blob: 86ffcb97ded8478290dfe2f3906ab22495231b9b [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/Buffer.h"
#include "common/Alloc.h"
#include "common/Assert.h"
#include "dawn_native/Commands.h"
#include "dawn_native/Device.h"
#include "dawn_native/DynamicUploader.h"
#include "dawn_native/ErrorData.h"
#include "dawn_native/ObjectType_autogen.h"
#include "dawn_native/Queue.h"
#include "dawn_native/ValidationUtils_autogen.h"
#include <cstdio>
#include <cstring>
#include <utility>
namespace dawn_native {
namespace {
struct MapRequestTask : QueueBase::TaskInFlight {
MapRequestTask(Ref<BufferBase> buffer, MapRequestID id)
: buffer(std::move(buffer)), id(id) {
}
void Finish() override {
buffer->OnMapRequestCompleted(id, WGPUBufferMapAsyncStatus_Success);
}
void HandleDeviceLoss() override {
buffer->OnMapRequestCompleted(id, WGPUBufferMapAsyncStatus_DeviceLost);
}
~MapRequestTask() override = default;
private:
Ref<BufferBase> buffer;
MapRequestID id;
};
class ErrorBuffer final : public BufferBase {
public:
ErrorBuffer(DeviceBase* device, const BufferDescriptor* descriptor)
: BufferBase(device, descriptor, ObjectBase::kError) {
if (descriptor->mappedAtCreation) {
// Check that the size can be used to allocate an mFakeMappedData. A malloc(0)
// is invalid, and on 32bit systems we should avoid a narrowing conversion that
// would make size = 1 << 32 + 1 allocate one byte.
bool isValidSize =
descriptor->size != 0 &&
descriptor->size < uint64_t(std::numeric_limits<size_t>::max());
if (isValidSize) {
mFakeMappedData =
std::unique_ptr<uint8_t[]>(AllocNoThrow<uint8_t>(descriptor->size));
}
}
}
void ClearMappedData() {
mFakeMappedData.reset();
}
private:
bool IsCPUWritableAtCreation() const override {
UNREACHABLE();
}
MaybeError MapAtCreationImpl() override {
UNREACHABLE();
}
MaybeError MapAsyncImpl(wgpu::MapMode mode, size_t offset, size_t size) override {
UNREACHABLE();
}
void* GetMappedPointerImpl() override {
return mFakeMappedData.get();
}
void UnmapImpl() override {
UNREACHABLE();
}
void DestroyImpl() override {
UNREACHABLE();
}
std::unique_ptr<uint8_t[]> mFakeMappedData;
};
} // anonymous namespace
MaybeError ValidateBufferDescriptor(DeviceBase*, const BufferDescriptor* descriptor) {
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr");
DAWN_TRY(ValidateBufferUsage(descriptor->usage));
wgpu::BufferUsage usage = descriptor->usage;
const wgpu::BufferUsage kMapWriteAllowedUsages =
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc;
DAWN_INVALID_IF(
usage & wgpu::BufferUsage::MapWrite && !IsSubset(usage, kMapWriteAllowedUsages),
"Buffer usages (%s) contains %s but is not a subset of %s.", usage,
wgpu::BufferUsage::MapWrite, kMapWriteAllowedUsages);
const wgpu::BufferUsage kMapReadAllowedUsages =
wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst;
DAWN_INVALID_IF(
usage & wgpu::BufferUsage::MapRead && !IsSubset(usage, kMapReadAllowedUsages),
"Buffer usages (%s) contains %s but is not a subset of %s.", usage,
wgpu::BufferUsage::MapRead, kMapReadAllowedUsages);
DAWN_INVALID_IF(descriptor->mappedAtCreation && descriptor->size % 4 != 0,
"Buffer is mapped at creation but its size (%u) is not a multiple of 4.",
descriptor->size);
return {};
}
// Buffer
BufferBase::BufferBase(DeviceBase* device, const BufferDescriptor* descriptor)
: ApiObjectBase(device, descriptor->label),
mSize(descriptor->size),
mUsage(descriptor->usage),
mState(BufferState::Unmapped) {
// Add readonly storage usage if the buffer has a storage usage. The validation rules in
// ValidateSyncScopeResourceUsage will make sure we don't use both at the same time.
if (mUsage & wgpu::BufferUsage::Storage) {
mUsage |= kReadOnlyStorageBuffer;
}
// The query resolve buffer need to be used as a storage buffer in the internal compute
// pipeline which does timestamp uint conversion for timestamp query, it requires the buffer
// has Storage usage in the binding group. Implicitly add an InternalStorage usage which is
// only compatible with InternalStorageBuffer binding type in BGL. It shouldn't be
// compatible with StorageBuffer binding type and the query resolve buffer cannot be bound
// as storage buffer if it's created without Storage usage.
if (mUsage & wgpu::BufferUsage::QueryResolve) {
mUsage |= kInternalStorageBuffer;
}
// We also add internal storage usage for Indirect buffers if validation is enabled, since
// validation involves binding them as storage buffers for use in a compute pass.
if ((mUsage & wgpu::BufferUsage::Indirect) && device->IsValidationEnabled()) {
mUsage |= kInternalStorageBuffer;
}
}
BufferBase::BufferBase(DeviceBase* device,
const BufferDescriptor* descriptor,
ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag), mSize(descriptor->size), mState(BufferState::Unmapped) {
if (descriptor->mappedAtCreation) {
mState = BufferState::MappedAtCreation;
mMapOffset = 0;
mMapSize = mSize;
}
}
BufferBase::~BufferBase() {
if (mState == BufferState::Mapped) {
ASSERT(!IsError());
CallMapCallback(mLastMapID, WGPUBufferMapAsyncStatus_DestroyedBeforeCallback);
}
}
// static
BufferBase* BufferBase::MakeError(DeviceBase* device, const BufferDescriptor* descriptor) {
return new ErrorBuffer(device, descriptor);
}
ObjectType BufferBase::GetType() const {
return ObjectType::Buffer;
}
uint64_t BufferBase::GetSize() const {
ASSERT(!IsError());
return mSize;
}
uint64_t BufferBase::GetAllocatedSize() const {
ASSERT(!IsError());
// The backend must initialize this value.
ASSERT(mAllocatedSize != 0);
return mAllocatedSize;
}
wgpu::BufferUsage BufferBase::GetUsage() const {
ASSERT(!IsError());
return mUsage;
}
MaybeError BufferBase::MapAtCreation() {
DAWN_TRY(MapAtCreationInternal());
void* ptr;
size_t size;
if (mSize == 0) {
return {};
} else if (mStagingBuffer) {
// If there is a staging buffer for initialization, clear its contents directly.
// It should be exactly as large as the buffer allocation.
ptr = mStagingBuffer->GetMappedPointer();
size = mStagingBuffer->GetSize();
ASSERT(size == GetAllocatedSize());
} else {
// Otherwise, the buffer is directly mappable on the CPU.
ptr = GetMappedPointerImpl();
size = GetAllocatedSize();
}
DeviceBase* device = GetDevice();
if (device->IsToggleEnabled(Toggle::LazyClearResourceOnFirstUse)) {
memset(ptr, uint8_t(0u), size);
SetIsDataInitialized();
device->IncrementLazyClearCountForTesting();
} else if (device->IsToggleEnabled(Toggle::NonzeroClearResourcesOnCreationForTesting)) {
memset(ptr, uint8_t(1u), size);
}
return {};
}
MaybeError BufferBase::MapAtCreationInternal() {
ASSERT(!IsError());
mState = BufferState::MappedAtCreation;
mMapOffset = 0;
mMapSize = mSize;
// 0-sized buffers are not supposed to be written to, Return back any non-null pointer.
// Handle 0-sized buffers first so we don't try to map them in the backend.
if (mSize == 0) {
return {};
}
// Mappable buffers don't use a staging buffer and are just as if mapped through MapAsync.
if (IsCPUWritableAtCreation()) {
DAWN_TRY(MapAtCreationImpl());
} else {
// If any of these fail, the buffer will be deleted and replaced with an
// error buffer.
// The staging buffer is used to return mappable data to inititalize the buffer
// contents. Allocate one as large as the real buffer size so that every byte is
// initialized.
// TODO(crbug.com/dawn/828): Suballocate and reuse memory from a larger staging buffer
// so we don't create many small buffers.
DAWN_TRY_ASSIGN(mStagingBuffer, GetDevice()->CreateStagingBuffer(GetAllocatedSize()));
}
return {};
}
MaybeError BufferBase::ValidateCanUseOnQueueNow() const {
ASSERT(!IsError());
switch (mState) {
case BufferState::Destroyed:
return DAWN_FORMAT_VALIDATION_ERROR("%s used in submit while destroyed.", this);
case BufferState::Mapped:
case BufferState::MappedAtCreation:
return DAWN_FORMAT_VALIDATION_ERROR("%s used in submit while mapped.", this);
case BufferState::Unmapped:
return {};
}
UNREACHABLE();
}
void BufferBase::CallMapCallback(MapRequestID mapID, WGPUBufferMapAsyncStatus status) {
ASSERT(!IsError());
if (mMapCallback != nullptr && mapID == mLastMapID) {
// Tag the callback as fired before firing it, otherwise it could fire a second time if
// for example buffer.Unmap() is called inside the application-provided callback.
WGPUBufferMapCallback callback = mMapCallback;
mMapCallback = nullptr;
if (GetDevice()->IsLost()) {
callback(WGPUBufferMapAsyncStatus_DeviceLost, mMapUserdata);
} else {
callback(status, mMapUserdata);
}
}
}
void BufferBase::APIMapAsync(wgpu::MapMode mode,
size_t offset,
size_t size,
WGPUBufferMapCallback callback,
void* userdata) {
// Handle the defaulting of size required by WebGPU, even if in webgpu_cpp.h it is not
// possible to default the function argument (because there is the callback later in the
// argument list)
if (size == 0 && offset < mSize) {
size = mSize - offset;
}
WGPUBufferMapAsyncStatus status;
if (GetDevice()->ConsumedError(ValidateMapAsync(mode, offset, size, &status),
"calling %s.MapAsync(%s, %u, %u, ...)", this, mode, offset,
size)) {
if (callback) {
callback(status, userdata);
}
return;
}
ASSERT(!IsError());
mLastMapID++;
mMapMode = mode;
mMapOffset = offset;
mMapSize = size;
mMapCallback = callback;
mMapUserdata = userdata;
mState = BufferState::Mapped;
if (GetDevice()->ConsumedError(MapAsyncImpl(mode, offset, size))) {
CallMapCallback(mLastMapID, WGPUBufferMapAsyncStatus_DeviceLost);
return;
}
std::unique_ptr<MapRequestTask> request =
std::make_unique<MapRequestTask>(this, mLastMapID);
GetDevice()->GetQueue()->TrackTask(std::move(request),
GetDevice()->GetPendingCommandSerial());
}
void* BufferBase::APIGetMappedRange(size_t offset, size_t size) {
return GetMappedRange(offset, size, true);
}
const void* BufferBase::APIGetConstMappedRange(size_t offset, size_t size) {
return GetMappedRange(offset, size, false);
}
void* BufferBase::GetMappedRange(size_t offset, size_t size, bool writable) {
if (!CanGetMappedRange(writable, offset, size)) {
return nullptr;
}
if (mStagingBuffer != nullptr) {
return static_cast<uint8_t*>(mStagingBuffer->GetMappedPointer()) + offset;
}
if (mSize == 0) {
return reinterpret_cast<uint8_t*>(intptr_t(0xCAFED00D));
}
uint8_t* start = static_cast<uint8_t*>(GetMappedPointerImpl());
return start == nullptr ? nullptr : start + offset;
}
void BufferBase::APIDestroy() {
if (IsError()) {
// It is an error to call Destroy() on an ErrorBuffer, but we still need to reclaim the
// fake mapped staging data.
static_cast<ErrorBuffer*>(this)->ClearMappedData();
mState = BufferState::Destroyed;
}
if (GetDevice()->ConsumedError(ValidateDestroy(), "calling %s.Destroy()", this)) {
return;
}
ASSERT(!IsError());
if (mState == BufferState::Mapped) {
UnmapInternal(WGPUBufferMapAsyncStatus_DestroyedBeforeCallback);
} else if (mState == BufferState::MappedAtCreation) {
if (mStagingBuffer != nullptr) {
mStagingBuffer.reset();
} else if (mSize != 0) {
ASSERT(IsCPUWritableAtCreation());
UnmapInternal(WGPUBufferMapAsyncStatus_DestroyedBeforeCallback);
}
}
DestroyInternal();
}
MaybeError BufferBase::CopyFromStagingBuffer() {
ASSERT(mStagingBuffer);
if (mSize == 0) {
// Staging buffer is not created if zero size.
ASSERT(mStagingBuffer == nullptr);
return {};
}
DAWN_TRY(GetDevice()->CopyFromStagingToBuffer(mStagingBuffer.get(), 0, this, 0,
GetAllocatedSize()));
DynamicUploader* uploader = GetDevice()->GetDynamicUploader();
uploader->ReleaseStagingBuffer(std::move(mStagingBuffer));
return {};
}
void BufferBase::APIUnmap() {
Unmap();
}
void BufferBase::Unmap() {
UnmapInternal(WGPUBufferMapAsyncStatus_UnmappedBeforeCallback);
}
void BufferBase::UnmapInternal(WGPUBufferMapAsyncStatus callbackStatus) {
if (IsError()) {
// It is an error to call Unmap() on an ErrorBuffer, but we still need to reclaim the
// fake mapped staging data.
static_cast<ErrorBuffer*>(this)->ClearMappedData();
mState = BufferState::Unmapped;
}
if (GetDevice()->ConsumedError(ValidateUnmap(), "calling %s.Unmap()", this)) {
return;
}
ASSERT(!IsError());
if (mState == BufferState::Mapped) {
// A map request can only be called once, so this will fire only if the request wasn't
// completed before the Unmap.
// Callbacks are not fired if there is no callback registered, so this is correct for
// mappedAtCreation = true.
CallMapCallback(mLastMapID, callbackStatus);
UnmapImpl();
mMapCallback = nullptr;
mMapUserdata = 0;
} else if (mState == BufferState::MappedAtCreation) {
if (mStagingBuffer != nullptr) {
GetDevice()->ConsumedError(CopyFromStagingBuffer());
} else if (mSize != 0) {
ASSERT(IsCPUWritableAtCreation());
UnmapImpl();
}
}
mState = BufferState::Unmapped;
}
MaybeError BufferBase::ValidateMapAsync(wgpu::MapMode mode,
size_t offset,
size_t size,
WGPUBufferMapAsyncStatus* status) const {
*status = WGPUBufferMapAsyncStatus_DeviceLost;
DAWN_TRY(GetDevice()->ValidateIsAlive());
*status = WGPUBufferMapAsyncStatus_Error;
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_INVALID_IF(offset % 8 != 0, "Offset (%u) must be a multiple of 8.", offset);
DAWN_INVALID_IF(size % 4 != 0, "Size (%u) must be a multiple of 4.", size);
DAWN_INVALID_IF(uint64_t(offset) > mSize || uint64_t(size) > mSize - uint64_t(offset),
"Mapping range (offset:%u, size: %u) doesn't fit in the size (%u) of %s.",
offset, size, mSize, this);
switch (mState) {
case BufferState::Mapped:
case BufferState::MappedAtCreation:
return DAWN_FORMAT_VALIDATION_ERROR("%s is already mapped.", this);
case BufferState::Destroyed:
return DAWN_FORMAT_VALIDATION_ERROR("%s is destroyed.", this);
case BufferState::Unmapped:
break;
}
bool isReadMode = mode & wgpu::MapMode::Read;
bool isWriteMode = mode & wgpu::MapMode::Write;
DAWN_INVALID_IF(!(isReadMode ^ isWriteMode), "Map mode (%s) is not one of %s or %s.", mode,
wgpu::MapMode::Write, wgpu::MapMode::Read);
if (mode & wgpu::MapMode::Read) {
DAWN_INVALID_IF(!(mUsage & wgpu::BufferUsage::MapRead),
"The buffer usages (%s) do not contain %s.", mUsage,
wgpu::BufferUsage::MapRead);
} else {
ASSERT(mode & wgpu::MapMode::Write);
DAWN_INVALID_IF(!(mUsage & wgpu::BufferUsage::MapWrite),
"The buffer usages (%s) do not contain %s.", mUsage,
wgpu::BufferUsage::MapWrite);
}
*status = WGPUBufferMapAsyncStatus_Success;
return {};
}
bool BufferBase::CanGetMappedRange(bool writable, size_t offset, size_t size) const {
if (offset % 8 != 0 || size % 4 != 0) {
return false;
}
if (size > mMapSize || offset < mMapOffset) {
return false;
}
size_t offsetInMappedRange = offset - mMapOffset;
if (offsetInMappedRange > mMapSize - size) {
return false;
}
// Note that:
//
// - We don't check that the device is alive because the application can ask for the
// mapped pointer before it knows, and even Dawn knows, that the device was lost, and
// still needs to work properly.
// - We don't check that the object is alive because we need to return mapped pointers
// for error buffers too.
switch (mState) {
// Writeable Buffer::GetMappedRange is always allowed when mapped at creation.
case BufferState::MappedAtCreation:
return true;
case BufferState::Mapped:
ASSERT(bool(mMapMode & wgpu::MapMode::Read) ^
bool(mMapMode & wgpu::MapMode::Write));
return !writable || (mMapMode & wgpu::MapMode::Write);
case BufferState::Unmapped:
case BufferState::Destroyed:
return false;
}
UNREACHABLE();
}
MaybeError BufferBase::ValidateUnmap() const {
DAWN_TRY(GetDevice()->ValidateIsAlive());
DAWN_TRY(GetDevice()->ValidateObject(this));
switch (mState) {
case BufferState::Mapped:
case BufferState::MappedAtCreation:
// A buffer may be in the Mapped state if it was created with mappedAtCreation
// even if it did not have a mappable usage.
return {};
case BufferState::Unmapped:
return DAWN_FORMAT_VALIDATION_ERROR("%s is unmapped.", this);
case BufferState::Destroyed:
return DAWN_FORMAT_VALIDATION_ERROR("%s is destroyed.", this);
}
UNREACHABLE();
}
MaybeError BufferBase::ValidateDestroy() const {
DAWN_TRY(GetDevice()->ValidateObject(this));
return {};
}
void BufferBase::DestroyInternal() {
if (mState != BufferState::Destroyed) {
DestroyImpl();
}
mState = BufferState::Destroyed;
}
void BufferBase::OnMapRequestCompleted(MapRequestID mapID, WGPUBufferMapAsyncStatus status) {
CallMapCallback(mapID, status);
}
bool BufferBase::IsDataInitialized() const {
return mIsDataInitialized;
}
void BufferBase::SetIsDataInitialized() {
mIsDataInitialized = true;
}
bool BufferBase::IsFullBufferRange(uint64_t offset, uint64_t size) const {
return offset == 0 && size == GetSize();
}
} // namespace dawn_native