blob: 118b25c944102c537b44b3a7b208183e4225b41b [file] [log] [blame]
// Copyright 2021 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn/native/ExternalTexture.h"
#include <algorithm>
#include <utility>
#include "dawn/native/Buffer.h"
#include "dawn/native/Device.h"
#include "dawn/native/ObjectType_autogen.h"
#include "dawn/native/Queue.h"
#include "dawn/native/Texture.h"
#include "dawn/native/dawn_platform.h"
namespace dawn::native {
MaybeError ValidateExternalTexturePlane(const TextureViewBase* textureView) {
DAWN_INVALID_IF(
(textureView->GetTexture()->GetUsage() & wgpu::TextureUsage::TextureBinding) == 0,
"The external texture plane (%s) usage (%s) doesn't include the required usage (%s)",
textureView, textureView->GetTexture()->GetUsage(), wgpu::TextureUsage::TextureBinding);
DAWN_INVALID_IF(textureView->GetDimension() != wgpu::TextureViewDimension::e2D,
"The external texture plane (%s) dimension (%s) is not 2D.", textureView,
textureView->GetDimension());
DAWN_INVALID_IF(textureView->GetLevelCount() > 1,
"The external texture plane (%s) mip level count (%u) is not 1.", textureView,
textureView->GetLevelCount());
DAWN_INVALID_IF(textureView->GetTexture()->GetSampleCount() != 1,
"The external texture plane (%s) sample count (%u) is not one.", textureView,
textureView->GetTexture()->GetSampleCount());
return {};
}
MaybeError ValidateExternalTextureDescriptor(const DeviceBase* device,
const ExternalTextureDescriptor* descriptor) {
ASSERT(descriptor);
ASSERT(descriptor->plane0);
DAWN_TRY(device->ValidateObject(descriptor->plane0));
wgpu::TextureFormat plane0Format = descriptor->plane0->GetFormat().format;
DAWN_INVALID_IF(!descriptor->gamutConversionMatrix,
"The gamut conversion matrix must be non-null.");
DAWN_INVALID_IF(!descriptor->srcTransferFunctionParameters,
"The source transfer function parameters must be non-null.");
DAWN_INVALID_IF(!descriptor->dstTransferFunctionParameters,
"The destination transfer function parameters must be non-null.");
if (descriptor->plane1) {
DAWN_INVALID_IF(
!descriptor->yuvToRgbConversionMatrix,
"When more than one plane is set, the YUV-to-RGB conversion matrix must be non-null.");
DAWN_TRY(device->ValidateObject(descriptor->plane1));
wgpu::TextureFormat plane1Format = descriptor->plane1->GetFormat().format;
DAWN_INVALID_IF(plane0Format != wgpu::TextureFormat::R8Unorm,
"The bi-planar external texture plane (%s) format (%s) is not %s.",
descriptor->plane0, plane0Format, wgpu::TextureFormat::R8Unorm);
DAWN_INVALID_IF(plane1Format != wgpu::TextureFormat::RG8Unorm,
"The bi-planar external texture plane (%s) format (%s) is not %s.",
descriptor->plane1, plane1Format, wgpu::TextureFormat::RG8Unorm);
DAWN_TRY(ValidateExternalTexturePlane(descriptor->plane0));
DAWN_TRY(ValidateExternalTexturePlane(descriptor->plane1));
} else {
switch (plane0Format) {
case wgpu::TextureFormat::RGBA8Unorm:
case wgpu::TextureFormat::BGRA8Unorm:
case wgpu::TextureFormat::RGBA16Float:
DAWN_TRY(ValidateExternalTexturePlane(descriptor->plane0));
break;
default:
return DAWN_VALIDATION_ERROR(
"The external texture plane (%s) format (%s) is not a supported format "
"(%s, %s, %s).",
descriptor->plane0, plane0Format, wgpu::TextureFormat::RGBA8Unorm,
wgpu::TextureFormat::BGRA8Unorm, wgpu::TextureFormat::RGBA16Float);
}
}
DAWN_INVALID_IF(descriptor->visibleSize.width == 0 || descriptor->visibleSize.height == 0,
"VisibleSize %s have 0 on width or height.", &descriptor->visibleSize);
const Extent3D textureSize = descriptor->plane0->GetTexture()->GetSize();
DAWN_INVALID_IF(descriptor->visibleSize.width > textureSize.width ||
descriptor->visibleSize.height > textureSize.height,
"VisibleSize %s is exceed the texture size, defined by Plane0 size (%u, %u).",
&descriptor->visibleSize, textureSize.width, textureSize.height);
DAWN_INVALID_IF(
descriptor->visibleOrigin.x > textureSize.width - descriptor->visibleSize.width ||
descriptor->visibleOrigin.y > textureSize.height - descriptor->visibleSize.height,
"VisibleRect[Origin: %s, Size: %s] is exceed the texture size, defined by "
"Plane0 size (%u, %u).",
&descriptor->visibleOrigin, &descriptor->visibleSize, textureSize.width,
textureSize.height);
return {};
}
// static
ResultOrError<Ref<ExternalTextureBase>> ExternalTextureBase::Create(
DeviceBase* device,
const ExternalTextureDescriptor* descriptor) {
Ref<ExternalTextureBase> externalTexture =
AcquireRef(new ExternalTextureBase(device, descriptor));
DAWN_TRY(externalTexture->Initialize(device, descriptor));
return std::move(externalTexture);
}
ExternalTextureBase::ExternalTextureBase(DeviceBase* device,
const ExternalTextureDescriptor* descriptor)
: ApiObjectBase(device, descriptor->label),
mVisibleOrigin(descriptor->visibleOrigin),
mVisibleSize(descriptor->visibleSize),
mState(ExternalTextureState::Active) {
GetObjectTrackingList()->Track(this);
}
// Error external texture cannot be used in bind group.
ExternalTextureBase::ExternalTextureBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag), mState(ExternalTextureState::Destroyed) {}
ExternalTextureBase::~ExternalTextureBase() = default;
MaybeError ExternalTextureBase::Initialize(DeviceBase* device,
const ExternalTextureDescriptor* descriptor) {
// Store any passed in TextureViews associated with individual planes.
mTextureViews[0] = descriptor->plane0;
if (descriptor->plane1) {
mTextureViews[1] = descriptor->plane1;
} else {
DAWN_TRY_ASSIGN(mTextureViews[1],
device->GetOrCreatePlaceholderTextureViewForExternalTexture());
}
// We must create a buffer to store parameters needed by a shader that operates on this
// external texture.
BufferDescriptor bufferDesc;
bufferDesc.size = sizeof(ExternalTextureParams);
bufferDesc.usage = wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst;
bufferDesc.label = "Dawn_External_Texture_Params_Buffer";
DAWN_TRY_ASSIGN(mParamsBuffer, device->CreateBuffer(&bufferDesc));
ExternalTextureParams params;
params.numPlanes = descriptor->plane1 == nullptr ? 1 : 2;
params.doYuvToRgbConversionOnly = descriptor->doYuvToRgbConversionOnly ? 1 : 0;
// YUV-to-RGB conversion is performed by multiplying the source YUV values with a 4x3 matrix
// passed from Chromium. The matrix was originally sourced from /skia/src/core/SkYUVMath.cpp.
// This matrix is only used in multiplanar scenarios.
if (params.numPlanes == 2) {
ASSERT(descriptor->yuvToRgbConversionMatrix);
const float* yMat = descriptor->yuvToRgbConversionMatrix;
std::copy(yMat, yMat + 12, params.yuvToRgbConversionMatrix.begin());
}
// Gamut correction is performed by multiplying a 3x3 matrix passed from Chromium. The
// matrix was computed by multiplying the appropriate source and destination gamut
// matrices sourced from ui/gfx/color_space.cc.
const float* gMat = descriptor->gamutConversionMatrix;
params.gamutConversionMatrix = {gMat[0], gMat[1], gMat[2], 0.0f, //
gMat[3], gMat[4], gMat[5], 0.0f, //
gMat[6], gMat[7], gMat[8], 0.0f};
// Gamma decode/encode is performed by the logic:
// if (abs(v) < params.D) {
// return sign(v) * (params.C * abs(v) + params.F);
// }
// return pow(A * x + B, G) + E
//
// Constants are passed from Chromium and originally sourced from ui/gfx/color_space.cc
const float* srcFn = descriptor->srcTransferFunctionParameters;
std::copy(srcFn, srcFn + 7, params.gammaDecodingParams.begin());
const float* dstFn = descriptor->dstTransferFunctionParameters;
std::copy(dstFn, dstFn + 7, params.gammaEncodingParams.begin());
// Unlike WGSL, which stores matrices in column vectors, the following arithmetic uses row
// vectors, so elements are stored in the following order:
// ┌ ┐
// │ 0, 1, 2 │
// │ 3, 4, 5 │
// └ ┘
// The matrix is transposed at the end.
using mat2x3 = std::array<float, 6>;
// Multiplies the two mat2x3 matrices, by treating the RHS matrix as a mat3x3 where the last row
// is [0, 0, 1].
auto Mul = [&](const mat2x3& lhs, const mat2x3& rhs) {
auto& a = lhs[0];
auto& b = lhs[1];
auto& c = lhs[2];
auto& d = lhs[3];
auto& e = lhs[4];
auto& f = lhs[5];
auto& g = rhs[0];
auto& h = rhs[1];
auto& i = rhs[2];
auto& j = rhs[3];
auto& k = rhs[4];
auto& l = rhs[5];
// ┌ ┐ ┌ ┐
// │ a, b, c │ │ g, h, i │
// │ d, e, f │ x │ j, k, l │
// └ ┘ │ 0, 0, 1 │
// └ ┘
return mat2x3{
a * g + b * j, //
a * h + b * k, //
a * i + b * l + c, //
d * g + e * j, //
d * h + e * k, //
d * i + e * l + f, //
};
};
auto Scale = [&](const mat2x3& m, float x, float y) {
return Mul(mat2x3{x, 0, 0, 0, y, 0}, m);
};
auto Translate = [&](const mat2x3& m, float x, float y) {
return Mul(mat2x3{1, 0, x, 0, 1, y}, m);
};
mat2x3 coordTransformMatrix = {
1, 0, 0, //
0, 1, 0, //
};
// Offset the coordinates so the center texel is at the origin, so we can apply rotations and
// y-flips. After translation, coordinates range from [-0.5 .. +0.5] in both U and V.
coordTransformMatrix = Translate(coordTransformMatrix, -0.5, -0.5);
// If the texture needs flipping, mirror in Y.
if (descriptor->flipY) {
coordTransformMatrix = Scale(coordTransformMatrix, 1, -1);
}
// Apply rotations as needed.
switch (descriptor->rotation) {
case wgpu::ExternalTextureRotation::Rotate0Degrees:
break;
case wgpu::ExternalTextureRotation::Rotate90Degrees:
coordTransformMatrix = Mul(mat2x3{0, -1, 0, // x' = -y
+1, 0, 0}, // y' = x
coordTransformMatrix);
break;
case wgpu::ExternalTextureRotation::Rotate180Degrees:
coordTransformMatrix = Mul(mat2x3{-1, 0, 0, // x' = -x
0, -1, 0}, // y' = -y
coordTransformMatrix);
break;
case wgpu::ExternalTextureRotation::Rotate270Degrees:
coordTransformMatrix = Mul(mat2x3{0, +1, 0, // x' = y
-1, 0, 0}, // y' = -x
coordTransformMatrix);
break;
}
// Offset the coordinates so the bottom-left texel is at origin.
// After translation, coordinates range from [0 .. 1] in both U and V.
coordTransformMatrix = Translate(coordTransformMatrix, 0.5, 0.5);
// Calculate scale factors and offsets from the specified visibleSize.
ASSERT(descriptor->visibleSize.width > 0);
ASSERT(descriptor->visibleSize.height > 0);
uint32_t frameWidth = descriptor->plane0->GetTexture()->GetWidth();
uint32_t frameHeight = descriptor->plane0->GetTexture()->GetHeight();
float xScale =
static_cast<float>(descriptor->visibleSize.width) / static_cast<float>(frameWidth);
float yScale =
static_cast<float>(descriptor->visibleSize.height) / static_cast<float>(frameHeight);
float xOffset =
static_cast<float>(descriptor->visibleOrigin.x) / static_cast<float>(frameWidth);
float yOffset =
static_cast<float>(descriptor->visibleOrigin.y) / static_cast<float>(frameHeight);
// Finally, scale and translate based on the visible rect. This applies cropping.
coordTransformMatrix = Scale(coordTransformMatrix, xScale, yScale);
coordTransformMatrix = Translate(coordTransformMatrix, xOffset, yOffset);
// Transpose the mat2x3 into column vectors for use by WGSL.
params.coordTransformMatrix[0] = coordTransformMatrix[0];
params.coordTransformMatrix[1] = coordTransformMatrix[3];
params.coordTransformMatrix[2] = coordTransformMatrix[1];
params.coordTransformMatrix[3] = coordTransformMatrix[4];
params.coordTransformMatrix[4] = coordTransformMatrix[2];
params.coordTransformMatrix[5] = coordTransformMatrix[5];
DAWN_TRY(device->GetQueue()->WriteBuffer(mParamsBuffer.Get(), 0, &params,
sizeof(ExternalTextureParams)));
return {};
}
const std::array<Ref<TextureViewBase>, kMaxPlanesPerFormat>& ExternalTextureBase::GetTextureViews()
const {
return mTextureViews;
}
MaybeError ExternalTextureBase::ValidateCanUseInSubmitNow() const {
ASSERT(!IsError());
DAWN_INVALID_IF(mState != ExternalTextureState::Active,
"External texture %s used in a submit is not active.", this);
for (uint32_t i = 0; i < kMaxPlanesPerFormat; ++i) {
if (mTextureViews[i] != nullptr) {
DAWN_TRY_CONTEXT(mTextureViews[i]->GetTexture()->ValidateCanUseInSubmitNow(),
"Validate plane %u of %s can be used in a submit.", i, this);
}
}
return {};
}
MaybeError ExternalTextureBase::ValidateRefresh() {
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_INVALID_IF(mState == ExternalTextureState::Destroyed, "%s is destroyed.", this);
return {};
}
MaybeError ExternalTextureBase::ValidateExpire() {
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_INVALID_IF(mState != ExternalTextureState::Active, "%s is not active.", this);
return {};
}
void ExternalTextureBase::APIRefresh() {
if (GetDevice()->ConsumedError(ValidateRefresh(), "calling %s.Refresh()", this)) {
return;
}
mState = ExternalTextureState::Active;
}
void ExternalTextureBase::APIExpire() {
if (GetDevice()->ConsumedError(ValidateExpire(), "calling %s.Expire()", this)) {
return;
}
mState = ExternalTextureState::Expired;
}
void ExternalTextureBase::APIDestroy() {
Destroy();
}
void ExternalTextureBase::DestroyImpl() {
mState = ExternalTextureState::Destroyed;
}
// static
ExternalTextureBase* ExternalTextureBase::MakeError(DeviceBase* device) {
return new ExternalTextureBase(device, ObjectBase::kError);
}
BufferBase* ExternalTextureBase::GetParamsBuffer() const {
return mParamsBuffer.Get();
}
ObjectType ExternalTextureBase::GetType() const {
return ObjectType::ExternalTexture;
}
const Extent2D& ExternalTextureBase::GetVisibleSize() const {
ASSERT(!IsError());
return mVisibleSize;
}
const Origin2D& ExternalTextureBase::GetVisibleOrigin() const {
ASSERT(!IsError());
return mVisibleOrigin;
}
} // namespace dawn::native