GPU work happening. Wait for all of it to
// complete before proceeding with destruction.
// Assert that errors are device loss so that we can continue with destruction
AssertAndIgnoreDeviceLossError(WaitForIdleForDestruction());
AssumeCommandsComplete();
break;
case State::BeingDisconnected:
// Getting disconnected is a transient state happening in a single API call so there
// is always an external reference keeping the Device alive, which means the
// destructor cannot run while BeingDisconnected.
UNREACHABLE();
break;
case State::Disconnected:
break;
}
ASSERT(mCompletedSerial == mLastSubmittedSerial);
ASSERT(mFutureCallbackSerial <= mCompletedSerial);
// Skip handling device facilities if they haven't even been created (or failed doing so)
if (mState != State::BeingCreated) {
// The GPU timeline is finished so all services can be freed immediately. They need to
// be freed before ShutDownImpl() because they might relinquish resources that will be
// freed by backends in the ShutDownImpl() call. Still tick the ones that might have
// pending callbacks.
mErrorScopeTracker->Tick(GetCompletedCommandSerial());
mFenceSignalTracker->Tick(GetCompletedCommandSerial());
mMapRequestTracker->Tick(GetCompletedCommandSerial());
// call TickImpl once last time to clean up resources
// assert the errors are device loss so we can continue with destruction
AssertAndIgnoreDeviceLossError(TickImpl());
}
// At this point GPU operations are always finished, so we are in the disconnected state.
mState = State::Disconnected;
// mCurrentErrorScope can be null if we failed device initialization.
if (mCurrentErrorScope.Get() != nullptr) {
mCurrentErrorScope->UnlinkForShutdown();
}
mErrorScopeTracker = nullptr;
mFenceSignalTracker = nullptr;
mDynamicUploader = nullptr;
mMapRequestTracker = nullptr;
AssumeCommandsComplete();
// Tell the backend that it can free all the objects now that the GPU timeline is empty.
ShutDownImpl();
mCaches = nullptr;
}
void DeviceBase::HandleError(InternalErrorType type, const char* message) {
// If we receive an internal error, assume the backend can't recover and proceed with
// device destruction. We first wait for all previous commands to be completed so that
// backend objects can be freed immediately, before handling the loss.
if (type == InternalErrorType::Internal) {
// Move away from the Alive state so that the application cannot use this device
// anymore.
// TODO(cwallez@chromium.org): Do we need atomics for this to become visible to other
// threads in a multithreaded scenario?
mState = State::BeingDisconnected;
// Assert that errors are device losses so that we can continue with destruction.
// Assume all commands are complete after WaitForIdleForDestruction (because they were)
AssertAndIgnoreDeviceLossError(WaitForIdleForDestruction());
AssertAndIgnoreDeviceLossError(TickImpl());
AssumeCommandsComplete();
ASSERT(mFutureCallbackSerial <= mCompletedSerial);
mState = State::Disconnected;
// Now everything is as if the device was lost.
type = InternalErrorType::DeviceLost;
}
// The device was lost, call the application callback.
if (type == InternalErrorType::DeviceLost && mDeviceLostCallback != nullptr) {
mDeviceLostCallback(message, mDeviceLostUserdata);
mDeviceLostCallback = nullptr;
}
// Still forward device loss and internal errors to the error scopes so they all reject.
mCurrentErrorScope->HandleError(ToWGPUErrorType(type), message);
}
void DeviceBase::InjectError(wgpu::ErrorType type, const char* message) {
if (ConsumedError(ValidateErrorType(type))) {
return;
}
// This method should only be used to make error scope reject. For DeviceLost there is the
// LoseForTesting function that can be used instead.
if (type != wgpu::ErrorType::Validation && type != wgpu::ErrorType::OutOfMemory) {
HandleError(InternalErrorType::Validation,
"Invalid injected error, must be Validation or OutOfMemory");
return;
}
HandleError(FromWGPUErrorType(type), message);
}
void DeviceBase::ConsumeError(std::unique_ptr<ErrorData> error) {
ASSERT(error != nullptr);
std::ostringstream ss;
ss << error->GetMessage();
for (const auto& callsite : error->GetBacktrace()) {
ss << "\n at " << callsite.function << " (" << callsite.file << ":" << callsite.line
<< ")";
}
HandleError(error->GetType(), ss.str().c_str());
}
void DeviceBase::SetUncapturedErrorCallback(wgpu::ErrorCallback callback, void* userdata) {
mRootErrorScope->SetCallback(callback, userdata);
}
void DeviceBase::SetDeviceLostCallback(wgpu::DeviceLostCallback callback, void* userdata) {
mDeviceLostCallback = callback;
mDeviceLostUserdata = userdata;
}
void DeviceBase::PushErrorScope(wgpu::ErrorFilter filter) {
if (ConsumedError(ValidateErrorFilter(filter))) {
return;
}
mCurrentErrorScope = AcquireRef(new ErrorScope(filter, mCurrentErrorScope.Get()));
}
bool DeviceBase::PopErrorScope(wgpu::ErrorCallback callback, void* userdata) {
if (DAWN_UNLIKELY(mCurrentErrorScope.Get() == mRootErrorScope.Get())) {
return false;
}
mCurrentErrorScope->SetCallback(callback, userdata);
mCurrentErrorScope = Ref<ErrorScope>(mCurrentErrorScope->GetParent());
return true;
}
ErrorScope* DeviceBase::GetCurrentErrorScope() {
ASSERT(mCurrentErrorScope.Get() != nullptr);
return mCurrentErrorScope.Get();
}
MaybeError DeviceBase::ValidateObject(const ObjectBase* object) const {
ASSERT(object != nullptr);
if (DAWN_UNLIKELY(object->GetDevice() != this)) {
return DAWN_VALIDATION_ERROR("Object from a different device.");
}
if (DAWN_UNLIKELY(object->IsError())) {
return DAWN_VALIDATION_ERROR("Object is an error.");
}
return {};
}
MaybeError DeviceBase::ValidateIsAlive() const {
if (DAWN_LIKELY(mState == State::Alive)) {
return {};
}
return DAWN_DEVICE_LOST_ERROR("Device is lost");
}
void DeviceBase::LoseForTesting() {
if (mState != State::Alive) {
return;
}
HandleError(InternalErrorType::Internal, "Device lost for testing");
}
DeviceBase::State DeviceBase::GetState() const {
return mState;
}
bool DeviceBase::IsLost() const {
ASSERT(mState != State::BeingCreated);
return mState != State::Alive;
}
AdapterBase* DeviceBase::GetAdapter() const {
return mAdapter;
}
dawn_platform::Platform* DeviceBase::GetPlatform() const {
return GetAdapter()->GetInstance()->GetPlatform();
}
ErrorScopeTracker* DeviceBase::GetErrorScopeTracker() const {
return mErrorScopeTracker.get();
}
FenceSignalTracker* DeviceBase::GetFenceSignalTracker() const {
return mFenceSignalTracker.get();
}
MapRequestTracker* DeviceBase::GetMapRequestTracker() const {
return mMapRequestTracker.get();
}
Serial DeviceBase::GetCompletedCommandSerial() const {
return mCompletedSerial;
}
Serial DeviceBase::GetLastSubmittedCommandSerial() const {
return mLastSubmittedSerial;
}
Serial DeviceBase::GetFutureCallbackSerial() const {
return mFutureCallbackSerial;
}
void DeviceBase::IncrementLastSubmittedCommandSerial() {
mLastSubmittedSerial++;
}
void DeviceBase::AssumeCommandsComplete() {
Serial maxSerial = std::max(mLastSubmittedSerial + 1, mFutureCallbackSerial);
mLastSubmittedSerial = maxSerial;
mCompletedSerial = maxSerial;
}
Serial DeviceBase::GetPendingCommandSerial() const {
return mLastSubmittedSerial + 1;
}
void DeviceBase::AddFutureCallbackSerial(Serial serial) {
if (serial > mFutureCallbackSerial) {
mFutureCallbackSerial = serial;
}
}
void DeviceBase::CheckPassedSerials() {
Serial completedSerial = CheckAndUpdateCompletedSerials();
ASSERT(completedSerial <= mLastSubmittedSerial);
// completedSerial should not be less than mCompletedSerial unless it is 0.
// It can be 0 when there's no fences to check.
ASSERT(completedSerial >= mCompletedSerial || completedSerial == 0);
if (completedSerial > mCompletedSerial) {
mCompletedSerial = completedSerial;
}
}
ResultOrError<const Format*> DeviceBase::GetInternalFormat(wgpu::TextureFormat format) const {
size_t index = ComputeFormatIndex(format);
if (index >= mFormatTable.size()) {
return DAWN_VALIDATION_ERROR("Unknown texture format");
}
const Format* internalFormat = &mFormatTable[index];
if (!internalFormat->isSupported) {
return DAWN_VALIDATION_ERROR("Unsupported texture format");
}
return internalFormat;
}
const Format& DeviceBase::GetValidInternalFormat(wgpu::TextureFormat format) const {
size_t index = ComputeFormatIndex(format);
ASSERT(index < mFormatTable.size());
ASSERT(mFormatTable[index].isSupported);
return mFormatTable[index];
}
ResultOrError<BindGroupLayoutBase*> DeviceBase::GetOrCreateBindGroupLayout(
const BindGroupLayoutDescriptor* descriptor) {
BindGroupLayoutBase blueprint(this, descriptor);
auto iter = mCaches->bindGroupLayouts.find(&blueprint);
if (iter != mCaches->bindGroupLayouts.end()) {
(*iter)->Reference();
return *iter;
}
BindGroupLayoutBase* backendObj;
DAWN_TRY_ASSIGN(backendObj, CreateBindGroupLayoutImpl(descriptor));
backendObj->SetIsCachedReference();
mCaches->bindGroupLayouts.insert(backendObj);
return backendObj;
}
void DeviceBase::UncacheBindGroupLayout(BindGroupLayoutBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->bindGroupLayouts.erase(obj);
ASSERT(removedCount == 1);
}
ResultOrError<ComputePipelineBase*> DeviceBase::GetOrCreateComputePipeline(
const ComputePipelineDescriptor* descriptor) {
ComputePipelineBase blueprint(this, descriptor);
auto iter = mCaches->computePipelines.find(&blueprint);
if (iter != mCaches->computePipelines.end()) {
(*iter)->Reference();
return *iter;
}
ComputePipelineBase* backendObj;
DAWN_TRY_ASSIGN(backendObj, CreateComputePipelineImpl(descriptor));
backendObj->SetIsCachedReference();
mCaches->computePipelines.insert(backendObj);
return backendObj;
}
void DeviceBase::UncacheComputePipeline(ComputePipelineBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->computePipelines.erase(obj);
ASSERT(removedCount == 1);
}
ResultOrError<PipelineLayoutBase*> DeviceBase::GetOrCreatePipelineLayout(
const PipelineLayoutDescriptor* descriptor) {
PipelineLayoutBase blueprint(this, descriptor);
auto iter = mCaches->pipelineLayouts.find(&blueprint);
if (iter != mCaches->pipelineLayouts.end()) {
(*iter)->Reference();
return *iter;
}
PipelineLayoutBase* backendObj;
DAWN_TRY_ASSIGN(backendObj, CreatePipelineLayoutImpl(descriptor));
backendObj->SetIsCachedReference();
mCaches->pipelineLayouts.insert(backendObj);
return backendObj;
}
void DeviceBase::UncachePipelineLayout(PipelineLayoutBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->pipelineLayouts.erase(obj);
ASSERT(removedCount == 1);
}
ResultOrError<RenderPipelineBase*> DeviceBase::GetOrCreateRenderPipeline(
const RenderPipelineDescriptor* descriptor) {
RenderPipelineBase blueprint(this, descriptor);
auto iter = mCaches->renderPipelines.find(&blueprint);
if (iter != mCaches->renderPipelines.end()) {
(*iter)->Reference();
return *iter;
}
RenderPipelineBase* backendObj;
DAWN_TRY_ASSIGN(backendObj, CreateRenderPipelineImpl(descriptor));
backendObj->SetIsCachedReference();
mCaches->renderPipelines.insert(backendObj);
return backendObj;
}
void DeviceBase::UncacheRenderPipeline(RenderPipelineBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->renderPipelines.erase(obj);
ASSERT(removedCount == 1);
}
ResultOrError<SamplerBase*> DeviceBase::GetOrCreateSampler(
const SamplerDescriptor* descriptor) {
SamplerBase blueprint(this, descriptor);
auto iter = mCaches->samplers.find(&blueprint);
if (iter != mCaches->samplers.end()) {
(*iter)->Reference();
return *iter;
}
SamplerBase* backendObj;
DAWN_TRY_ASSIGN(backendObj, CreateSamplerImpl(descriptor));
backendObj->SetIsCachedReference();
mCaches->samplers.insert(backendObj);
return backendObj;
}
void DeviceBase::UncacheSampler(SamplerBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->samplers.erase(obj);
ASSERT(removedCount == 1);
}
ResultOrError<ShaderModuleBase*> DeviceBase::GetOrCreateShaderModule(
const ShaderModuleDescriptor* descriptor) {
ShaderModuleBase blueprint(this, descriptor);
auto iter = mCaches->shaderModules.find(&blueprint);
if (iter != mCaches->shaderModules.end()) {
(*iter)->Reference();
return *iter;
}
ShaderModuleBase* backendObj;
DAWN_TRY_ASSIGN(backendObj, CreateShaderModuleImpl(descriptor));
backendObj->SetIsCachedReference();
mCaches->shaderModules.insert(backendObj);
return backendObj;
}
void DeviceBase::UncacheShaderModule(ShaderModuleBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->shaderModules.erase(obj);
ASSERT(removedCount == 1);
}
Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(
AttachmentStateBlueprint* blueprint) {
auto iter = mCaches->attachmentStates.find(blueprint);
if (iter != mCaches->attachmentStates.end()) {
return static_cast<AttachmentState*>(*iter);
}
Ref<AttachmentState> attachmentState = AcquireRef(new AttachmentState(this, *blueprint));
attachmentState->SetIsCachedReference();
mCaches->attachmentStates.insert(attachmentState.Get());
return attachmentState;
}
Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(
const RenderBundleEncoderDescriptor* descriptor) {
AttachmentStateBlueprint blueprint(descriptor);
return GetOrCreateAttachmentState(&blueprint);
}
Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(
const RenderPipelineDescriptor* descriptor) {
AttachmentStateBlueprint blueprint(descriptor);
return GetOrCreateAttachmentState(&blueprint);
}
Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(
const RenderPassDescriptor* descriptor) {
AttachmentStateBlueprint blueprint(descriptor);
return GetOrCreateAttachmentState(&blueprint);
}
void DeviceBase::UncacheAttachmentState(AttachmentState* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->attachmentStates.erase(obj);
ASSERT(removedCount == 1);
}
// Object creation API methods
BindGroupBase* DeviceBase::CreateBindGroup(const BindGroupDescriptor* descriptor) {
BindGroupBase* result = nullptr;
if (ConsumedError(CreateBindGroupInternal(&result, descriptor))) {
return BindGroupBase::MakeError(this);
}
return result;
}
BindGroupLayoutBase* DeviceBase::CreateBindGroupLayout(
const BindGroupLayoutDescriptor* descriptor) {
BindGroupLayoutBase* result = nullptr;
if (ConsumedError(CreateBindGroupLayoutInternal(&result, descriptor))) {
return BindGroupLayoutBase::MakeError(this);
}
return result;
}
BufferBase* DeviceBase::CreateBuffer(const BufferDescriptor* descriptor) {
BufferBase* result = nullptr;
if (ConsumedError(CreateBufferInternal(descriptor), &result)) {
ASSERT(result == nullptr);
return BufferBase::MakeError(this);
}
return result;
}
WGPUCreateBufferMappedResult DeviceBase::CreateBufferMapped(
const BufferDescriptor* descriptor) {
BufferBase* buffer = nullptr;
uint8_t* data = nullptr;
uint64_t size = descriptor->size;
if (ConsumedError(CreateBufferInternal(descriptor), &buffer) ||
ConsumedError(buffer->MapAtCreation(&data))) {
// Map failed. Replace the buffer with an error buffer.
if (buffer != nullptr) {
buffer->Release();
}
buffer = BufferBase::MakeErrorMapped(this, size, &data);
}
ASSERT(buffer != nullptr);
if (data == nullptr) {
// |data| may be nullptr if there was an OOM in MakeErrorMapped.
// Non-zero dataLength and nullptr data is used to indicate there should be
// mapped data but the allocation failed.
ASSERT(buffer->IsError());
} else {
memset(data, 0, size);
}
WGPUCreateBufferMappedResult result = {};
result.buffer = reinterpret_cast<WGPUBuffer>(buffer);
result.data = data;
result.dataLength = size;
return result;
}
CommandEncoder* DeviceBase::CreateCommandEncoder(const CommandEncoderDescriptor* descriptor) {
return new CommandEncoder(this, descriptor);
}
ComputePipelineBase* DeviceBase::CreateComputePipeline(
const ComputePipelineDescriptor* descriptor) {
ComputePipelineBase* result = nullptr;
if (ConsumedError(CreateComputePipelineInternal(&result, descriptor))) {
return ComputePipelineBase::MakeError(this);
}
return result;
}
PipelineLayoutBase* DeviceBase::CreatePipelineLayout(
const PipelineLayoutDescriptor* descriptor) {
PipelineLayoutBase* result = nullptr;
if (ConsumedError(CreatePipelineLayoutInternal(&result, descriptor))) {
return PipelineLayoutBase::MakeError(this);
}
return result;
}
QuerySetBase* DeviceBase::CreateQuerySet(const QuerySetDescriptor* descriptor) {
QuerySetBase* result = nullptr;
if (ConsumedError(CreateQuerySetInternal(&result, descriptor))) {
return QuerySetBase::MakeError(this);
}
return result;
}
QueueBase* DeviceBase::CreateQueue() {
// TODO(dawn:22): Remove this once users use GetDefaultQueue
EmitDeprecationWarning(
"Device::CreateQueue is deprecated, use Device::GetDefaultQueue instead");
return GetDefaultQueue();
}
SamplerBase* DeviceBase::CreateSampler(const SamplerDescriptor* descriptor) {
SamplerBase* result = nullptr;
if (ConsumedError(CreateSamplerInternal(&result, descriptor))) {
return SamplerBase::MakeError(this);
}
return result;
}
RenderBundleEncoder* DeviceBase::CreateRenderBundleEncoder(
const RenderBundleEncoderDescriptor* descriptor) {
RenderBundleEncoder* result = nullptr;
if (ConsumedError(CreateRenderBundleEncoderInternal(&result, descriptor))) {
return RenderBundleEncoder::MakeError(this);
}
return result;
}
RenderPipelineBase* DeviceBase::CreateRenderPipeline(
const RenderPipelineDescriptor* descriptor) {
RenderPipelineBase* result = nullptr;
if (ConsumedError(CreateRenderPipelineInternal(&result, descriptor))) {
return RenderPipelineBase::MakeError(this);
}
return result;
}
ShaderModuleBase* DeviceBase::CreateShaderModule(const ShaderModuleDescriptor* descriptor) {
ShaderModuleBase* result = nullptr;
if (ConsumedError(CreateShaderModuleInternal(&result, descriptor))) {
return ShaderModuleBase::MakeError(this);
}
return result;
}
SwapChainBase* DeviceBase::CreateSwapChain(Surface* surface,
const SwapChainDescriptor* descriptor) {
SwapChainBase* result = nullptr;
if (ConsumedError(CreateSwapChainInternal(&result, surface, descriptor))) {
return SwapChainBase::MakeError(this);
}
return result;
}
TextureBase* DeviceBase::CreateTexture(const TextureDescriptor* descriptor) {
Ref<TextureBase> result;
if (ConsumedError(CreateTextureInternal(descriptor), &result)) {
return TextureBase::MakeError(this);
}
return result.Detach();
}
TextureViewBase* DeviceBase::CreateTextureView(TextureBase* texture,
const TextureViewDescriptor* descriptor) {
TextureViewBase* result = nullptr;
if (ConsumedError(CreateTextureViewInternal(&result, texture, descriptor))) {
return TextureViewBase::MakeError(this);
}
return result;
}
// Other Device API methods
void DeviceBase::Tick() {
if (ConsumedError(ValidateIsAlive())) {
return;
}
// to avoid overly ticking, we only want to tick when:
// 1. the last submitted serial has moved beyond the completed serial
// 2. or the completed serial has not reached the future serial set by the trackers
if (mLastSubmittedSerial > mCompletedSerial || mCompletedSerial < mFutureCallbackSerial) {
CheckPassedSerials();
if (ConsumedError(TickImpl())) {
return;
}
// There is no GPU work in flight, we need to move the serials forward so that
// so that CPU operations waiting on GPU completion can know they don't have to wait.
// AssumeCommandsComplete will assign the max serial we must tick to in order to
// fire the awaiting callbacks.
if (mCompletedSerial == mLastSubmittedSerial) {
AssumeCommandsComplete();
}
// TODO(cwallez@chromium.org): decouple TickImpl from updating the serial so that we can
// tick the dynamic uploader before the backend resource allocators. This would allow
// reclaiming resources one tick earlier.
mDynamicUploader->Deallocate(mCompletedSerial);
mErrorScopeTracker->Tick(mCompletedSerial);
mFenceSignalTracker->Tick(mCompletedSerial);
mMapRequestTracker->Tick(mCompletedSerial);
}
}
void DeviceBase::Reference() {
ASSERT(mRefCount != 0);
mRefCount++;
}
void DeviceBase::Release() {
ASSERT(mRefCount != 0);
mRefCount--;
if (mRefCount == 0) {
delete this;
}
}
QueueBase* DeviceBase::GetDefaultQueue() {
// Backends gave the default queue during initialization.
ASSERT(mDefaultQueue.Get() != nullptr);
// Returns a new reference to the queue.
mDefaultQueue->Reference();
return mDefaultQueue.Get();
}
void DeviceBase::ApplyExtensions(const DeviceDescriptor* deviceDescriptor) {
ASSERT(deviceDescriptor);
ASSERT(GetAdapter()->SupportsAllRequestedExtensions(deviceDescriptor->requiredExtensions));
mEnabledExtensions = GetAdapter()->GetInstance()->ExtensionNamesToExtensionsSet(
deviceDescriptor->requiredExtensions);
}
std::vector<const char*> DeviceBase::GetEnabledExtensions() const {
return mEnabledExtensions.GetEnabledExtensionNames();
}
bool DeviceBase::IsExtensionEnabled(Extension extension) const {
return mEnabledExtensions.IsEnabled(extension);
}
bool DeviceBase::IsValidationEnabled() const {
return !IsToggleEnabled(Toggle::SkipValidation);
}
size_t DeviceBase::GetLazyClearCountForTesting() {
return mLazyClearCountForTesting;
}
void DeviceBase::IncrementLazyClearCountForTesting() {
++mLazyClearCountForTesting;
}
size_t DeviceBase::GetDeprecationWarningCountForTesting() {
return mDeprecationWarnings->count;
}
void DeviceBase::EmitDeprecationWarning(const char* warning) {
mDeprecationWarnings->count++;
if (mDeprecationWarnings->emitted.insert(warning).second) {
dawn::WarningLog() << warning;
}
}
// Implementation details of object creation
MaybeError DeviceBase::CreateBindGroupInternal(BindGroupBase** result,
const BindGroupDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateBindGroupDescriptor(this, descriptor));
}
DAWN_TRY_ASSIGN(*result, CreateBindGroupImpl(descriptor));
return {};
}
MaybeError DeviceBase::CreateBindGroupLayoutInternal(
BindGroupLayoutBase** result,
const BindGroupLayoutDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateBindGroupLayoutDescriptor(this, descriptor));
}
DAWN_TRY_ASSIGN(*result, GetOrCreateBindGroupLayout(descriptor));
return {};
}
ResultOrError<BufferBase*> DeviceBase::CreateBufferInternal(
const BufferDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateBufferDescriptor(this, descriptor));
}
return CreateBufferImpl(descriptor);
}
MaybeError DeviceBase::CreateComputePipelineInternal(
ComputePipelineBase** result,
const ComputePipelineDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateComputePipelineDescriptor(this, descriptor));
}
if (descriptor->layout == nullptr) {
ComputePipelineDescriptor descriptorWithDefaultLayout = *descriptor;
DAWN_TRY_ASSIGN(
descriptorWithDefaultLayout.layout,
PipelineLayoutBase::CreateDefault(this, &descriptor->computeStage.module, 1));
// Ref will keep the pipeline layout alive until the end of the function where
// the pipeline will take another reference.
Ref<PipelineLayoutBase> layoutRef = AcquireRef(descriptorWithDefaultLayout.layout);
DAWN_TRY_ASSIGN(*result, GetOrCreateComputePipeline(&descriptorWithDefaultLayout));
} else {
DAWN_TRY_ASSIGN(*result, GetOrCreateComputePipeline(descriptor));
}
return {};
}
MaybeError DeviceBase::CreatePipelineLayoutInternal(
PipelineLayoutBase** result,
const PipelineLayoutDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidatePipelineLayoutDescriptor(this, descriptor));
}
DAWN_TRY_ASSIGN(*result, GetOrCreatePipelineLayout(descriptor));
return {};
}
MaybeError DeviceBase::CreateQuerySetInternal(QuerySetBase** result,
const QuerySetDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateQuerySetDescriptor(this, descriptor));
}
DAWN_TRY_ASSIGN(*result, CreateQuerySetImpl(descriptor));
return {};
}
MaybeError DeviceBase::CreateRenderBundleEncoderInternal(
RenderBundleEncoder** result,
const RenderBundleEncoderDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateRenderBundleEncoderDescriptor(this, descriptor));
}
*result = new RenderBundleEncoder(this, descriptor);
return {};
}
MaybeError DeviceBase::CreateRenderPipelineInternal(
RenderPipelineBase** result,
const RenderPipelineDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateRenderPipelineDescriptor(this, descriptor));
}
if (descriptor->layout == nullptr) {
RenderPipelineDescriptor descriptorWithDefaultLayout = *descriptor;
const ShaderModuleBase* modules[2];
modules[0] = descriptor->vertexStage.module;
uint32_t count;
if (descriptor->fragmentStage == nullptr) {
count = 1;
} else {
modules[1] = descriptor->fragmentStage->module;
count = 2;
}
DAWN_TRY_ASSIGN(descriptorWithDefaultLayout.layout,
PipelineLayoutBase::CreateDefault(this, modules, count));
// Ref will keep the pipeline layout alive until the end of the function where
// the pipeline will take another reference.
Ref<PipelineLayoutBase> layoutRef = AcquireRef(descriptorWithDefaultLayout.layout);
DAWN_TRY_ASSIGN(*result, GetOrCreateRenderPipeline(&descriptorWithDefaultLayout));
} else {
DAWN_TRY_ASSIGN(*result, GetOrCreateRenderPipeline(descriptor));
}
return {};
}
MaybeError DeviceBase::CreateSamplerInternal(SamplerBase** result,
const SamplerDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateSamplerDescriptor(this, descriptor));
}
DAWN_TRY_ASSIGN(*result, GetOrCreateSampler(descriptor));
return {};
}
MaybeError DeviceBase::CreateShaderModuleInternal(ShaderModuleBase** result,
const ShaderModuleDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateShaderModuleDescriptor(this, descriptor));
}
DAWN_TRY_ASSIGN(*result, GetOrCreateShaderModule(descriptor));
return {};
}
MaybeError DeviceBase::CreateSwapChainInternal(SwapChainBase** result,
Surface* surface,
const SwapChainDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateSwapChainDescriptor(this, surface, descriptor));
}
if (surface == nullptr) {
DAWN_TRY_ASSIGN(*result, CreateSwapChainImpl(descriptor));
} else {
ASSERT(descriptor->implementation == 0);
NewSwapChainBase* previousSwapChain = surface->GetAttachedSwapChain();
NewSwapChainBase* newSwapChain;
DAWN_TRY_ASSIGN(newSwapChain,
CreateSwapChainImpl(surface, previousSwapChain, descriptor));
if (previousSwapChain != nullptr) {
ASSERT(!previousSwapChain->IsAttached());
}
ASSERT(newSwapChain->IsAttached());
surface->SetAttachedSwapChain(newSwapChain);
*result = newSwapChain;
}
return {};
}
ResultOrError<Ref<TextureBase>> DeviceBase::CreateTextureInternal(
const TextureDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateTextureDescriptor(this, descriptor));
}
return CreateTextureImpl(descriptor);
}
MaybeError DeviceBase::CreateTextureViewInternal(TextureViewBase** result,
TextureBase* texture,
const TextureViewDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
DAWN_TRY(ValidateObject(texture));
TextureViewDescriptor desc = GetTextureViewDescriptorWithDefaults(texture, descriptor);
if (IsValidationEnabled()) {
DAWN_TRY(ValidateTextureViewDescriptor(texture, &desc));
}
DAWN_TRY_ASSIGN(*result, CreateTextureViewImpl(texture, &desc));
return {};
}
// Other implementation details
DynamicUploader* DeviceBase::GetDynamicUploader() const {
return mDynamicUploader.get();
}
// The Toggle device facility
std::vector<const char*> DeviceBase::GetTogglesUsed() const {
return mEnabledToggles.GetContainedToggleNames();
}
bool DeviceBase::IsToggleEnabled(Toggle toggle) const {
return mEnabledToggles.Has(toggle);
}
void DeviceBase::SetToggle(Toggle toggle, bool isEnabled) {
if (!mOverridenToggles.Has(toggle)) {
mEnabledToggles.Set(toggle, isEnabled);
}
}
void DeviceBase::ForceSetToggle(Toggle toggle, bool isEnabled) {
if (!mOverridenToggles.Has(toggle) && mEnabledToggles.Has(toggle) != isEnabled) {
dawn::WarningLog() << "Forcing toggle \"" << ToggleEnumToName(toggle) << "\" to "
<< isEnabled << "when it was overriden to be " << !isEnabled;
}
mEnabledToggles.Set(toggle, isEnabled);
}
void DeviceBase::SetDefaultToggles() {
SetToggle(Toggle::LazyClearResourceOnFirstUse, true);
SetToggle(Toggle::UseSpvc, false);
}
void DeviceBase::ApplyToggleOverrides(const DeviceDescriptor* deviceDescriptor) {
ASSERT(deviceDescriptor);
for (const char* toggleName : deviceDescriptor->forceEnabledToggles) {
Toggle toggle = GetAdapter()->GetInstance()->ToggleNameToEnum(toggleName);
if (toggle != Toggle::InvalidEnum) {
mEnabledToggles.Set(toggle, true);
mOverridenToggles.Set(toggle, true);
}
}
for (const char* toggleName : deviceDescriptor->forceDisabledToggles) {
Toggle toggle = GetAdapter()->GetInstance()->ToggleNameToEnum(toggleName);
if (toggle != Toggle::InvalidEnum) {
mEnabledToggles.Set(toggle, false);
mOverridenToggles.Set(toggle, true);
}
}
}
} // namespace dawn_native