blob: 89816ff8178bdeaf105e50a643616d4443b6d194 [file] [log] [blame]
// Copyright 2023 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/lang/core/ir/transform/handle_matrix_arithmetic.h"
#include <utility>
#include "src/tint/lang/core/ir/builder.h"
#include "src/tint/lang/core/ir/module.h"
#include "src/tint/lang/core/type/matrix.h"
TINT_INSTANTIATE_TYPEINFO(tint::ir::transform::HandleMatrixArithmetic);
using namespace tint::number_suffixes; // NOLINT
namespace tint::ir::transform {
HandleMatrixArithmetic::HandleMatrixArithmetic() = default;
HandleMatrixArithmetic::~HandleMatrixArithmetic() = default;
void HandleMatrixArithmetic::Run(ir::Module* ir, const DataMap&, DataMap&) const {
ir::Builder b(*ir);
// Find the instructions that need to be modified.
utils::Vector<Binary*, 4> binary_worklist;
utils::Vector<Convert*, 4> convert_worklist;
for (auto* inst : ir->instructions.Objects()) {
if (!inst->Alive()) {
continue;
}
if (auto* binary = inst->As<Binary>()) {
TINT_ASSERT(Transform, binary->Operands().Length() == 2);
if (binary->LHS()->Type()->Is<type::Matrix>() ||
binary->RHS()->Type()->Is<type::Matrix>()) {
binary_worklist.Push(binary);
}
} else if (auto* convert = inst->As<Convert>()) {
if (convert->Result()->Type()->Is<type::Matrix>()) {
convert_worklist.Push(convert);
}
}
}
// Replace the matrix arithmetic instructions that we found.
for (auto* binary : binary_worklist) {
auto* lhs = binary->LHS();
auto* rhs = binary->RHS();
auto* lhs_ty = lhs->Type();
auto* rhs_ty = rhs->Type();
auto* ty = binary->Result()->Type();
// Helper to replace the instruction with a new one.
auto replace = [&](Instruction* inst) {
if (auto name = ir->NameOf(binary)) {
ir->SetName(inst->Result(), name);
}
binary->Result()->ReplaceAllUsesWith(inst->Result());
binary->ReplaceWith(inst);
binary->Destroy();
};
// Helper to replace the instruction with a column-wise operation.
auto column_wise = [&](enum Binary::Kind op) {
auto* mat = ty->As<type::Matrix>();
utils::Vector<Value*, 4> args;
for (uint32_t col = 0; col < mat->columns(); col++) {
auto* lhs_col = b.Access(mat->ColumnType(), lhs, u32(col));
lhs_col->InsertBefore(binary);
auto* rhs_col = b.Access(mat->ColumnType(), rhs, u32(col));
rhs_col->InsertBefore(binary);
auto* add = b.Binary(op, mat->ColumnType(), lhs_col, rhs_col);
add->InsertBefore(binary);
args.Push(add->Result());
}
replace(b.Construct(ty, std::move(args)));
};
switch (binary->Kind()) {
case Binary::Kind::kAdd:
column_wise(Binary::Kind::kAdd);
break;
case Binary::Kind::kSubtract:
column_wise(Binary::Kind::kSubtract);
break;
case Binary::Kind::kMultiply:
// Select the SPIR-V intrinsic that corresponds to the operation being performed.
if (lhs_ty->Is<type::Matrix>()) {
if (rhs_ty->Is<type::Scalar>()) {
replace(b.Call(ty, IntrinsicCall::Kind::kSpirvMatrixTimesScalar, lhs, rhs));
} else if (rhs_ty->Is<type::Vector>()) {
replace(b.Call(ty, IntrinsicCall::Kind::kSpirvMatrixTimesVector, lhs, rhs));
} else if (rhs_ty->Is<type::Matrix>()) {
replace(b.Call(ty, IntrinsicCall::Kind::kSpirvMatrixTimesMatrix, lhs, rhs));
}
} else {
if (lhs_ty->Is<type::Scalar>()) {
replace(b.Call(ty, IntrinsicCall::Kind::kSpirvMatrixTimesScalar, rhs, lhs));
} else if (lhs_ty->Is<type::Vector>()) {
replace(b.Call(ty, IntrinsicCall::Kind::kSpirvVectorTimesMatrix, lhs, rhs));
}
}
break;
default:
TINT_ASSERT(Transform, false && "unhandled matrix arithmetic instruction");
break;
}
}
// Replace the matrix convert instructions that we found.
for (auto* convert : convert_worklist) {
auto* arg = convert->Args()[Convert::kValueOperandOffset];
auto* in_mat = arg->Type()->As<type::Matrix>();
auto* out_mat = convert->Result()->Type()->As<type::Matrix>();
// Extract and convert each column separately.
utils::Vector<Value*, 4> args;
for (uint32_t c = 0; c < out_mat->columns(); c++) {
auto* col = b.Access(in_mat->ColumnType(), arg, u32(c));
col->InsertBefore(convert);
auto* new_col = b.Convert(out_mat->ColumnType(), col);
new_col->InsertBefore(convert);
args.Push(new_col->Result());
}
// Reconstruct the result matrix from the converted columns.
auto* construct = b.Construct(out_mat, std::move(args));
if (auto name = ir->NameOf(convert)) {
ir->SetName(construct->Result(), name);
}
convert->Result()->ReplaceAllUsesWith(construct->Result());
convert->ReplaceWith(construct);
convert->Destroy();
}
}
} // namespace tint::ir::transform