blob: 1055f54c27a1a3f54012b7cbbd07b4712f9ba24e [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cmath>
#include <sstream>
#include <string>
#include <vector>
#include "dawn/common/Constants.h"
#include "dawn/tests/unittests/validation/ValidationTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
namespace dawn {
namespace {
class RenderPipelineValidationTest : public ValidationTest {
protected:
WGPUDevice CreateTestDevice(native::Adapter dawnAdapter,
wgpu::DeviceDescriptor descriptor) override {
wgpu::FeatureName requiredFeatures[1] = {wgpu::FeatureName::ShaderF16};
descriptor.requiredFeatures = requiredFeatures;
descriptor.requiredFeaturesCount = 1;
return dawnAdapter.CreateDevice(&descriptor);
}
void SetUp() override {
ValidationTest::SetUp();
vsModule = utils::CreateShaderModule(device, R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4f {
return vec4f(0.0, 1.0, 0.0, 1.0);
})");
fsModuleUint = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4u {
return vec4u(0u, 255u, 0u, 255u);
})");
}
wgpu::ShaderModule vsModule;
wgpu::ShaderModule fsModule;
wgpu::ShaderModule fsModuleUint;
};
bool BlendFactorContainsSrcAlpha(const wgpu::BlendFactor& blendFactor) {
return blendFactor == wgpu::BlendFactor::SrcAlpha ||
blendFactor == wgpu::BlendFactor::OneMinusSrcAlpha ||
blendFactor == wgpu::BlendFactor::SrcAlphaSaturated;
}
// Test cases where creation should succeed
TEST_F(RenderPipelineValidationTest, CreationSuccess) {
{
// New format
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
device.CreateRenderPipeline(&descriptor);
}
}
// Tests that depth bias parameters must not be NaN.
TEST_F(RenderPipelineValidationTest, DepthBiasParameterNotBeNaN) {
// Control case, depth bias parameters in ComboRenderPipeline default to 0 which is finite
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.EnableDepthStencil();
device.CreateRenderPipeline(&descriptor);
}
// Infinite depth bias clamp is valid
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasClamp = INFINITY;
device.CreateRenderPipeline(&descriptor);
}
// NAN depth bias clamp is invalid
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasClamp = NAN;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Infinite depth bias slope is valid
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasSlopeScale = INFINITY;
device.CreateRenderPipeline(&descriptor);
}
// NAN depth bias slope is invalid
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasSlopeScale = NAN;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that depth or stencil aspect is required if we enable depth or stencil test.
TEST_F(RenderPipelineValidationTest, DepthStencilAspectRequirement) {
// Control case, stencil aspect is required if stencil test or stencil write is enabled
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil =
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8);
depthStencil->stencilFront.compare = wgpu::CompareFunction::LessEqual;
depthStencil->stencilBack.failOp = wgpu::StencilOperation::Replace;
device.CreateRenderPipeline(&descriptor);
}
// It is invalid if the texture format doesn't have stencil aspect while stencil test is
// enabled (depthStencilState.stencilFront are not default values).
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil =
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24Plus);
depthStencil->stencilFront.compare = wgpu::CompareFunction::LessEqual;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// It is invalid if the texture format doesn't have stencil aspect while stencil write is
// enabled (depthStencilState.stencilBack are not default values).
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil =
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24Plus);
depthStencil->stencilBack.failOp = wgpu::StencilOperation::Replace;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Control case, depth aspect is required if depth test or depth write is enabled
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil =
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8);
depthStencil->depthCompare = wgpu::CompareFunction::LessEqual;
depthStencil->depthWriteEnabled = true;
device.CreateRenderPipeline(&descriptor);
}
// TODO(dawn:666): Add tests for stencil-only format (Stencil8) with depth test or depth write
// enabled when Stencil8 format is implemented
}
// Tests that depth attachment is required when frag_depth is written in fragment stage.
TEST_F(RenderPipelineValidationTest, DepthAttachmentRequiredWhenFragDepthIsWritten) {
wgpu::ShaderModule fsModuleFragDepthOutput = utils::CreateShaderModule(device, R"(
struct Output {
@builtin(frag_depth) depth_out: f32,
@location(0) color : vec4f,
}
@fragment fn main() -> Output {
var o: Output;
// We need to make sure this frag_depth isn't optimized out even its value equals "no op".
o.depth_out = 0.5;
o.color = vec4f(1.0, 1.0, 1.0, 1.0);
return o;
}
)");
{
// Succeeds because there is depth stencil state.
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModuleFragDepthOutput;
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8);
device.CreateRenderPipeline(&descriptor);
}
{
// Fails because there is no depth stencil state.
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModuleFragDepthOutput;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
{
// Fails because there is depth stencil state but no depth aspect.
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModuleFragDepthOutput;
descriptor.EnableDepthStencil(wgpu::TextureFormat::Stencil8);
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that at least one color target state is required.
TEST_F(RenderPipelineValidationTest, ColorTargetStateRequired) {
{
// This one succeeds because attachment 0 is the color attachment
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 1;
device.CreateRenderPipeline(&descriptor);
}
{ // Fail because lack of color target states (and depth/stencil state)
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that target blend must not be set if the format is undefined.
TEST_F(RenderPipelineValidationTest, UndefinedColorStateFormatWithBlend) {
{
// Control case: Valid undefined format target.
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 1;
descriptor.cTargets[0].format = wgpu::TextureFormat::Undefined;
device.CreateRenderPipeline(&descriptor);
}
{
// Error case: undefined format target with blend state set.
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 1;
descriptor.cTargets[0].format = wgpu::TextureFormat::Undefined;
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
ASSERT_DEVICE_ERROR(
device.CreateRenderPipeline(&descriptor),
testing::HasSubstr("Color target[0] blend state is set when the format is undefined."));
}
}
// Tests that a color target that's present in the pipeline descriptor but not in the shader must
// have its writeMask set to 0.
TEST_F(RenderPipelineValidationTest, WriteMaskMustBeZeroForColorTargetWithNoShaderOutput) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
descriptor.cTargets[1].format = wgpu::TextureFormat::RGBA8Unorm;
// Control case: Target 1 not output by the shader but has writeMask = 0
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None;
device.CreateRenderPipeline(&descriptor);
// Error case: the writeMask is not 0.
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Red;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Tests that the color formats must be renderable.
TEST_F(RenderPipelineValidationTest, NonRenderableFormat) {
{
// Succeeds because RGBA8Unorm is renderable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
device.CreateRenderPipeline(&descriptor);
}
{
// Fails because RG11B10Ufloat is non-renderable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::RG11B10Ufloat;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the color formats must be blendable when blending is enabled.
// Those are renderable color formats with "float" capabilities in
// https://gpuweb.github.io/gpuweb/#plain-color-formats
TEST_F(RenderPipelineValidationTest, NonBlendableFormat) {
{
// Succeeds because RGBA8Unorm is blendable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
device.CreateRenderPipeline(&descriptor);
}
{
// Fails because RGBA32Float is not blendable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
{
// Succeeds because RGBA32Float is not blendable but blending is disabled
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].blend = nullptr;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
device.CreateRenderPipeline(&descriptor);
}
{
// Fails because RGBA8Uint is not blendable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModuleUint;
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
{
// Succeeds because RGBA8Uint is not blendable but blending is disabled
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModuleUint;
descriptor.cTargets[0].blend = nullptr;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint;
device.CreateRenderPipeline(&descriptor);
}
}
// Tests that the format of the color state descriptor must match the output of the fragment shader.
TEST_F(RenderPipelineValidationTest, FragmentOutputFormatCompatibility) {
std::vector<std::vector<std::string>> kScalarTypeLists = {// Float scalar types
{"f32", "f16"},
// Sint scalar type
{"i32"},
// Uint scalar type
{"u32"}};
std::vector<std::vector<wgpu::TextureFormat>> kColorFormatLists = {
// Float color formats
{wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA16Float,
wgpu::TextureFormat::RGBA32Float},
// Sint color formats
{wgpu::TextureFormat::RGBA8Sint, wgpu::TextureFormat::RGBA16Sint,
wgpu::TextureFormat::RGBA32Sint},
// Uint color formats
{wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA16Uint,
wgpu::TextureFormat::RGBA32Uint}};
for (size_t i = 0; i < kScalarTypeLists.size(); ++i) {
for (const std::string& scalarType : kScalarTypeLists[i]) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
// Enable f16 extension if needed.
if (scalarType == "f16") {
stream << "enable f16;\n\n";
}
stream << R"(
@fragment fn main() -> @location(0) vec4<)"
<< scalarType << R"(> {
var result : vec4<)"
<< scalarType << R"(>;
return result;
})";
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
for (size_t j = 0; j < kColorFormatLists.size(); ++j) {
for (wgpu::TextureFormat textureFormat : kColorFormatLists[j]) {
descriptor.cTargets[0].format = textureFormat;
if (i == j) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
}
}
// Tests that the component count of the color state target format must be fewer than that of the
// fragment shader output.
TEST_F(RenderPipelineValidationTest, FragmentOutputComponentCountCompatibility) {
std::array<wgpu::TextureFormat, 3> kColorFormats = {wgpu::TextureFormat::R8Unorm,
wgpu::TextureFormat::RG8Unorm,
wgpu::TextureFormat::RGBA8Unorm};
std::array<wgpu::BlendFactor, 8> kBlendFactors = {wgpu::BlendFactor::Zero,
wgpu::BlendFactor::One,
wgpu::BlendFactor::SrcAlpha,
wgpu::BlendFactor::OneMinusSrcAlpha,
wgpu::BlendFactor::Src,
wgpu::BlendFactor::DstAlpha,
wgpu::BlendFactor::OneMinusDstAlpha,
wgpu::BlendFactor::Dst};
for (size_t componentCount = 1; componentCount <= 4; ++componentCount) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
stream << R"(
@fragment fn main() -> @location(0) )";
switch (componentCount) {
case 1:
stream << R"(f32 {
return 1.0;
})";
break;
case 2:
stream << R"(vec2f {
return vec2f(1.0, 1.0);
})";
break;
case 3:
stream << R"(vec3f {
return vec3f(1.0, 1.0, 1.0);
})";
break;
case 4:
stream << R"(vec4f {
return vec4f(1.0, 1.0, 1.0, 1.0);
})";
break;
default:
UNREACHABLE();
}
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
for (auto colorFormat : kColorFormats) {
descriptor.cTargets[0].format = colorFormat;
descriptor.cTargets[0].blend = nullptr;
if (componentCount >= utils::GetWGSLRenderableColorTextureComponentCount(colorFormat)) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
for (auto colorSrcFactor : kBlendFactors) {
descriptor.cBlends[0].color.srcFactor = colorSrcFactor;
for (auto colorDstFactor : kBlendFactors) {
descriptor.cBlends[0].color.dstFactor = colorDstFactor;
for (auto alphaSrcFactor : kBlendFactors) {
descriptor.cBlends[0].alpha.srcFactor = alphaSrcFactor;
for (auto alphaDstFactor : kBlendFactors) {
descriptor.cBlends[0].alpha.dstFactor = alphaDstFactor;
bool valid = true;
if (componentCount >=
utils::GetWGSLRenderableColorTextureComponentCount(colorFormat)) {
if (BlendFactorContainsSrcAlpha(
descriptor.cTargets[0].blend->color.srcFactor) ||
BlendFactorContainsSrcAlpha(
descriptor.cTargets[0].blend->color.dstFactor)) {
valid = componentCount == 4;
}
} else {
valid = false;
}
if (valid) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
}
}
}
}
// Tests that when blendOperationMinOrMax is "min" or "max", both srcBlendFactor and dstBlendFactor
// must be "one".
TEST_F(RenderPipelineValidationTest, BlendOperationAndBlendFactors) {
constexpr std::array<wgpu::BlendFactor, 8> kBlendFactors = {wgpu::BlendFactor::Zero,
wgpu::BlendFactor::One,
wgpu::BlendFactor::SrcAlpha,
wgpu::BlendFactor::OneMinusSrcAlpha,
wgpu::BlendFactor::Src,
wgpu::BlendFactor::DstAlpha,
wgpu::BlendFactor::OneMinusDstAlpha,
wgpu::BlendFactor::Dst};
constexpr std::array<wgpu::BlendOperation, 2> kBlendOperationsForTest = {
wgpu::BlendOperation::Max, wgpu::BlendOperation::Min};
for (wgpu::BlendOperation blendOperationMinOrMax : kBlendOperationsForTest) {
for (wgpu::BlendFactor srcFactor : kBlendFactors) {
for (wgpu::BlendFactor dstFactor : kBlendFactors) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
descriptor.cBlends[0].color.srcFactor = srcFactor;
descriptor.cBlends[0].color.dstFactor = dstFactor;
descriptor.cBlends[0].alpha.srcFactor = srcFactor;
descriptor.cBlends[0].alpha.dstFactor = dstFactor;
descriptor.cBlends[0].color.operation = blendOperationMinOrMax;
descriptor.cBlends[0].alpha.operation = wgpu::BlendOperation::Add;
if (srcFactor == wgpu::BlendFactor::One && dstFactor == wgpu::BlendFactor::One) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
descriptor.cBlends[0].color.operation = wgpu::BlendOperation::Add;
descriptor.cBlends[0].alpha.operation = blendOperationMinOrMax;
if (srcFactor == wgpu::BlendFactor::One && dstFactor == wgpu::BlendFactor::One) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
}
/// Tests that the sample count of the render pipeline must be valid.
TEST_F(RenderPipelineValidationTest, SampleCount) {
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 4;
device.CreateRenderPipeline(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 3;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the sample count of the render pipeline must be equal to the one of every attachments
// in the render pass.
TEST_F(RenderPipelineValidationTest, SampleCountCompatibilityWithRenderPass) {
constexpr uint32_t kMultisampledCount = 4;
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8;
wgpu::TextureDescriptor baseTextureDescriptor;
baseTextureDescriptor.size.width = 4;
baseTextureDescriptor.size.height = 4;
baseTextureDescriptor.size.depthOrArrayLayers = 1;
baseTextureDescriptor.mipLevelCount = 1;
baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D;
baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment;
utils::ComboRenderPipelineDescriptor nonMultisampledPipelineDescriptor;
nonMultisampledPipelineDescriptor.multisample.count = 1;
nonMultisampledPipelineDescriptor.vertex.module = vsModule;
nonMultisampledPipelineDescriptor.cFragment.module = fsModule;
wgpu::RenderPipeline nonMultisampledPipeline =
device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor);
nonMultisampledPipelineDescriptor.cFragment.targetCount = 0;
nonMultisampledPipelineDescriptor.EnableDepthStencil();
wgpu::RenderPipeline nonMultisampledPipelineWithDepthStencilOnly =
device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor);
utils::ComboRenderPipelineDescriptor multisampledPipelineDescriptor;
multisampledPipelineDescriptor.multisample.count = kMultisampledCount;
multisampledPipelineDescriptor.vertex.module = vsModule;
multisampledPipelineDescriptor.cFragment.module = fsModule;
wgpu::RenderPipeline multisampledPipeline =
device.CreateRenderPipeline(&multisampledPipelineDescriptor);
multisampledPipelineDescriptor.cFragment.targetCount = 0;
multisampledPipelineDescriptor.EnableDepthStencil();
wgpu::RenderPipeline multisampledPipelineWithDepthStencilOnly =
device.CreateRenderPipeline(&multisampledPipelineDescriptor);
// It is not allowed to use multisampled render pass and non-multisampled render pipeline.
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = kMultisampledCount;
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{multisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(nonMultisampledPipeline);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = kMultisampledCount;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(nonMultisampledPipelineWithDepthStencilOnly);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// It is allowed to use multisampled render pass and multisampled render pipeline.
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = kMultisampledCount;
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{multisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipeline);
renderPass.End();
encoder.Finish();
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = kMultisampledCount;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
renderPass.End();
encoder.Finish();
}
// It is not allowed to use non-multisampled render pass and multisampled render pipeline.
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = 1;
wgpu::Texture nonMultisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor nonMultisampledRenderPassDescriptor(
{nonMultisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass =
encoder.BeginRenderPass(&nonMultisampledRenderPassDescriptor);
renderPass.SetPipeline(multisampledPipeline);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = 1;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture nonMultisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, nonMultisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Tests that the vertex only pipeline must be used with a depth-stencil attachment only render pass
TEST_F(RenderPipelineValidationTest, VertexOnlyPipelineRequireDepthStencilAttachment) {
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8;
wgpu::TextureDescriptor baseTextureDescriptor;
baseTextureDescriptor.size = {4, 4};
baseTextureDescriptor.mipLevelCount = 1;
baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D;
baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment;
wgpu::TextureDescriptor colorTextureDescriptor = baseTextureDescriptor;
colorTextureDescriptor.format = kColorFormat;
colorTextureDescriptor.sampleCount = 1;
wgpu::Texture colorTexture = device.CreateTexture(&colorTextureDescriptor);
wgpu::TextureDescriptor depthStencilTextureDescriptor = baseTextureDescriptor;
depthStencilTextureDescriptor.sampleCount = 1;
depthStencilTextureDescriptor.format = kDepthStencilFormat;
wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilTextureDescriptor);
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.multisample.count = 1;
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.fragment = nullptr;
renderPipelineDescriptor.EnableDepthStencil(kDepthStencilFormat);
wgpu::RenderPipeline vertexOnlyPipeline =
device.CreateRenderPipeline(&renderPipelineDescriptor);
// Vertex-only render pipeline can work with depth stencil attachment and no color target
{
utils::ComboRenderPassDescriptor renderPassDescriptor({}, depthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(vertexOnlyPipeline);
renderPass.End();
encoder.Finish();
}
// Vertex-only render pipeline must have a depth stencil attachment
{
utils::ComboRenderPassDescriptor renderPassDescriptor;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(vertexOnlyPipeline);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Vertex-only render pipeline can not work with color target
{
utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()},
depthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(vertexOnlyPipeline);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Vertex-only render pipeline can not work with color target, and must have a depth stencil
// attachment
{
utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(vertexOnlyPipeline);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Tests that the sample count of the render pipeline must be valid
// when the alphaToCoverage mode is enabled.
TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleCount) {
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
device.CreateRenderPipeline(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 1;
descriptor.multisample.alphaToCoverageEnabled = true;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests if the sample_mask builtin is a pipeline output of fragment shader,
// then alphaToCoverageEnabled must be false.
TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleMaskOutput) {
wgpu::ShaderModule fsModuleSampleMaskOutput = utils::CreateShaderModule(device, R"(
struct Output {
@builtin(sample_mask) mask_out: u32,
@location(0) color : vec4f,
}
@fragment fn main() -> Output {
var o: Output;
// We need to make sure this sample_mask isn't optimized out even its value equals "no op".
o.mask_out = 0xFFFFFFFFu;
o.color = vec4f(1.0, 1.0, 1.0, 1.0);
return o;
}
)");
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModuleSampleMaskOutput;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = false;
device.CreateRenderPipeline(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModuleSampleMaskOutput;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
{
// Control cases: when fragment has no sample_mask output, it's good to have
// alphaToCoverageEnabled enabled
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
device.CreateRenderPipeline(&descriptor);
}
}
// Tests when alphaToCoverageEnabled is true, targets[0] must exist and have alpha channel.
TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndColorTargetAlpha) {
{
// Control case
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
device.CreateRenderPipeline(&descriptor);
}
{
// Fragment state must exist
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.fragment = nullptr;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
{
// Fragment targets[0] must exist
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 0;
descriptor.cFragment.targets = nullptr;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float);
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
{
// Fragment targets[0].format must have alpha channel (only 1 target)
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::R8Unorm;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
wgpu::ShaderModule fsModule2 = utils::CreateShaderModule(device, R"(
struct FragmentOut {
@location(0) target0 : vec4f,
@location(1) target1 : vec4f,
}
@fragment fn main() -> FragmentOut {
var out: FragmentOut;
out.target0 = vec4f(0, 0, 0, 1);
out.target1 = vec4f(1, 0, 0, 0);
return out;
})");
{
// Fragment targets[0].format must have alpha channel (2 targets)
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule2;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].format = wgpu::TextureFormat::R8Unorm;
descriptor.cTargets[1].format = wgpu::TextureFormat::RGBA8Unorm;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the texture component type in shader must match the bind group layout.
TEST_F(RenderPipelineValidationTest, TextureComponentTypeCompatibility) {
constexpr uint32_t kNumTextureComponentType = 3u;
std::array<const char*, kNumTextureComponentType> kScalarTypes = {{"f32", "i32", "u32"}};
std::array<wgpu::TextureSampleType, kNumTextureComponentType> kTextureComponentTypes = {{
wgpu::TextureSampleType::Float,
wgpu::TextureSampleType::Sint,
wgpu::TextureSampleType::Uint,
}};
for (size_t i = 0; i < kNumTextureComponentType; ++i) {
for (size_t j = 0; j < kNumTextureComponentType; ++j) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
stream << R"(
@group(0) @binding(0) var myTexture : texture_2d<)"
<< kScalarTypes[i] << R"(>;
@fragment fn main() {
_ = textureDimensions(myTexture);
})";
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Fragment, kTextureComponentTypes[j]}});
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
if (i == j) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
// Tests that the texture view dimension in shader must match the bind group layout.
TEST_F(RenderPipelineValidationTest, TextureViewDimensionCompatibility) {
constexpr uint32_t kNumTextureViewDimensions = 6u;
std::array<const char*, kNumTextureViewDimensions> kTextureKeywords = {{
"texture_1d",
"texture_2d",
"texture_2d_array",
"texture_cube",
"texture_cube_array",
"texture_3d",
}};
std::array<wgpu::TextureViewDimension, kNumTextureViewDimensions> kTextureViewDimensions = {{
wgpu::TextureViewDimension::e1D,
wgpu::TextureViewDimension::e2D,
wgpu::TextureViewDimension::e2DArray,
wgpu::TextureViewDimension::Cube,
wgpu::TextureViewDimension::CubeArray,
wgpu::TextureViewDimension::e3D,
}};
for (size_t i = 0; i < kNumTextureViewDimensions; ++i) {
for (size_t j = 0; j < kNumTextureViewDimensions; ++j) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
stream << R"(
@group(0) @binding(0) var myTexture : )"
<< kTextureKeywords[i] << R"(<f32>;
@fragment fn main() {
_ = textureDimensions(myTexture);
})";
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Fragment, wgpu::TextureSampleType::Float,
kTextureViewDimensions[j]}});
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
if (i == j) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
// Test that declaring a storage buffer in the vertex shader without setting pipeline layout won't
// cause crash.
TEST_F(RenderPipelineValidationTest, StorageBufferInVertexShaderNoLayout) {
wgpu::ShaderModule vsModuleWithStorageBuffer = utils::CreateShaderModule(device, R"(
struct Dst {
data : array<u32, 100>
}
@group(0) @binding(0) var<storage, read_write> dst : Dst;
@vertex fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4f {
dst.data[VertexIndex] = 0x1234u;
return vec4f();
})");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.layout = nullptr;
descriptor.vertex.module = vsModuleWithStorageBuffer;
descriptor.cFragment.module = fsModule;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Tests that only strip primitive topologies allow an index format
TEST_F(RenderPipelineValidationTest, StripIndexFormatAllowed) {
constexpr uint32_t kNumStripType = 2u;
constexpr uint32_t kNumListType = 3u;
constexpr uint32_t kNumIndexFormat = 3u;
std::array<wgpu::PrimitiveTopology, kNumStripType> kStripTopologyTypes = {
{wgpu::PrimitiveTopology::LineStrip, wgpu::PrimitiveTopology::TriangleStrip}};
std::array<wgpu::PrimitiveTopology, kNumListType> kListTopologyTypes = {
{wgpu::PrimitiveTopology::PointList, wgpu::PrimitiveTopology::LineList,
wgpu::PrimitiveTopology::TriangleList}};
std::array<wgpu::IndexFormat, kNumIndexFormat> kIndexFormatTypes = {
{wgpu::IndexFormat::Undefined, wgpu::IndexFormat::Uint16, wgpu::IndexFormat::Uint32}};
for (wgpu::PrimitiveTopology primitiveTopology : kStripTopologyTypes) {
for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = primitiveTopology;
descriptor.primitive.stripIndexFormat = indexFormat;
// Always succeeds, regardless of if an index format is given.
device.CreateRenderPipeline(&descriptor);
}
}
for (wgpu::PrimitiveTopology primitiveTopology : kListTopologyTypes) {
for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = primitiveTopology;
descriptor.primitive.stripIndexFormat = indexFormat;
if (indexFormat == wgpu::IndexFormat::Undefined) {
// Succeeds even when the index format is undefined because the
// primitive topology isn't a strip type.
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
// Test that specifying a unclippedDepth value is an error if the feature is not enabled.
TEST_F(RenderPipelineValidationTest, UnclippedDepthWithoutFeature) {
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClipControl depthClipControl;
depthClipControl.unclippedDepth = true;
descriptor.primitive.nextInChain = &depthClipControl;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor),
testing::HasSubstr("not supported"));
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClipControl depthClipControl;
depthClipControl.unclippedDepth = false;
descriptor.primitive.nextInChain = &depthClipControl;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor),
testing::HasSubstr("not supported"));
}
}
// Test that specifying an unclippedDepth value is an error if the feature is not enabled.
TEST_F(RenderPipelineValidationTest, DepthClipControlWithoutFeature) {
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClipControl depthClipControl;
depthClipControl.unclippedDepth = true;
descriptor.primitive.nextInChain = &depthClipControl;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor),
testing::HasSubstr("not supported"));
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClipControl depthClipControl;
depthClipControl.unclippedDepth = false;
descriptor.primitive.nextInChain = &depthClipControl;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor),
testing::HasSubstr("not supported"));
}
}
// Test that depthStencil.depthCompare must not be undefiend.
TEST_F(RenderPipelineValidationTest, DepthCompareUndefinedIsError) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float);
// Control case: Always is valid.
descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Always;
device.CreateRenderPipeline(&descriptor);
// Error case: Undefined is invalid.
descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Undefined;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Test that the entryPoint names must be present for the correct stage in the shader module.
TEST_F(RenderPipelineValidationTest, EntryPointNameValidation) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
@vertex fn vertex_main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
}
@fragment fn fragment_main() -> @location(0) vec4f {
return vec4f(1.0, 0.0, 0.0, 1.0);
}
)");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = module;
descriptor.vertex.entryPoint = "vertex_main";
descriptor.cFragment.module = module;
descriptor.cFragment.entryPoint = "fragment_main";
// Success case.
device.CreateRenderPipeline(&descriptor);
// Test for the vertex stage entryPoint name.
{
// The entryPoint name doesn't exist in the module.
descriptor.vertex.entryPoint = "main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
// The entryPoint name exists, but not for the correct stage.
descriptor.vertex.entryPoint = "fragment_main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
descriptor.vertex.entryPoint = "vertex_main";
// Test for the fragment stage entryPoint name.
{
// The entryPoint name doesn't exist in the module.
descriptor.cFragment.entryPoint = "main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
// The entryPoint name exists, but not for the correct stage.
descriptor.cFragment.entryPoint = "vertex_main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Test that vertex attrib validation is for the correct entryPoint
TEST_F(RenderPipelineValidationTest, VertexAttribCorrectEntryPoint) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
@vertex fn vertex0(@location(0) attrib0 : vec4f)
-> @builtin(position) vec4f {
return attrib0;
}
@vertex fn vertex1(@location(1) attrib1 : vec4f)
-> @builtin(position) vec4f {
return attrib1;
}
)");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = module;
descriptor.cFragment.module = fsModule;
descriptor.vertex.bufferCount = 1;
descriptor.cBuffers[0].attributeCount = 1;
descriptor.cBuffers[0].arrayStride = 16;
descriptor.cAttributes[0].format = wgpu::VertexFormat::Float32x4;
descriptor.cAttributes[0].offset = 0;
// Success cases, the attribute used by the entryPoint is declared in the pipeline.
descriptor.vertex.entryPoint = "vertex0";
descriptor.cAttributes[0].shaderLocation = 0;
device.CreateRenderPipeline(&descriptor);
descriptor.vertex.entryPoint = "vertex1";
descriptor.cAttributes[0].shaderLocation = 1;
device.CreateRenderPipeline(&descriptor);
// Error cases, the attribute used by the entryPoint isn't declared in the pipeline.
descriptor.vertex.entryPoint = "vertex1";
descriptor.cAttributes[0].shaderLocation = 0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
descriptor.vertex.entryPoint = "vertex0";
descriptor.cAttributes[0].shaderLocation = 1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Test that fragment output validation is for the correct entryPoint
TEST_F(RenderPipelineValidationTest, FragmentOutputCorrectEntryPoint) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
@fragment fn fragmentFloat() -> @location(0) vec4f {
return vec4f(0.0, 0.0, 0.0, 0.0);
}
@fragment fn fragmentUint() -> @location(0) vec4u {
return vec4u(0u, 0u, 0u, 0u);
}
)");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = module;
// Success case, the component type matches between the pipeline and the entryPoint
descriptor.cFragment.entryPoint = "fragmentFloat";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
device.CreateRenderPipeline(&descriptor);
descriptor.cFragment.entryPoint = "fragmentUint";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint;
device.CreateRenderPipeline(&descriptor);
// Error case, the component type doesn't match between the pipeline and the entryPoint
descriptor.cFragment.entryPoint = "fragmentUint";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
descriptor.cFragment.entryPoint = "fragmentFloat";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Test that unwritten fragment outputs must have a write mask of 0.
TEST_F(RenderPipelineValidationTest, UnwrittenFragmentOutputsMask0) {
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f();
}
)");
wgpu::ShaderModule fsModuleWriteNone = utils::CreateShaderModule(device, R"(
@fragment fn main() {}
)");
wgpu::ShaderModule fsModuleWrite0 = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4f {
return vec4f();
}
)");
wgpu::ShaderModule fsModuleWrite1 = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(1) vec4f {
return vec4f();
}
)");
wgpu::ShaderModule fsModuleWriteBoth = utils::CreateShaderModule(device, R"(
struct FragmentOut {
@location(0) target0 : vec4f,
@location(1) target1 : vec4f,
}
@fragment fn main() -> FragmentOut {
var out : FragmentOut;
return out;
}
)");
// Control case: write to target 0
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 1;
descriptor.cFragment.module = fsModuleWrite0;
device.CreateRenderPipeline(&descriptor);
}
// Control case: write to target 0 and target 1
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cFragment.module = fsModuleWriteBoth;
device.CreateRenderPipeline(&descriptor);
}
// Write only target 1 (not in pipeline fragment state).
// Errors because target 0 does not have a write mask of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 1;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All;
descriptor.cFragment.module = fsModuleWrite1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Write only target 1 (not in pipeline fragment state).
// OK because target 0 has a write mask of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 1;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
descriptor.cFragment.module = fsModuleWrite1;
device.CreateRenderPipeline(&descriptor);
}
// Write only target 0 with two color targets.
// Errors because target 1 does not have a write mask of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red;
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Alpha;
descriptor.cFragment.module = fsModuleWrite0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Write only target 0 with two color targets.
// OK because target 1 has a write mask of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All;
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None;
descriptor.cFragment.module = fsModuleWrite0;
device.CreateRenderPipeline(&descriptor);
}
// Write nothing with two color targets.
// Errors because both target 0 and 1 have nonzero write masks.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red;
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Green;
descriptor.cFragment.module = fsModuleWriteNone;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Write nothing with two color targets.
// OK because target 0 and 1 have write masks of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None;
descriptor.cFragment.module = fsModuleWriteNone;
device.CreateRenderPipeline(&descriptor);
}
}
// Test that fragment output validation is for the correct entryPoint
TEST_F(RenderPipelineValidationTest, BindingsFromCorrectEntryPoint) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
struct Uniforms {
data : vec4f
}
@group(0) @binding(0) var<uniform> var0 : Uniforms;
@group(0) @binding(1) var<uniform> var1 : Uniforms;
@vertex fn vertex0() -> @builtin(position) vec4f {
return var0.data;
}
@vertex fn vertex1() -> @builtin(position) vec4f {
return var1.data;
}
)");
wgpu::BindGroupLayout bgl0 = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}});
wgpu::PipelineLayout layout0 = utils::MakeBasicPipelineLayout(device, &bgl0);
wgpu::BindGroupLayout bgl1 = utils::MakeBindGroupLayout(
device, {{1, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}});
wgpu::PipelineLayout layout1 = utils::MakeBasicPipelineLayout(device, &bgl1);
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = module;
descriptor.cFragment.module = fsModule;
// Success case, the BGL matches the bindings used by the entryPoint
descriptor.vertex.entryPoint = "vertex0";
descriptor.layout = layout0;
device.CreateRenderPipeline(&descriptor);
descriptor.vertex.entryPoint = "vertex1";
descriptor.layout = layout1;
device.CreateRenderPipeline(&descriptor);
// Error case, the BGL doesn't match the bindings used by the entryPoint
descriptor.vertex.entryPoint = "vertex1";
descriptor.layout = layout0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
descriptor.vertex.entryPoint = "vertex0";
descriptor.layout = layout1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Tests validation for per-pixel accounting for render targets. The tests currently assume that the
// default maxColorAttachmentBytesPerSample limit of 32 is used.
TEST_F(RenderPipelineValidationTest, RenderPipelineColorAttachmentBytesPerSample) {
// Creates a fragment shader with maximum number of color attachments to enable testing.
auto CreateShader = [&](const std::vector<wgpu::TextureFormat>& formats) -> wgpu::ShaderModule {
// Default type to use when formats.size() < kMaxColorAttachments.
static constexpr std::string_view kDefaultWgslType = "vec4f";
std::ostringstream bindings;
std::ostringstream outputs;
for (size_t i = 0; i < kMaxColorAttachments; i++) {
if (i < formats.size()) {
std::ostringstream type;
type << "vec4<" << utils::GetWGSLColorTextureComponentType(formats.at(i)) << ">";
bindings << "@location(" << i << ") o" << i << " : " << type.str() << ", ";
outputs << type.str() << "(1), ";
} else {
bindings << "@location(" << i << ") o" << i << " : " << kDefaultWgslType << ", ";
outputs << kDefaultWgslType << "(1), ";
}
}
std::ostringstream fsShader;
fsShader << "struct Outputs { " << bindings.str() << "}\n";
fsShader << "@fragment fn main() -> Outputs {\n";
fsShader << " return Outputs(" << outputs.str() << ");\n";
fsShader << "}";
return utils::CreateShaderModule(device, fsShader.str().c_str());
};
struct TestCase {
std::vector<wgpu::TextureFormat> formats;
bool success;
};
static std::vector<TestCase> kTestCases = {
// Simple 1 format cases.
// R8Unorm take 1 byte and are aligned to 1 byte so we can have 8 (max).
{{wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm,
wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm,
wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm},
true},
// RGBA8Uint takes 4 bytes and are aligned to 1 byte so we can have 8 (max).
{{wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA8Uint,
wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA8Uint,
wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA8Uint,
wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA8Uint},
true},
// RGBA8Unorm takes 8 bytes (special case) and are aligned to 1 byte so only 4 allowed.
{{wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Unorm,
wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Unorm},
true},
{{wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Unorm,
wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Unorm,
wgpu::TextureFormat::RGBA8Unorm},
false},
// RGBA32Float takes 16 bytes and are aligned to 4 bytes so only 2 are allowed.
{{wgpu::TextureFormat::RGBA32Float, wgpu::TextureFormat::RGBA32Float}, true},
{{wgpu::TextureFormat::RGBA32Float, wgpu::TextureFormat::RGBA32Float,
wgpu::TextureFormat::RGBA32Float},
false},
// Different format alignment cases.
// Alignment causes the first 1 byte R8Unorm to become 4 bytes. So even though 1+4+8+16+1 <
// 32, the 4 byte alignment requirement of R32Float makes the first R8Unorm become 4 and
// 4+4+8+16+1 > 32. Re-ordering this so the R8Unorm's are at the end, however is allowed:
// 4+8+16+1+1 < 32.
{{wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R32Float,
wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA32Float,
wgpu::TextureFormat::R8Unorm},
false},
{{wgpu::TextureFormat::R32Float, wgpu::TextureFormat::RGBA8Unorm,
wgpu::TextureFormat::RGBA32Float, wgpu::TextureFormat::R8Unorm,
wgpu::TextureFormat::R8Unorm},
true},
};
for (const TestCase& testCase : kTestCases) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.vertex.entryPoint = "main";
descriptor.cFragment.module = CreateShader(testCase.formats);
descriptor.cFragment.entryPoint = "main";
descriptor.cFragment.targetCount = testCase.formats.size();
for (size_t i = 0; i < testCase.formats.size(); i++) {
descriptor.cTargets[i].format = testCase.formats.at(i);
}
if (testCase.success) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
// Creating render pipeline with DawnMultisampleStateRenderToSingleSampled without enabling
// MSAARenderToSingleSampled feature should result in error.
TEST_F(RenderPipelineValidationTest, MSAARenderToSingleSampledOnUnsupportedDevice) {
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsModule;
wgpu::DawnMultisampleStateRenderToSingleSampled pipelineMSAARenderToSingleSampledDesc;
pipelineMSAARenderToSingleSampledDesc.enabled = true;
pipelineDescriptor.multisample.nextInChain = &pipelineMSAARenderToSingleSampledDesc;
pipelineDescriptor.multisample.count = 4;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&pipelineDescriptor),
testing::HasSubstr("feature is not enabled"));
}
class DepthClipControlValidationTest : public RenderPipelineValidationTest {
protected:
WGPUDevice CreateTestDevice(native::Adapter dawnAdapter,
wgpu::DeviceDescriptor descriptor) override {
wgpu::FeatureName requiredFeatures[1] = {wgpu::FeatureName::DepthClipControl};
descriptor.requiredFeatures = requiredFeatures;
descriptor.requiredFeaturesCount = 1;
return dawnAdapter.CreateDevice(&descriptor);
}
};
// Tests that specifying a unclippedDepth value succeeds if the feature is enabled.
TEST_F(DepthClipControlValidationTest, Success) {
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClipControl depthClipControl;
depthClipControl.unclippedDepth = true;
descriptor.primitive.nextInChain = &depthClipControl;
device.CreateRenderPipeline(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClipControl depthClipControl;
depthClipControl.unclippedDepth = false;
descriptor.primitive.nextInChain = &depthClipControl;
device.CreateRenderPipeline(&descriptor);
}
}
class InterStageVariableMatchingValidationTest : public RenderPipelineValidationTest {
protected:
void CheckCreatingRenderPipeline(wgpu::ShaderModule vertexModule,
wgpu::ShaderModule fragmentModule,
bool shouldSucceed) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vertexModule;
descriptor.cFragment.module = fragmentModule;
if (shouldSucceed) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
};
// Tests that creating render pipeline should fail when there is a fragment input that
// doesn't have its corresponding vertex output at the same location.
TEST_F(InterStageVariableMatchingValidationTest, MissingDeclarationAtSameLocation) {
wgpu::ShaderModule vertexModuleOutputAtLocation0 = utils::CreateShaderModule(device, R"(
struct A {
@location(0) vout: f32,
@builtin(position) pos: vec4f,
}
@vertex fn main() -> A {
var vertexOut: A;
vertexOut.pos = vec4f(0.0, 0.0, 0.0, 1.0);
return vertexOut;
})");
wgpu::ShaderModule fragmentModuleAtLocation0 = utils::CreateShaderModule(device, R"(
struct B {
@location(0) fin: f32
}
@fragment fn main(fragmentIn: B) -> @location(0) vec4f {
return vec4f(fragmentIn.fin, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fragmentModuleInputAtLocation1 = utils::CreateShaderModule(device, R"(
struct A {
@location(1) vout: f32
}
@fragment fn main(vertexOut: A) -> @location(0) vec4f {
return vec4f(vertexOut.vout, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule vertexModuleOutputAtLocation1 = utils::CreateShaderModule(device, R"(
struct B {
@location(1) fin: f32,
@builtin(position) pos: vec4f,
}
@vertex fn main() -> B {
var fragmentIn: B;
fragmentIn.pos = vec4f(0.0, 0.0, 0.0, 1.0);
return fragmentIn;
})");
{
// It is okay if the fragment output is a subset of the vertex input.
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fsModule, true);
}
{
CheckCreatingRenderPipeline(vsModule, fragmentModuleAtLocation0, false);
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleInputAtLocation1,
false);
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleAtLocation0,
false);
}
{
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleAtLocation0, true);
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleInputAtLocation1,
true);
}
}
// Tests that creating render pipeline should fail when the type of a vertex stage output variable
// doesn't match the type of the fragment stage input variable at the same location.
TEST_F(InterStageVariableMatchingValidationTest, DifferentTypeAtSameLocation) {
constexpr std::array<const char*, 16> kTypes = {
{"f32", "vec2f", "vec3f", "vec4f", "f16", "vec2<f16>", "vec3<f16>", "vec4<f16>", "i32",
"vec2i", "vec3i", "vec4i", "u32", "vec2u", "vec3u", "vec4u"}};
std::array<wgpu::ShaderModule, 16> vertexModules;
std::array<wgpu::ShaderModule, 16> fragmentModules;
for (uint32_t i = 0; i < kTypes.size(); ++i) {
std::string interfaceDeclaration;
{
std::ostringstream sstream;
sstream << "struct A { @location(0) @interpolate(flat) a: " << kTypes[i] << ","
<< std::endl;
interfaceDeclaration = sstream.str();
}
std::string extensionDeclaration = "enable f16;\n\n";
{
std::ostringstream vertexStream;
vertexStream << extensionDeclaration << interfaceDeclaration << R"(
@builtin(position) pos: vec4f,
}
@vertex fn main() -> A {
var vertexOut: A;
vertexOut.pos = vec4f(0.0, 0.0, 0.0, 1.0);
return vertexOut;
})";
vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str());
}
{
std::ostringstream fragmentStream;
fragmentStream << extensionDeclaration << interfaceDeclaration << R"(
}
@fragment fn main(fragmentIn: A) -> @location(0) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})";
fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str());
}
}
for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < kTypes.size(); ++vertexModuleIndex) {
wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex];
for (uint32_t fragmentModuleIndex = 0; fragmentModuleIndex < kTypes.size();
++fragmentModuleIndex) {
wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex];
bool shouldSuccess = vertexModuleIndex == fragmentModuleIndex;
CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess);
}
}
}
// Tests that creating render pipeline should fail when the interpolation attribute of a vertex
// stage output variable doesn't match the type of the fragment stage input variable at the same
// location.
TEST_F(InterStageVariableMatchingValidationTest, DifferentInterpolationAttributeAtSameLocation) {
enum class InterpolationType : uint8_t {
None = 0,
Perspective,
Linear,
Flat,
Count,
};
enum class InterpolationSampling : uint8_t {
None = 0,
Center,
Centroid,
Sample,
Count,
};
constexpr std::array<const char*, static_cast<size_t>(InterpolationType::Count)>
kInterpolationTypeString = {{"", "perspective", "linear", "flat"}};
constexpr std::array<const char*, static_cast<size_t>(InterpolationSampling::Count)>
kInterpolationSamplingString = {{"", "center", "centroid", "sample"}};
struct InterpolationAttribute {
InterpolationType interpolationType;
InterpolationSampling interpolationSampling;
};
// Interpolation sampling is not used with flat interpolation.
constexpr std::array<InterpolationAttribute, 10> validInterpolationAttributes = {{
{InterpolationType::None, InterpolationSampling::None},
{InterpolationType::Flat, InterpolationSampling::None},
{InterpolationType::Linear, InterpolationSampling::None},
{InterpolationType::Linear, InterpolationSampling::Center},
{InterpolationType::Linear, InterpolationSampling::Centroid},
{InterpolationType::Linear, InterpolationSampling::Sample},
{InterpolationType::Perspective, InterpolationSampling::None},
{InterpolationType::Perspective, InterpolationSampling::Center},
{InterpolationType::Perspective, InterpolationSampling::Centroid},
{InterpolationType::Perspective, InterpolationSampling::Sample},
}};
std::vector<wgpu::ShaderModule> vertexModules(validInterpolationAttributes.size());
std::vector<wgpu::ShaderModule> fragmentModules(validInterpolationAttributes.size());
for (uint32_t i = 0; i < validInterpolationAttributes.size(); ++i) {
std::string interfaceDeclaration;
{
const auto& interpolationAttribute = validInterpolationAttributes[i];
std::ostringstream sstream;
sstream << "struct A { @location(0)";
if (interpolationAttribute.interpolationType != InterpolationType::None) {
sstream << " @interpolate("
<< kInterpolationTypeString[static_cast<uint8_t>(
interpolationAttribute.interpolationType)];
if (interpolationAttribute.interpolationSampling != InterpolationSampling::None) {
sstream << ", "
<< kInterpolationSamplingString[static_cast<uint8_t>(
interpolationAttribute.interpolationSampling)];
}
sstream << ")";
}
sstream << " a : vec4f," << std::endl;
interfaceDeclaration = sstream.str();
}
{
std::ostringstream vertexStream;
vertexStream << interfaceDeclaration << R"(
@builtin(position) pos: vec4f,
}
@vertex fn main() -> A {
var vertexOut: A;
vertexOut.pos = vec4f(0.0, 0.0, 0.0, 1.0);
return vertexOut;
})";
vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str());
}
{
std::ostringstream fragmentStream;
fragmentStream << interfaceDeclaration << R"(
}
@fragment fn main(fragmentIn: A) -> @location(0) vec4f {
return fragmentIn.a;
})";
fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str());
}
}
auto GetAppliedInterpolationAttribute = [](const InterpolationAttribute& attribute) {
InterpolationAttribute appliedAttribute = {attribute.interpolationType,
attribute.interpolationSampling};
switch (attribute.interpolationType) {
// If the interpolation attribute is not specified, then
// @interpolate(perspective, center) or @interpolate(perspective) is assumed.
case InterpolationType::None:
appliedAttribute.interpolationType = InterpolationType::Perspective;
appliedAttribute.interpolationSampling = InterpolationSampling::Center;
break;
// If the interpolation type is perspective or linear, and the interpolation
// sampling is not specified, then 'center' is assumed.
case InterpolationType::Perspective:
case InterpolationType::Linear:
if (appliedAttribute.interpolationSampling == InterpolationSampling::None) {
appliedAttribute.interpolationSampling = InterpolationSampling::Center;
}
break;
case InterpolationType::Flat:
break;
default:
UNREACHABLE();
}
return appliedAttribute;
};
auto InterpolationAttributeMatch = [GetAppliedInterpolationAttribute](
const InterpolationAttribute& attribute1,
const InterpolationAttribute& attribute2) {
InterpolationAttribute appliedAttribute1 = GetAppliedInterpolationAttribute(attribute1);
InterpolationAttribute appliedAttribute2 = GetAppliedInterpolationAttribute(attribute2);
return appliedAttribute1.interpolationType == appliedAttribute2.interpolationType &&
appliedAttribute1.interpolationSampling == appliedAttribute2.interpolationSampling;
};
for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < validInterpolationAttributes.size();
++vertexModuleIndex) {
wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex];
for (uint32_t fragmentModuleIndex = 0;
fragmentModuleIndex < validInterpolationAttributes.size(); ++fragmentModuleIndex) {
wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex];
bool shouldSuccess =
InterpolationAttributeMatch(validInterpolationAttributes[vertexModuleIndex],
validInterpolationAttributes[fragmentModuleIndex]);
CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess);
}
}
}
class RenderPipelineTransientAttachmentValidationTest : public RenderPipelineValidationTest {
protected:
WGPUDevice CreateTestDevice(native::Adapter dawnAdapter,
wgpu::DeviceDescriptor descriptor) override {
wgpu::FeatureName requiredFeatures[2] = {wgpu::FeatureName::ShaderF16,
wgpu::FeatureName::TransientAttachments};
descriptor.requiredFeatures = requiredFeatures;
descriptor.requiredFeaturesCount = 2;
return dawnAdapter.CreateDevice(&descriptor);
}
};
// Test case where creation should succeed.
TEST_F(RenderPipelineTransientAttachmentValidationTest, CreationSuccess) {
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage =
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TransientAttachment;
textureDescriptor.format = kColorFormat;
textureDescriptor.size.width = 4;
textureDescriptor.size.height = 4;
wgpu::Texture transientTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({transientTexture.CreateView()});
// Set load and store ops to supported values with transient attachments.
renderPassDescriptor.cColorAttachments[0].storeOp = wgpu::StoreOp::Discard;
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsModule;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor);
renderPass.SetPipeline(pipeline);
renderPass.End();
encoder.Finish();
}
// Creation of a pipeline that stores into a transient attachment should cause
// an error.
TEST_F(RenderPipelineTransientAttachmentValidationTest, StoreCausesError) {
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage =
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TransientAttachment;
textureDescriptor.format = kColorFormat;
textureDescriptor.size.width = 4;
textureDescriptor.size.height = 4;
wgpu::Texture transientTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({transientTexture.CreateView()});
renderPassDescriptor.cColorAttachments[0].storeOp = wgpu::StoreOp::Store;
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsModule;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor);
renderPass.SetPipeline(pipeline);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Creation of a pipeline that loads from a transient attachment should cause
// an error.
TEST_F(RenderPipelineTransientAttachmentValidationTest, LoadCausesError) {
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage =
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TransientAttachment;
textureDescriptor.format = kColorFormat;
textureDescriptor.size.width = 4;
textureDescriptor.size.height = 4;
wgpu::Texture transientTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({transientTexture.CreateView()});
renderPassDescriptor.cColorAttachments[0].storeOp = wgpu::StoreOp::Discard;
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Load;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsModule;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor);
renderPass.SetPipeline(pipeline);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
class MSAARenderToSingleSampledPipelineDescriptorValidationTest
: public RenderPipelineValidationTest {
protected:
void SetUp() override {
RenderPipelineValidationTest::SetUp();
fsWithTextureModule = utils::CreateShaderModule(device, R"(
@group(0) @binding(0) var src_tex : texture_2d<f32>;
@fragment fn main() -> @location(0) vec4f {
return textureLoad(src_tex, vec2u(0, 0), 0);
})");
}
WGPUDevice CreateTestDevice(dawn::native::Adapter dawnAdapter,
wgpu::DeviceDescriptor descriptor) override {
wgpu::FeatureName requiredFeatures[1] = {wgpu::FeatureName::MSAARenderToSingleSampled};
descriptor.requiredFeatures = requiredFeatures;
descriptor.requiredFeaturesCount = 1;
return dawnAdapter.CreateDevice(&descriptor);
}
wgpu::Texture CreateTexture(wgpu::TextureUsage textureUsage, uint32_t sampleCount) {
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage = textureUsage;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = sampleCount;
textureDescriptor.size.width = 4;
textureDescriptor.size.height = 4;
return device.CreateTexture(&textureDescriptor);
}
static constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
wgpu::ShaderModule fsWithTextureModule;
};
// Test that creating and using a render pipeline with DawnMultisampleStateRenderToSingleSampled
// chained struct should success.
TEST_F(MSAARenderToSingleSampledPipelineDescriptorValidationTest, ValidUse) {
constexpr uint32_t kSampleCount = 4;
// Create single sampled texture.
auto texture =
CreateTexture(wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TextureBinding, 1);
// Create render pass (with DawnRenderPassColorAttachmentRenderToSingleSampled).
utils::ComboRenderPassDescriptor renderPassDescriptor({texture.CreateView()});
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Load;
wgpu::DawnRenderPassColorAttachmentRenderToSingleSampled renderPassRenderToSingleSampledDesc;
renderPassRenderToSingleSampledDesc.implicitSampleCount = kSampleCount;
renderPassDescriptor.cColorAttachments[0].nextInChain = &renderPassRenderToSingleSampledDesc;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
// Create render pipeline
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsWithTextureModule;
wgpu::DawnMultisampleStateRenderToSingleSampled pipelineMSAARenderToSingleSampledDesc;
pipelineMSAARenderToSingleSampledDesc.enabled = true;
pipelineDescriptor.multisample.nextInChain = &pipelineMSAARenderToSingleSampledDesc;
pipelineDescriptor.multisample.count = kSampleCount;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor);
// Input texture.
auto sampledTexture = CreateTexture(wgpu::TextureUsage::TextureBinding, 1);
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{{0, sampledTexture.CreateView()}});
renderPass.SetPipeline(pipeline);
renderPass.SetBindGroup(0, bindGroup);
renderPass.Draw(3);
renderPass.End();
encoder.Finish();
}
// If a render pipeline's MultisampleState contains DawnMultisampleStateRenderToSingleSampled
// chained struct. Then its sampleCount must be > 1.
TEST_F(MSAARenderToSingleSampledPipelineDescriptorValidationTest,
PipelineSampleCountMustBeGreaterThanOne) {
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsModule;
wgpu::DawnMultisampleStateRenderToSingleSampled pipelineMSAARenderToSingleSampledDesc;
pipelineMSAARenderToSingleSampledDesc.enabled = true;
pipelineDescriptor.multisample.nextInChain = &pipelineMSAARenderToSingleSampledDesc;
pipelineDescriptor.multisample.count = 1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&pipelineDescriptor),
testing::HasSubstr("multisample count (1) is not > 1"));
}
// If a render pipeline is created with MSAA render to single sampled enabled , then it cannot be
// used in a render pass that wasn't created with that feature enabled.
TEST_F(MSAARenderToSingleSampledPipelineDescriptorValidationTest,
MSAARenderToSingleSampledPipeline_UseIn_NormalRenderPass_Error) {
constexpr uint32_t kSampleCount = 4;
// Create MSAA texture.
auto texture = CreateTexture(wgpu::TextureUsage::RenderAttachment, 4);
// Create render pass (without DawnRenderPassColorAttachmentRenderToSingleSampled).
utils::ComboRenderPassDescriptor renderPassDescriptor({texture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
// Create render pipeline
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsModule;
wgpu::DawnMultisampleStateRenderToSingleSampled pipelineMSAARenderToSingleSampledDesc;
pipelineMSAARenderToSingleSampledDesc.enabled = true;
pipelineDescriptor.multisample.nextInChain = &pipelineMSAARenderToSingleSampledDesc;
pipelineDescriptor.multisample.count = kSampleCount;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor);
renderPass.SetPipeline(pipeline);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Using a normal render pipeline in a MSAA render to single sampled render pass should result in
// incompatible error.
TEST_F(MSAARenderToSingleSampledPipelineDescriptorValidationTest,
NormalPipeline_Use_In_MSAARenderToSingleSampledRenderPass_Error) {
constexpr uint32_t kSampleCount = 4;
// Create single sampled texture.
auto texture =
CreateTexture(wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TextureBinding, 1);
// Create render pass (with DawnRenderPassColorAttachmentRenderToSingleSampled).
utils::ComboRenderPassDescriptor renderPassDescriptor({texture.CreateView()});
wgpu::DawnRenderPassColorAttachmentRenderToSingleSampled renderPassRenderToSingleSampledDesc;
renderPassRenderToSingleSampledDesc.implicitSampleCount = kSampleCount;
renderPassDescriptor.cColorAttachments[0].nextInChain = &renderPassRenderToSingleSampledDesc;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
// Create render pipeline (without DawnMultisampleStateRenderToSingleSampled)
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsModule;
pipelineDescriptor.multisample.count = kSampleCount;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor);
renderPass.SetPipeline(pipeline);
renderPass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Bind color attachment in the MSAA render to single sampled render pass as texture should result
// in error.
TEST_F(MSAARenderToSingleSampledPipelineDescriptorValidationTest,
BindColorAttachmentAsTextureError) {
constexpr uint32_t kSampleCount = 4;
// Create single sampled texture.
auto renderTexture =
CreateTexture(wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TextureBinding |
wgpu::TextureUsage::TextureBinding,
1);
// Create render pass (with DawnRenderPassColorAttachmentRenderToSingleSampled).
utils::ComboRenderPassDescriptor renderPassDescriptor({renderTexture.CreateView()});
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Load;
wgpu::DawnRenderPassColorAttachmentRenderToSingleSampled renderPassRenderToSingleSampledDesc;
renderPassRenderToSingleSampledDesc.implicitSampleCount = kSampleCount;
renderPassDescriptor.cColorAttachments[0].nextInChain = &renderPassRenderToSingleSampledDesc;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
// Create render pipeline
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsWithTextureModule;
wgpu::DawnMultisampleStateRenderToSingleSampled pipelineMSAARenderToSingleSampledDesc;
pipelineMSAARenderToSingleSampledDesc.enabled = true;
pipelineDescriptor.multisample.nextInChain = &pipelineMSAARenderToSingleSampledDesc;
pipelineDescriptor.multisample.count = kSampleCount;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor);
// Use color attachment's texture as input texture.
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{{0, renderTexture.CreateView()}});
renderPass.SetPipeline(pipeline);
renderPass.SetBindGroup(0, bindGroup);
renderPass.Draw(3);
renderPass.End();
ASSERT_DEVICE_ERROR(
encoder.Finish(),
testing::HasSubstr(
"includes writable usage and another usage in the same synchronization scope"));
}
} // anonymous namespace
} // namespace dawn