| // Copyright 2020 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "src/tint/lang/wgsl/inspector/inspector.h" |
| |
| #include <algorithm> |
| #include <unordered_set> |
| #include <utility> |
| |
| #include "src/tint/lang/core/builtin_value.h" |
| #include "src/tint/lang/core/fluent_types.h" |
| #include "src/tint/lang/core/interpolation_sampling.h" |
| #include "src/tint/lang/core/interpolation_type.h" |
| #include "src/tint/lang/core/type/array.h" |
| #include "src/tint/lang/core/type/bool.h" |
| #include "src/tint/lang/core/type/depth_multisampled_texture.h" |
| #include "src/tint/lang/core/type/depth_texture.h" |
| #include "src/tint/lang/core/type/external_texture.h" |
| #include "src/tint/lang/core/type/f16.h" |
| #include "src/tint/lang/core/type/f32.h" |
| #include "src/tint/lang/core/type/i32.h" |
| #include "src/tint/lang/core/type/input_attachment.h" |
| #include "src/tint/lang/core/type/matrix.h" |
| #include "src/tint/lang/core/type/multisampled_texture.h" |
| #include "src/tint/lang/core/type/sampled_texture.h" |
| #include "src/tint/lang/core/type/storage_texture.h" |
| #include "src/tint/lang/core/type/u32.h" |
| #include "src/tint/lang/core/type/vector.h" |
| #include "src/tint/lang/core/type/void.h" |
| #include "src/tint/lang/wgsl/ast/blend_src_attribute.h" |
| #include "src/tint/lang/wgsl/ast/bool_literal_expression.h" |
| #include "src/tint/lang/wgsl/ast/call_expression.h" |
| #include "src/tint/lang/wgsl/ast/float_literal_expression.h" |
| #include "src/tint/lang/wgsl/ast/id_attribute.h" |
| #include "src/tint/lang/wgsl/ast/identifier.h" |
| #include "src/tint/lang/wgsl/ast/input_attachment_index_attribute.h" |
| #include "src/tint/lang/wgsl/ast/int_literal_expression.h" |
| #include "src/tint/lang/wgsl/ast/interpolate_attribute.h" |
| #include "src/tint/lang/wgsl/ast/location_attribute.h" |
| #include "src/tint/lang/wgsl/ast/module.h" |
| #include "src/tint/lang/wgsl/ast/override.h" |
| #include "src/tint/lang/wgsl/ast/var.h" |
| #include "src/tint/lang/wgsl/extension.h" |
| #include "src/tint/lang/wgsl/sem/builtin_enum_expression.h" |
| #include "src/tint/lang/wgsl/sem/call.h" |
| #include "src/tint/lang/wgsl/sem/function.h" |
| #include "src/tint/lang/wgsl/sem/module.h" |
| #include "src/tint/lang/wgsl/sem/statement.h" |
| #include "src/tint/lang/wgsl/sem/struct.h" |
| #include "src/tint/lang/wgsl/sem/variable.h" |
| #include "src/tint/utils/containers/unique_vector.h" |
| #include "src/tint/utils/math/math.h" |
| #include "src/tint/utils/rtti/switch.h" |
| #include "src/tint/utils/text/string.h" |
| |
| using namespace tint::core::fluent_types; // NOLINT |
| |
| namespace tint::inspector { |
| namespace { |
| |
| void AppendResourceBindings(std::vector<ResourceBinding>* dest, |
| const std::vector<ResourceBinding>& orig) { |
| TINT_ASSERT(dest); |
| if (!dest) { |
| return; |
| } |
| |
| dest->reserve(dest->size() + orig.size()); |
| dest->insert(dest->end(), orig.begin(), orig.end()); |
| } |
| |
| std::tuple<ComponentType, CompositionType> CalculateComponentAndComposition( |
| const core::type::Type* type) { |
| // entry point in/out variables must of numeric scalar or vector types. |
| TINT_ASSERT(type->IsNumericScalarOrVector()); |
| |
| ComponentType componentType = Switch( |
| type->DeepestElement(), // |
| [&](const core::type::F32*) { return ComponentType::kF32; }, |
| [&](const core::type::F16*) { return ComponentType::kF16; }, |
| [&](const core::type::I32*) { return ComponentType::kI32; }, |
| [&](const core::type::U32*) { return ComponentType::kU32; }, // |
| TINT_ICE_ON_NO_MATCH); |
| |
| CompositionType compositionType; |
| if (auto* vec = type->As<core::type::Vector>()) { |
| switch (vec->Width()) { |
| case 2: { |
| compositionType = CompositionType::kVec2; |
| break; |
| } |
| case 3: { |
| compositionType = CompositionType::kVec3; |
| break; |
| } |
| case 4: { |
| compositionType = CompositionType::kVec4; |
| break; |
| } |
| default: { |
| TINT_UNREACHABLE() << "unhandled composition type"; |
| } |
| } |
| } else { |
| compositionType = CompositionType::kScalar; |
| } |
| |
| return {componentType, compositionType}; |
| } |
| |
| } // namespace |
| |
| Inspector::Inspector(const Program& program) : program_(program) {} |
| |
| Inspector::~Inspector() = default; |
| |
| EntryPoint Inspector::GetEntryPoint(const tint::ast::Function* func) { |
| EntryPoint entry_point; |
| TINT_ASSERT(func != nullptr); |
| TINT_ASSERT(func->IsEntryPoint()); |
| |
| auto* sem = program_.Sem().Get(func); |
| |
| entry_point.name = func->name->symbol.Name(); |
| entry_point.remapped_name = func->name->symbol.Name(); |
| |
| switch (func->PipelineStage()) { |
| case ast::PipelineStage::kCompute: { |
| entry_point.stage = PipelineStage::kCompute; |
| entry_point.workgroup_storage_size = ComputeWorkgroupStorageSize(func); |
| |
| auto wgsize = sem->WorkgroupSize(); |
| if (wgsize[0].has_value() && wgsize[1].has_value() && wgsize[2].has_value()) { |
| entry_point.workgroup_size = {wgsize[0].value(), wgsize[1].value(), |
| wgsize[2].value()}; |
| } |
| break; |
| } |
| case ast::PipelineStage::kFragment: { |
| entry_point.stage = PipelineStage::kFragment; |
| entry_point.pixel_local_members = ComputePixelLocalMemberTypes(func); |
| break; |
| } |
| case ast::PipelineStage::kVertex: { |
| entry_point.stage = PipelineStage::kVertex; |
| break; |
| } |
| default: { |
| TINT_UNREACHABLE() << "invalid pipeline stage for entry point '" << entry_point.name |
| << "'"; |
| } |
| } |
| |
| entry_point.push_constant_size = ComputePushConstantSize(func); |
| |
| for (auto* param : sem->Parameters()) { |
| AddEntryPointInOutVariables( |
| param->Declaration()->name->symbol.Name(), param->Declaration()->name->symbol.Name(), |
| param->Type(), param->Declaration()->attributes, param->Attributes().location, |
| param->Attributes().color, /* @blend_src */ std::nullopt, entry_point.input_variables); |
| |
| entry_point.input_position_used |= ContainsBuiltin( |
| core::BuiltinValue::kPosition, param->Type(), param->Declaration()->attributes); |
| entry_point.front_facing_used |= ContainsBuiltin( |
| core::BuiltinValue::kFrontFacing, param->Type(), param->Declaration()->attributes); |
| entry_point.sample_index_used |= ContainsBuiltin( |
| core::BuiltinValue::kSampleIndex, param->Type(), param->Declaration()->attributes); |
| entry_point.input_sample_mask_used |= ContainsBuiltin( |
| core::BuiltinValue::kSampleMask, param->Type(), param->Declaration()->attributes); |
| entry_point.num_workgroups_used |= ContainsBuiltin( |
| core::BuiltinValue::kNumWorkgroups, param->Type(), param->Declaration()->attributes); |
| entry_point.vertex_index_used |= ContainsBuiltin( |
| core::BuiltinValue::kVertexIndex, param->Type(), param->Declaration()->attributes); |
| entry_point.instance_index_used |= ContainsBuiltin( |
| core::BuiltinValue::kInstanceIndex, param->Type(), param->Declaration()->attributes); |
| } |
| |
| if (!sem->ReturnType()->Is<core::type::Void>()) { |
| AddEntryPointInOutVariables("<retval>", "", sem->ReturnType(), func->return_type_attributes, |
| sem->ReturnLocation(), /* @color */ std::nullopt, |
| /* @blend_src */ std::nullopt, entry_point.output_variables); |
| |
| entry_point.output_sample_mask_used = ContainsBuiltin( |
| core::BuiltinValue::kSampleMask, sem->ReturnType(), func->return_type_attributes); |
| entry_point.frag_depth_used = ContainsBuiltin( |
| core::BuiltinValue::kFragDepth, sem->ReturnType(), func->return_type_attributes); |
| entry_point.clip_distances_size = GetClipDistancesBuiltinSize(sem->ReturnType()); |
| } |
| |
| for (auto* var : sem->TransitivelyReferencedGlobals()) { |
| auto* decl = var->Declaration(); |
| |
| auto name = decl->name->symbol.Name(); |
| |
| auto* global = var->As<sem::GlobalVariable>(); |
| if (auto override_id = global->Attributes().override_id) { |
| Override override; |
| override.name = name; |
| override.id = override_id.value(); |
| auto* type = var->Type(); |
| TINT_ASSERT(type->Is<core::type::Scalar>()); |
| if (type->IsBoolScalarOrVector()) { |
| override.type = Override::Type::kBool; |
| } else if (type->IsFloatScalar()) { |
| if (type->Is<core::type::F16>()) { |
| override.type = Override::Type::kFloat16; |
| } else { |
| override.type = Override::Type::kFloat32; |
| } |
| } else if (type->IsSignedIntegerScalar()) { |
| override.type = Override::Type::kInt32; |
| } else if (type->IsUnsignedIntegerScalar()) { |
| override.type = Override::Type::kUint32; |
| } else { |
| TINT_UNREACHABLE(); |
| } |
| |
| override.is_initialized = global->Declaration()->initializer; |
| override.is_id_specified = |
| ast::HasAttribute<ast::IdAttribute>(global->Declaration()->attributes); |
| |
| entry_point.overrides.push_back(override); |
| } |
| } |
| |
| { |
| auto filter = [](const tint::sem::Call* call, |
| tint::wgsl::BuiltinFn builtin_fn) -> std::optional<TextureUsageType> { |
| if (builtin_fn == wgsl::BuiltinFn::kTextureLoad) { |
| if (call->Arguments()[0] |
| ->Type() |
| ->IsAnyOf<core::type::DepthTexture, |
| core::type::DepthMultisampledTexture>()) { |
| return TextureUsageType::kTextureLoad; |
| } |
| } |
| return {}; |
| }; |
| entry_point.has_texture_load_with_depth_texture = |
| !GetTextureUsagesForEntryPoint(*func, filter).empty(); |
| } |
| |
| return entry_point; |
| } |
| |
| EntryPoint Inspector::GetEntryPoint(const std::string& entry_point_name) { |
| auto* func = FindEntryPointByName(entry_point_name); |
| if (!func) { |
| return EntryPoint(); |
| } |
| return GetEntryPoint(func); |
| } |
| |
| std::vector<EntryPoint> Inspector::GetEntryPoints() { |
| std::vector<EntryPoint> result; |
| |
| for (auto* func : program_.AST().Functions()) { |
| if (!func->IsEntryPoint()) { |
| continue; |
| } |
| |
| result.push_back(GetEntryPoint(func)); |
| } |
| |
| return result; |
| } |
| |
| std::map<OverrideId, Scalar> Inspector::GetOverrideDefaultValues() { |
| std::map<OverrideId, Scalar> result; |
| for (auto* var : program_.AST().GlobalVariables()) { |
| auto* global = program_.Sem().Get<sem::GlobalVariable>(var); |
| if (!global || !global->Declaration()->Is<ast::Override>()) { |
| continue; |
| } |
| |
| // If there are conflicting defintions for an override id, that is invalid |
| // WGSL, so the resolver should catch it. Thus here the inspector just |
| // assumes all definitions of the override id are the same, so only needs |
| // to find the first reference to override id. |
| auto override_id = global->Attributes().override_id.value(); |
| if (result.find(override_id) != result.end()) { |
| continue; |
| } |
| |
| if (global->Initializer()) { |
| if (auto* value = global->Initializer()->ConstantValue()) { |
| result[override_id] = Switch( |
| value->Type(), // |
| [&](const core::type::I32*) { return Scalar(value->ValueAs<i32>()); }, |
| [&](const core::type::U32*) { return Scalar(value->ValueAs<u32>()); }, |
| [&](const core::type::F32*) { return Scalar(value->ValueAs<f32>()); }, |
| [&](const core::type::F16*) { |
| // Default value of f16 override is also stored as float scalar. |
| return Scalar(static_cast<float>(value->ValueAs<f16>())); |
| }, |
| [&](const core::type::Bool*) { return Scalar(value->ValueAs<bool>()); }); |
| continue; |
| } |
| } |
| |
| // No const-expression initializer for the override |
| result[override_id] = Scalar(); |
| } |
| |
| return result; |
| } |
| |
| std::map<std::string, OverrideId> Inspector::GetNamedOverrideIds() { |
| std::map<std::string, OverrideId> result; |
| for (auto* var : program_.AST().GlobalVariables()) { |
| auto* global = program_.Sem().Get<sem::GlobalVariable>(var); |
| if (auto override_id = global->Attributes().override_id) { |
| auto name = var->name->symbol.Name(); |
| result[name] = override_id.value(); |
| } |
| } |
| return result; |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetResourceBindings(const std::string& entry_point) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| std::vector<ResourceBinding> result; |
| for (auto fn : { |
| &Inspector::GetUniformBufferResourceBindings, |
| &Inspector::GetStorageBufferResourceBindings, |
| &Inspector::GetReadOnlyStorageBufferResourceBindings, |
| &Inspector::GetSamplerResourceBindings, |
| &Inspector::GetComparisonSamplerResourceBindings, |
| &Inspector::GetSampledTextureResourceBindings, |
| &Inspector::GetMultisampledTextureResourceBindings, |
| &Inspector::GetStorageTextureResourceBindings, |
| &Inspector::GetDepthTextureResourceBindings, |
| &Inspector::GetDepthMultisampledTextureResourceBindings, |
| &Inspector::GetExternalTextureResourceBindings, |
| &Inspector::GetInputAttachmentResourceBindings, |
| }) { |
| AppendResourceBindings(&result, (this->*fn)(entry_point)); |
| } |
| return result; |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetUniformBufferResourceBindings( |
| const std::string& entry_point) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| std::vector<ResourceBinding> result; |
| |
| auto* func_sem = program_.Sem().Get(func); |
| for (auto& ruv : func_sem->TransitivelyReferencedUniformVariables()) { |
| auto* var = ruv.first; |
| auto binding_info = ruv.second; |
| |
| auto* unwrapped_type = var->Type()->UnwrapRef(); |
| |
| ResourceBinding entry; |
| entry.resource_type = ResourceBinding::ResourceType::kUniformBuffer; |
| entry.bind_group = binding_info.group; |
| entry.binding = binding_info.binding; |
| entry.size = unwrapped_type->Size(); |
| entry.size_no_padding = entry.size; |
| if (auto* str = unwrapped_type->As<sem::Struct>()) { |
| entry.size_no_padding = str->SizeNoPadding(); |
| } else { |
| entry.size_no_padding = entry.size; |
| } |
| entry.variable_name = var->Declaration()->name->symbol.Name(); |
| |
| result.push_back(entry); |
| } |
| |
| return result; |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetStorageBufferResourceBindings( |
| const std::string& entry_point) { |
| return GetStorageBufferResourceBindingsImpl(entry_point, false); |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetReadOnlyStorageBufferResourceBindings( |
| const std::string& entry_point) { |
| return GetStorageBufferResourceBindingsImpl(entry_point, true); |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetSamplerResourceBindings(const std::string& entry_point) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| std::vector<ResourceBinding> result; |
| |
| auto* func_sem = program_.Sem().Get(func); |
| for (auto& rs : func_sem->TransitivelyReferencedSamplerVariables()) { |
| auto binding_info = rs.second; |
| |
| ResourceBinding entry; |
| entry.resource_type = ResourceBinding::ResourceType::kSampler; |
| entry.bind_group = binding_info.group; |
| entry.binding = binding_info.binding; |
| entry.variable_name = rs.first->Declaration()->name->symbol.Name(); |
| |
| result.push_back(entry); |
| } |
| |
| return result; |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetComparisonSamplerResourceBindings( |
| const std::string& entry_point) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| std::vector<ResourceBinding> result; |
| |
| auto* func_sem = program_.Sem().Get(func); |
| for (auto& rcs : func_sem->TransitivelyReferencedComparisonSamplerVariables()) { |
| auto binding_info = rcs.second; |
| |
| ResourceBinding entry; |
| entry.resource_type = ResourceBinding::ResourceType::kComparisonSampler; |
| entry.bind_group = binding_info.group; |
| entry.binding = binding_info.binding; |
| entry.variable_name = rcs.first->Declaration()->name->symbol.Name(); |
| |
| result.push_back(entry); |
| } |
| |
| return result; |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetSampledTextureResourceBindings( |
| const std::string& entry_point) { |
| return GetSampledTextureResourceBindingsImpl(entry_point, false); |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetMultisampledTextureResourceBindings( |
| const std::string& entry_point) { |
| return GetSampledTextureResourceBindingsImpl(entry_point, true); |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetStorageTextureResourceBindings( |
| const std::string& entry_point) { |
| return GetStorageTextureResourceBindingsImpl(entry_point); |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetTextureResourceBindings( |
| const std::string& entry_point, |
| const tint::TypeInfo* texture_type, |
| ResourceBinding::ResourceType resource_type) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| std::vector<ResourceBinding> result; |
| auto* func_sem = program_.Sem().Get(func); |
| for (auto& ref : func_sem->TransitivelyReferencedVariablesOfType(texture_type)) { |
| auto* var = ref.first; |
| auto binding_info = ref.second; |
| |
| ResourceBinding entry; |
| entry.resource_type = resource_type; |
| entry.bind_group = binding_info.group; |
| entry.binding = binding_info.binding; |
| entry.variable_name = var->Declaration()->name->symbol.Name(); |
| |
| auto* tex = var->Type()->UnwrapRef()->As<core::type::Texture>(); |
| entry.dim = TypeTextureDimensionToResourceBindingTextureDimension(tex->Dim()); |
| |
| result.push_back(entry); |
| } |
| |
| return result; |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetDepthTextureResourceBindings( |
| const std::string& entry_point) { |
| return GetTextureResourceBindings(entry_point, &tint::TypeInfo::Of<core::type::DepthTexture>(), |
| ResourceBinding::ResourceType::kDepthTexture); |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetDepthMultisampledTextureResourceBindings( |
| const std::string& entry_point) { |
| return GetTextureResourceBindings(entry_point, |
| &tint::TypeInfo::Of<core::type::DepthMultisampledTexture>(), |
| ResourceBinding::ResourceType::kDepthMultisampledTexture); |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetExternalTextureResourceBindings( |
| const std::string& entry_point) { |
| return GetTextureResourceBindings(entry_point, |
| &tint::TypeInfo::Of<core::type::ExternalTexture>(), |
| ResourceBinding::ResourceType::kExternalTexture); |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetInputAttachmentResourceBindings( |
| const std::string& entry_point) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| std::vector<ResourceBinding> result; |
| auto* func_sem = program_.Sem().Get(func); |
| for (auto& ref : func_sem->TransitivelyReferencedVariablesOfType( |
| &tint::TypeInfo::Of<core::type::InputAttachment>())) { |
| auto* var = ref.first; |
| auto binding_info = ref.second; |
| |
| ResourceBinding entry; |
| entry.resource_type = ResourceBinding::ResourceType::kInputAttachment; |
| entry.bind_group = binding_info.group; |
| entry.binding = binding_info.binding; |
| |
| auto* sem_var = var->As<sem::GlobalVariable>(); |
| TINT_ASSERT(sem_var); |
| TINT_ASSERT(sem_var->Attributes().input_attachment_index); |
| entry.input_attachmnt_index = sem_var->Attributes().input_attachment_index.value(); |
| |
| auto* input_attachment_type = var->Type()->UnwrapRef()->As<core::type::InputAttachment>(); |
| auto* base_type = input_attachment_type->Type(); |
| entry.sampled_kind = BaseTypeToSampledKind(base_type); |
| |
| entry.variable_name = var->Declaration()->name->symbol.Name(); |
| |
| entry.dim = |
| TypeTextureDimensionToResourceBindingTextureDimension(input_attachment_type->Dim()); |
| |
| result.push_back(entry); |
| } |
| |
| return result; |
| } |
| |
| VectorRef<SamplerTexturePair> Inspector::GetSamplerTextureUses(const std::string& entry_point) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| GenerateSamplerTargets(); |
| |
| auto it = sampler_targets_->find(entry_point); |
| if (it == sampler_targets_->end()) { |
| return {}; |
| } |
| return it->second; |
| } |
| |
| std::vector<SamplerTexturePair> Inspector::GetSamplerTextureUses(const std::string& entry_point, |
| const BindingPoint& placeholder) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| auto* func_sem = program_.Sem().Get(func); |
| |
| std::vector<SamplerTexturePair> new_pairs; |
| for (auto pair : func_sem->TextureSamplerPairs()) { |
| auto* texture = pair.first->As<sem::GlobalVariable>(); |
| auto* sampler = pair.second ? pair.second->As<sem::GlobalVariable>() : nullptr; |
| SamplerTexturePair new_pair; |
| new_pair.sampler_binding_point = |
| sampler ? *sampler->Attributes().binding_point : placeholder; |
| new_pair.texture_binding_point = *texture->Attributes().binding_point; |
| new_pairs.push_back(new_pair); |
| } |
| return new_pairs; |
| } |
| |
| std::vector<std::string> Inspector::GetUsedExtensionNames() { |
| auto& extensions = program_.Sem().Module()->Extensions(); |
| std::vector<std::string> out; |
| out.reserve(extensions.Length()); |
| for (auto ext : extensions) { |
| out.push_back(tint::ToString(ext)); |
| } |
| return out; |
| } |
| |
| std::vector<std::pair<std::string, Source>> Inspector::GetEnableDirectives() { |
| std::vector<std::pair<std::string, Source>> result; |
| |
| // Ast nodes for enable directive are stored within global declarations list |
| auto global_decls = program_.AST().GlobalDeclarations(); |
| for (auto* node : global_decls) { |
| if (auto* enable = node->As<ast::Enable>()) { |
| for (auto* ext : enable->extensions) { |
| result.push_back({tint::ToString(ext->name), ext->source}); |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| const ast::Function* Inspector::FindEntryPointByName(const std::string& name) { |
| auto* func = program_.AST().Functions().Find(program_.Symbols().Get(name)); |
| if (!func) { |
| diagnostics_.AddError(Source{}) << name << " was not found!"; |
| return nullptr; |
| } |
| |
| if (!func->IsEntryPoint()) { |
| diagnostics_.AddError(Source{}) << name << " is not an entry point!"; |
| return nullptr; |
| } |
| |
| return func; |
| } |
| |
| void Inspector::AddEntryPointInOutVariables(std::string name, |
| std::string variable_name, |
| const core::type::Type* type, |
| VectorRef<const ast::Attribute*> attributes, |
| std::optional<uint32_t> location, |
| std::optional<uint32_t> color, |
| std::optional<uint32_t> blend_src, |
| std::vector<StageVariable>& variables) const { |
| // Skip builtins. |
| if (ast::HasAttribute<ast::BuiltinAttribute>(attributes)) { |
| return; |
| } |
| |
| auto* unwrapped_type = type->UnwrapRef(); |
| |
| if (auto* struct_ty = unwrapped_type->As<sem::Struct>()) { |
| // Recurse into members. |
| for (auto* member : struct_ty->Members()) { |
| AddEntryPointInOutVariables(name + "." + member->Name().Name(), member->Name().Name(), |
| member->Type(), member->Declaration()->attributes, |
| member->Attributes().location, member->Attributes().color, |
| member->Attributes().blend_src, variables); |
| } |
| return; |
| } |
| |
| // Base case: add the variable. |
| |
| StageVariable stage_variable; |
| stage_variable.name = name; |
| stage_variable.variable_name = variable_name; |
| std::tie(stage_variable.component_type, stage_variable.composition_type) = |
| CalculateComponentAndComposition(type); |
| |
| stage_variable.attributes.blend_src = blend_src; |
| stage_variable.attributes.location = location; |
| stage_variable.attributes.color = color; |
| |
| std::tie(stage_variable.interpolation_type, stage_variable.interpolation_sampling) = |
| CalculateInterpolationData(attributes); |
| |
| variables.push_back(stage_variable); |
| } |
| |
| bool Inspector::ContainsBuiltin(core::BuiltinValue builtin, |
| const core::type::Type* type, |
| VectorRef<const ast::Attribute*> attributes) const { |
| auto* unwrapped_type = type->UnwrapRef(); |
| |
| if (auto* struct_ty = unwrapped_type->As<sem::Struct>()) { |
| // Recurse into members. |
| for (auto* member : struct_ty->Members()) { |
| if (ContainsBuiltin(builtin, member->Type(), member->Declaration()->attributes)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Base case: check for builtin |
| auto* builtin_declaration = ast::GetAttribute<ast::BuiltinAttribute>(attributes); |
| if (!builtin_declaration) { |
| return false; |
| } |
| return builtin_declaration->builtin == builtin; |
| } |
| |
| std::optional<uint32_t> Inspector::GetClipDistancesBuiltinSize(const core::type::Type* type) const { |
| auto* unwrapped_type = type->UnwrapRef(); |
| |
| if (auto* struct_ty = unwrapped_type->As<sem::Struct>()) { |
| for (auto* member : struct_ty->Members()) { |
| if (ContainsBuiltin(core::BuiltinValue::kClipDistances, member->Type(), |
| member->Declaration()->attributes)) { |
| auto* array_type = member->Type()->As<core::type::Array>(); |
| if (DAWN_UNLIKELY(array_type == nullptr)) { |
| TINT_ICE() << "clip_distances is not an array"; |
| } |
| return array_type->ConstantCount(); |
| } |
| } |
| } |
| |
| return std::nullopt; |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetStorageBufferResourceBindingsImpl( |
| const std::string& entry_point, |
| bool read_only) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| auto* func_sem = program_.Sem().Get(func); |
| std::vector<ResourceBinding> result; |
| for (auto& rsv : func_sem->TransitivelyReferencedStorageBufferVariables()) { |
| auto* var = rsv.first; |
| auto binding_info = rsv.second; |
| |
| if (read_only != (var->Access() == core::Access::kRead)) { |
| continue; |
| } |
| |
| auto* unwrapped_type = var->Type()->UnwrapRef(); |
| |
| ResourceBinding entry; |
| entry.resource_type = read_only ? ResourceBinding::ResourceType::kReadOnlyStorageBuffer |
| : ResourceBinding::ResourceType::kStorageBuffer; |
| entry.bind_group = binding_info.group; |
| entry.binding = binding_info.binding; |
| entry.size = unwrapped_type->Size(); |
| if (auto* str = unwrapped_type->As<sem::Struct>()) { |
| entry.size_no_padding = str->SizeNoPadding(); |
| } else { |
| entry.size_no_padding = entry.size; |
| } |
| entry.variable_name = var->Declaration()->name->symbol.Name(); |
| |
| result.push_back(entry); |
| } |
| |
| return result; |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetSampledTextureResourceBindingsImpl( |
| const std::string& entry_point, |
| bool multisampled_only) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| std::vector<ResourceBinding> result; |
| auto* func_sem = program_.Sem().Get(func); |
| auto referenced_variables = multisampled_only |
| ? func_sem->TransitivelyReferencedMultisampledTextureVariables() |
| : func_sem->TransitivelyReferencedSampledTextureVariables(); |
| for (auto& ref : referenced_variables) { |
| auto* var = ref.first; |
| auto binding_info = ref.second; |
| |
| ResourceBinding entry; |
| entry.resource_type = multisampled_only |
| ? ResourceBinding::ResourceType::kMultisampledTexture |
| : ResourceBinding::ResourceType::kSampledTexture; |
| entry.bind_group = binding_info.group; |
| entry.binding = binding_info.binding; |
| entry.variable_name = var->Declaration()->name->symbol.Name(); |
| |
| auto* texture_type = var->Type()->UnwrapRef()->As<core::type::Texture>(); |
| entry.dim = TypeTextureDimensionToResourceBindingTextureDimension(texture_type->Dim()); |
| |
| const core::type::Type* base_type = nullptr; |
| if (multisampled_only) { |
| base_type = texture_type->As<core::type::MultisampledTexture>()->Type(); |
| } else { |
| base_type = texture_type->As<core::type::SampledTexture>()->Type(); |
| } |
| entry.sampled_kind = BaseTypeToSampledKind(base_type); |
| |
| result.push_back(entry); |
| } |
| |
| return result; |
| } |
| |
| std::vector<ResourceBinding> Inspector::GetStorageTextureResourceBindingsImpl( |
| const std::string& entry_point) { |
| auto* func = FindEntryPointByName(entry_point); |
| if (!func) { |
| return {}; |
| } |
| |
| auto* func_sem = program_.Sem().Get(func); |
| std::vector<ResourceBinding> result; |
| for (auto& ref : |
| func_sem->TransitivelyReferencedVariablesOfType<core::type::StorageTexture>()) { |
| auto* var = ref.first; |
| auto binding_info = ref.second; |
| |
| auto* texture_type = var->Type()->UnwrapRef()->As<core::type::StorageTexture>(); |
| |
| ResourceBinding entry; |
| switch (texture_type->Access()) { |
| case core::Access::kWrite: |
| entry.resource_type = ResourceBinding::ResourceType::kWriteOnlyStorageTexture; |
| break; |
| case core::Access::kReadWrite: |
| entry.resource_type = ResourceBinding::ResourceType::kReadWriteStorageTexture; |
| break; |
| case core::Access::kRead: |
| entry.resource_type = ResourceBinding::ResourceType::kReadOnlyStorageTexture; |
| break; |
| case core::Access::kUndefined: |
| TINT_UNREACHABLE() << "unhandled storage texture access"; |
| } |
| entry.bind_group = binding_info.group; |
| entry.binding = binding_info.binding; |
| entry.variable_name = var->Declaration()->name->symbol.Name(); |
| |
| entry.dim = TypeTextureDimensionToResourceBindingTextureDimension(texture_type->Dim()); |
| |
| auto* base_type = texture_type->Type(); |
| entry.sampled_kind = BaseTypeToSampledKind(base_type); |
| entry.image_format = |
| TypeTexelFormatToResourceBindingTexelFormat(texture_type->TexelFormat()); |
| |
| result.push_back(entry); |
| } |
| |
| return result; |
| } |
| |
| void Inspector::GenerateSamplerTargets() { |
| // Do not re-generate, since |program_| should not change during the lifetime |
| // of the inspector. |
| if (sampler_targets_ != nullptr) { |
| return; |
| } |
| |
| sampler_targets_ = |
| std::make_unique<std::unordered_map<std::string, UniqueVector<SamplerTexturePair, 4>>>(); |
| |
| auto& sem = program_.Sem(); |
| |
| for (auto* node : program_.ASTNodes().Objects()) { |
| auto* c = node->As<ast::CallExpression>(); |
| if (!c) { |
| continue; |
| } |
| |
| auto* call = sem.Get(c)->UnwrapMaterialize()->As<sem::Call>(); |
| if (!call) { |
| continue; |
| } |
| |
| auto* i = call->Target()->As<sem::BuiltinFn>(); |
| if (!i) { |
| continue; |
| } |
| |
| const auto& signature = i->Signature(); |
| int sampler_index = signature.IndexOf(core::ParameterUsage::kSampler); |
| if (sampler_index == -1) { |
| continue; |
| } |
| |
| int texture_index = signature.IndexOf(core::ParameterUsage::kTexture); |
| if (texture_index == -1) { |
| continue; |
| } |
| |
| auto* call_func = call->Stmt()->Function(); |
| Vector<const sem::Function*, 4> entry_points; |
| if (call_func->Declaration()->IsEntryPoint()) { |
| entry_points = {call_func}; |
| } else { |
| entry_points = call_func->AncestorEntryPoints(); |
| } |
| |
| if (entry_points.IsEmpty()) { |
| continue; |
| } |
| |
| auto* t = c->args[static_cast<size_t>(texture_index)]; |
| auto* s = c->args[static_cast<size_t>(sampler_index)]; |
| |
| GetOriginatingResources( |
| std::array<const ast::Expression*, 2>{t, s}, |
| [&](std::array<const sem::GlobalVariable*, 2> globals) { |
| auto texture_binding_point = *globals[0]->Attributes().binding_point; |
| auto sampler_binding_point = *globals[1]->Attributes().binding_point; |
| |
| for (auto* entry_point : entry_points) { |
| const auto& ep_name = entry_point->Declaration()->name->symbol.Name(); |
| (*sampler_targets_)[ep_name].Add( |
| {sampler_binding_point, texture_binding_point}); |
| } |
| }); |
| } |
| } |
| |
| std::tuple<InterpolationType, InterpolationSampling> Inspector::CalculateInterpolationData( |
| VectorRef<const ast::Attribute*> attributes) const { |
| auto* interpolation_attribute = ast::GetAttribute<ast::InterpolateAttribute>(attributes); |
| |
| if (!interpolation_attribute) { |
| return {InterpolationType::kPerspective, InterpolationSampling::kCenter}; |
| } |
| |
| auto ast_interpolation_type = interpolation_attribute->interpolation.type; |
| auto ast_sampling_type = interpolation_attribute->interpolation.sampling; |
| |
| if (ast_sampling_type == core::InterpolationSampling::kUndefined) { |
| if (ast_interpolation_type == core::InterpolationType::kFlat) { |
| ast_sampling_type = core::InterpolationSampling::kFirst; |
| } else { |
| ast_sampling_type = core::InterpolationSampling::kCenter; |
| } |
| } |
| |
| auto interpolation_type = InterpolationType::kUnknown; |
| switch (ast_interpolation_type) { |
| case core::InterpolationType::kPerspective: |
| interpolation_type = InterpolationType::kPerspective; |
| break; |
| case core::InterpolationType::kLinear: |
| interpolation_type = InterpolationType::kLinear; |
| break; |
| case core::InterpolationType::kFlat: |
| interpolation_type = InterpolationType::kFlat; |
| break; |
| case core::InterpolationType::kUndefined: |
| break; |
| } |
| |
| auto sampling_type = InterpolationSampling::kUnknown; |
| switch (ast_sampling_type) { |
| case core::InterpolationSampling::kUndefined: |
| sampling_type = InterpolationSampling::kNone; |
| break; |
| case core::InterpolationSampling::kCenter: |
| sampling_type = InterpolationSampling::kCenter; |
| break; |
| case core::InterpolationSampling::kCentroid: |
| sampling_type = InterpolationSampling::kCentroid; |
| break; |
| case core::InterpolationSampling::kSample: |
| sampling_type = InterpolationSampling::kSample; |
| break; |
| case core::InterpolationSampling::kFirst: |
| sampling_type = InterpolationSampling::kFirst; |
| break; |
| case core::InterpolationSampling::kEither: |
| sampling_type = InterpolationSampling::kEither; |
| break; |
| } |
| |
| return {interpolation_type, sampling_type}; |
| } |
| |
| uint32_t Inspector::ComputeWorkgroupStorageSize(const ast::Function* func) const { |
| uint32_t total_size = 0; |
| auto* func_sem = program_.Sem().Get(func); |
| for (const sem::Variable* var : func_sem->TransitivelyReferencedGlobals()) { |
| if (var->AddressSpace() == core::AddressSpace::kWorkgroup) { |
| auto* ty = var->Type()->UnwrapRef(); |
| uint32_t align = ty->Align(); |
| uint32_t size = ty->Size(); |
| |
| // This essentially matches std430 layout rules from GLSL, which are in |
| // turn specified as an upper bound for Vulkan layout sizing. Since D3D |
| // and Metal are even less specific, we assume Vulkan behavior as a |
| // good-enough approximation everywhere. |
| total_size += tint::RoundUp(16u, tint::RoundUp(align, size)); |
| } |
| } |
| |
| return total_size; |
| } |
| |
| uint32_t Inspector::ComputePushConstantSize(const ast::Function* func) const { |
| uint32_t size = 0; |
| auto* func_sem = program_.Sem().Get(func); |
| for (const sem::Variable* var : func_sem->TransitivelyReferencedGlobals()) { |
| if (var->AddressSpace() == core::AddressSpace::kPushConstant) { |
| size += var->Type()->UnwrapRef()->Size(); |
| } |
| } |
| |
| return size; |
| } |
| |
| std::vector<PixelLocalMemberType> Inspector::ComputePixelLocalMemberTypes( |
| const ast::Function* func) const { |
| auto* func_sem = program_.Sem().Get(func); |
| for (const sem::Variable* var : func_sem->TransitivelyReferencedGlobals()) { |
| if (var->AddressSpace() != core::AddressSpace::kPixelLocal) { |
| continue; |
| } |
| |
| auto* str = var->Type()->UnwrapRef()->As<sem::Struct>(); |
| |
| std::vector<PixelLocalMemberType> types; |
| types.reserve(str->Members().Length()); |
| for (auto* member : str->Members()) { |
| PixelLocalMemberType type = Switch( |
| member->Type(), // |
| [&](const core::type::F32*) { return PixelLocalMemberType::kF32; }, |
| [&](const core::type::I32*) { return PixelLocalMemberType::kI32; }, |
| [&](const core::type::U32*) { return PixelLocalMemberType::kU32; }, // |
| TINT_ICE_ON_NO_MATCH); |
| types.push_back(type); |
| } |
| |
| return types; |
| } |
| |
| return {}; |
| } |
| |
| template <size_t N, typename F> |
| void Inspector::GetOriginatingResources(std::array<const ast::Expression*, N> exprs, F&& callback) { |
| if (DAWN_UNLIKELY(!program_.IsValid())) { |
| TINT_ICE() << "attempting to get originating resources in invalid program"; |
| return; |
| } |
| |
| auto& sem = program_.Sem(); |
| |
| std::array<const sem::GlobalVariable*, N> globals{}; |
| std::array<const sem::Parameter*, N> parameters{}; |
| UniqueVector<const ast::CallExpression*, 8> callsites; |
| |
| for (size_t i = 0; i < N; i++) { |
| const sem::Variable* root_ident = sem.GetVal(exprs[i])->RootIdentifier(); |
| if (auto* global = root_ident->As<sem::GlobalVariable>()) { |
| globals[i] = global; |
| } else if (auto* param = root_ident->As<sem::Parameter>()) { |
| auto* func = tint::As<sem::Function>(param->Owner()); |
| if (func->CallSites().IsEmpty()) { |
| // One or more of the expressions is a parameter, but this function |
| // is not called. Ignore. |
| return; |
| } |
| for (auto* call : func->CallSites()) { |
| callsites.Add(call->Declaration()); |
| } |
| parameters[i] = param; |
| } else { |
| TINT_ICE() << "cannot resolve originating resource with expression type " |
| << exprs[i]->TypeInfo().name; |
| return; |
| } |
| } |
| |
| if (callsites.Length()) { |
| for (auto* call_expr : callsites) { |
| // Make a copy of the expressions for this callsite |
| std::array<const ast::Expression*, N> call_exprs = exprs; |
| // Patch all the parameter expressions with their argument |
| for (size_t i = 0; i < N; i++) { |
| if (auto* param = parameters[i]) { |
| call_exprs[i] = call_expr->args[param->Index()]; |
| } |
| } |
| // Now call GetOriginatingResources() with from the callsite |
| GetOriginatingResources(call_exprs, callback); |
| } |
| } else { |
| // All the expressions resolved to globals |
| callback(globals); |
| } |
| } |
| |
| std::vector<Inspector::LevelSampleInfo> Inspector::GetTextureQueries(const std::string& ep_name) { |
| const auto* ep = FindEntryPointByName(ep_name); |
| if (!ep) { |
| return {}; |
| } |
| |
| auto filter = [&](const tint::sem::Call* call, |
| tint::wgsl::BuiltinFn builtin_fn) -> std::optional<TextureUsageType> { |
| switch (builtin_fn) { |
| case wgsl::BuiltinFn::kTextureNumLevels: { |
| return TextureUsageType::kTextureNumLevels; |
| } |
| case wgsl::BuiltinFn::kTextureDimensions: { |
| if (call->Declaration()->args.Length() <= 1) { |
| // When textureDimension only takes a texture as the input, |
| // it doesn't require calls to textureNumLevels to clamp mip levels. |
| return {}; |
| } |
| return TextureUsageType::kTextureNumLevels; |
| } |
| case wgsl::BuiltinFn::kTextureLoad: { |
| if (call->Arguments()[0] |
| ->Type() |
| ->IsAnyOf<core::type::MultisampledTexture, |
| core::type::DepthMultisampledTexture>()) { |
| // When textureLoad takes a multisampled texture as the input, |
| // it doesn't require to query the mip level. |
| return {}; |
| } |
| return TextureUsageType::kTextureNumLevels; |
| } |
| case wgsl::BuiltinFn::kTextureNumSamples: { |
| return TextureUsageType::kTextureNumSamples; |
| } |
| default: |
| return {}; |
| } |
| }; |
| |
| auto usages = GetTextureUsagesForEntryPoint(*ep, filter); |
| |
| auto t = [](const TextureUsageInfo& info) -> LevelSampleInfo { |
| return { |
| info.type == TextureUsageType::kTextureNumSamples ? TextureQueryType::kTextureNumSamples |
| : TextureQueryType::kTextureNumLevels, |
| info.group, |
| info.binding, |
| }; |
| }; |
| |
| std::vector<LevelSampleInfo> res; |
| std::transform(usages.begin(), usages.end(), std::back_inserter(res), t); |
| return res; |
| } |
| |
| std::vector<Inspector::TextureUsageInfo> Inspector::GetTextureUsagesForEntryPoint( |
| const tint::ast::Function& ep, |
| std::function<std::optional<TextureUsageType>(const tint::sem::Call* call, |
| tint::wgsl::BuiltinFn builtin_fn)> filter) { |
| TINT_ASSERT(ep.IsEntryPoint()); |
| |
| std::vector<TextureUsageInfo> res; |
| |
| std::unordered_set<BindingPoint> seen = {}; |
| |
| Hashmap<const sem::Function*, Hashmap<const ast::Parameter*, TextureUsageType, 4>, 8> |
| fn_to_data; |
| |
| auto record_function_param = [&fn_to_data](const sem::Function* func, |
| const ast::Parameter* param, TextureUsageType type) { |
| fn_to_data.GetOrAddZero(func).Add(param, type); |
| }; |
| |
| auto save_if_needed = [&res, &seen](const sem::GlobalVariable* global, TextureUsageType type) { |
| auto binding = global->Attributes().binding_point.value(); |
| if (seen.insert(binding).second) { |
| res.emplace_back(TextureUsageInfo{type, binding.group, binding.binding}); |
| } |
| }; |
| |
| auto& sem = program_.Sem(); |
| |
| // This works in dependency order such that we'll see the texture call first and can record |
| // any function parameter information and then as we walk up the function chain we can look |
| // the call data. |
| for (auto* fn_decl : sem.Module()->DependencyOrderedDeclarations()) { |
| auto* fn = sem.Get<sem::Function>(fn_decl); |
| if (!fn) { |
| continue; |
| } |
| |
| // This is an entrypoint, make sure it's the requested entry point |
| if (fn->Declaration()->IsEntryPoint()) { |
| if (fn->Declaration() != &ep) { |
| continue; |
| } |
| } else { |
| // Not an entry point, make sure it was called from the requested entry point |
| if (!fn->HasAncestorEntryPoint(ep.name->symbol)) { |
| continue; |
| } |
| } |
| |
| auto queryTextureBuiltin = [&](TextureUsageType type, const sem::Call* builtin_call, |
| const sem::Variable* texture_sem = nullptr) { |
| TINT_ASSERT(builtin_call); |
| if (!texture_sem) { |
| auto* texture_expr = builtin_call->Declaration()->args[0]; |
| texture_sem = sem.GetVal(texture_expr)->RootIdentifier(); |
| } |
| tint::Switch( |
| texture_sem, // |
| [&](const sem::GlobalVariable* global) { save_if_needed(global, type); }, |
| [&](const sem::Parameter* param) { |
| record_function_param(fn, param->Declaration(), type); |
| }, |
| TINT_ICE_ON_NO_MATCH); |
| }; |
| |
| for (auto* call : fn->DirectCalls()) { |
| // Builtin function call, record the texture information. If the used texture maps |
| // back up to a function parameter just store the type of the call and we'll track the |
| // function callback up in the `sem::Function` branch. |
| tint::Switch( |
| call->Target(), |
| [&](const sem::BuiltinFn* builtin) { |
| auto type = filter(call, builtin->Fn()); |
| if (type) { |
| queryTextureBuiltin(*type, call); |
| } |
| }, |
| [&](const sem::Function* func) { |
| // A function call, check to see if any params needed to be tracked back to a |
| // global texture. |
| |
| auto param_to_type = fn_to_data.Get(func); |
| if (!param_to_type) { |
| return; |
| } |
| TINT_ASSERT(call->Arguments().Length() == func->Declaration()->params.Length()); |
| |
| for (size_t i = 0; i < call->Arguments().Length(); i++) { |
| auto param = func->Declaration()->params[i]; |
| |
| // Determine if this had a texture we cared about |
| auto type = param_to_type->Get(param); |
| if (!type) { |
| continue; |
| } |
| |
| auto* arg = call->Arguments()[i]; |
| auto* texture_sem = arg->RootIdentifier(); |
| |
| tint::Switch( |
| texture_sem, |
| [&](const sem::GlobalVariable* global) { |
| save_if_needed(global, *type); |
| }, |
| [&](const sem::Parameter* p) { |
| record_function_param(fn, p->Declaration(), *type); |
| }, |
| TINT_ICE_ON_NO_MATCH); |
| } |
| }); |
| } |
| } |
| |
| return res; |
| } |
| |
| } // namespace tint::inspector |