blob: acbec69623979b66104c3fcf2c402260c20eb18a [file] [log] [blame]
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/DawnTest.h"
#include "common/Assert.h"
#include "common/Constants.h"
#include "common/Math.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/TextureFormatUtils.h"
#include "utils/WGPUHelpers.h"
namespace {
bool OpenGLESSupportsStorageTexture(wgpu::TextureFormat format) {
// TODO(crbug.com/dawn/595): 32-bit RG* formats are unsupported on OpenGL ES.
return format != wgpu::TextureFormat::RG32Float &&
format != wgpu::TextureFormat::RG32Sint && format != wgpu::TextureFormat::RG32Uint;
}
} // namespace
class StorageTextureTests : public DawnTest {
public:
static void FillExpectedData(void* pixelValuePtr,
wgpu::TextureFormat format,
uint32_t x,
uint32_t y,
uint32_t arrayLayer) {
const uint32_t pixelValue = 1 + x + kWidth * (y + kHeight * arrayLayer);
ASSERT(pixelValue <= 255u / 4);
switch (format) {
// 32-bit unsigned integer formats
case wgpu::TextureFormat::R32Uint: {
uint32_t* valuePtr = static_cast<uint32_t*>(pixelValuePtr);
*valuePtr = pixelValue;
break;
}
case wgpu::TextureFormat::RG32Uint: {
uint32_t* valuePtr = static_cast<uint32_t*>(pixelValuePtr);
valuePtr[0] = pixelValue;
valuePtr[1] = pixelValue * 2;
break;
}
case wgpu::TextureFormat::RGBA32Uint: {
uint32_t* valuePtr = static_cast<uint32_t*>(pixelValuePtr);
valuePtr[0] = pixelValue;
valuePtr[1] = pixelValue * 2;
valuePtr[2] = pixelValue * 3;
valuePtr[3] = pixelValue * 4;
break;
}
// 32-bit signed integer formats
case wgpu::TextureFormat::R32Sint: {
int32_t* valuePtr = static_cast<int32_t*>(pixelValuePtr);
*valuePtr = static_cast<int32_t>(pixelValue);
break;
}
case wgpu::TextureFormat::RG32Sint: {
int32_t* valuePtr = static_cast<int32_t*>(pixelValuePtr);
valuePtr[0] = static_cast<int32_t>(pixelValue);
valuePtr[1] = -static_cast<int32_t>(pixelValue);
break;
}
case wgpu::TextureFormat::RGBA32Sint: {
int32_t* valuePtr = static_cast<int32_t*>(pixelValuePtr);
valuePtr[0] = static_cast<int32_t>(pixelValue);
valuePtr[1] = -static_cast<int32_t>(pixelValue);
valuePtr[2] = static_cast<int32_t>(pixelValue * 2);
valuePtr[3] = -static_cast<int32_t>(pixelValue * 2);
break;
}
// 32-bit float formats
case wgpu::TextureFormat::R32Float: {
float_t* valuePtr = static_cast<float_t*>(pixelValuePtr);
*valuePtr = static_cast<float_t>(pixelValue * 1.1f);
break;
}
case wgpu::TextureFormat::RG32Float: {
float_t* valuePtr = static_cast<float_t*>(pixelValuePtr);
valuePtr[0] = static_cast<float_t>(pixelValue * 1.1f);
valuePtr[1] = -static_cast<float_t>(pixelValue * 2.2f);
break;
}
case wgpu::TextureFormat::RGBA32Float: {
float_t* valuePtr = static_cast<float_t*>(pixelValuePtr);
valuePtr[0] = static_cast<float_t>(pixelValue * 1.1f);
valuePtr[1] = -static_cast<float_t>(pixelValue * 1.1f);
valuePtr[2] = static_cast<float_t>(pixelValue * 2.2f);
valuePtr[3] = -static_cast<float_t>(pixelValue * 2.2f);
break;
}
// 16-bit (unsigned integer, signed integer and float) 4-component formats
case wgpu::TextureFormat::RGBA16Uint: {
uint16_t* valuePtr = static_cast<uint16_t*>(pixelValuePtr);
valuePtr[0] = static_cast<uint16_t>(pixelValue);
valuePtr[1] = static_cast<uint16_t>(pixelValue * 2);
valuePtr[2] = static_cast<uint16_t>(pixelValue * 3);
valuePtr[3] = static_cast<uint16_t>(pixelValue * 4);
break;
}
case wgpu::TextureFormat::RGBA16Sint: {
int16_t* valuePtr = static_cast<int16_t*>(pixelValuePtr);
valuePtr[0] = static_cast<int16_t>(pixelValue);
valuePtr[1] = -static_cast<int16_t>(pixelValue);
valuePtr[2] = static_cast<int16_t>(pixelValue * 2);
valuePtr[3] = -static_cast<int16_t>(pixelValue * 2);
break;
}
case wgpu::TextureFormat::RGBA16Float: {
uint16_t* valuePtr = static_cast<uint16_t*>(pixelValuePtr);
valuePtr[0] = Float32ToFloat16(static_cast<float_t>(pixelValue));
valuePtr[1] = Float32ToFloat16(-static_cast<float_t>(pixelValue));
valuePtr[2] = Float32ToFloat16(static_cast<float_t>(pixelValue * 2));
valuePtr[3] = Float32ToFloat16(-static_cast<float_t>(pixelValue * 2));
break;
}
// 8-bit (normalized/non-normalized signed/unsigned integer) 4-component formats
case wgpu::TextureFormat::RGBA8Unorm:
case wgpu::TextureFormat::RGBA8Uint: {
RGBA8* valuePtr = static_cast<RGBA8*>(pixelValuePtr);
*valuePtr = RGBA8(pixelValue, pixelValue * 2, pixelValue * 3, pixelValue * 4);
break;
}
case wgpu::TextureFormat::RGBA8Snorm:
case wgpu::TextureFormat::RGBA8Sint: {
int8_t* valuePtr = static_cast<int8_t*>(pixelValuePtr);
valuePtr[0] = static_cast<int8_t>(pixelValue);
valuePtr[1] = -static_cast<int8_t>(pixelValue);
valuePtr[2] = static_cast<int8_t>(pixelValue) * 2;
valuePtr[3] = -static_cast<int8_t>(pixelValue) * 2;
break;
}
default:
UNREACHABLE();
break;
}
}
std::string GetImageDeclaration(wgpu::TextureFormat format,
std::string accessQualifier,
bool is2DArray,
uint32_t binding) {
std::ostringstream ostream;
ostream << "[[set(0), binding(" << binding << ")]] "
<< "var<uniform_constant> storageImage" << binding << " : "
<< "[[access(" << accessQualifier << ")]] "
<< "texture_storage_2d";
if (is2DArray) {
ostream << "_array";
}
ostream << "<" << utils::GetWGSLImageFormatQualifier(format) << ">;";
return ostream.str();
}
const char* GetExpectedPixelValue(wgpu::TextureFormat format) {
switch (format) {
// non-normalized unsigned integer formats
case wgpu::TextureFormat::R32Uint:
return "vec4<u32>(u32(value), 0u, 0u, 1u)";
case wgpu::TextureFormat::RG32Uint:
return "vec4<u32>(u32(value), u32(value) * 2u, 0u, 1u)";
case wgpu::TextureFormat::RGBA8Uint:
case wgpu::TextureFormat::RGBA16Uint:
case wgpu::TextureFormat::RGBA32Uint:
return "vec4<u32>(u32(value), u32(value) * 2u, "
"u32(value) * 3u, u32(value) * 4u)";
// non-normalized signed integer formats
case wgpu::TextureFormat::R32Sint:
return "vec4<i32>(i32(value), 0, 0, 1)";
case wgpu::TextureFormat::RG32Sint:
return "vec4<i32>(i32(value), -i32(value), 0, 1)";
case wgpu::TextureFormat::RGBA8Sint:
case wgpu::TextureFormat::RGBA16Sint:
case wgpu::TextureFormat::RGBA32Sint:
return "vec4<i32>(i32(value), -i32(value), i32(value) * 2, -i32(value) * 2)";
// float formats
case wgpu::TextureFormat::R32Float:
return "vec4<f32>(f32(value) * 1.1, 0.0, 0.0, 1.0)";
case wgpu::TextureFormat::RG32Float:
return "vec4<f32>(f32(value) * 1.1, -f32(value) * 2.2, 0.0, 1.0)";
case wgpu::TextureFormat::RGBA16Float:
return "vec4<f32>(f32(value), -f32(value), "
"f32(value) * 2.0, -f32(value) * 2.0)";
case wgpu::TextureFormat::RGBA32Float:
return "vec4<f32>(f32(value) * 1.1, -f32(value) * 1.1, "
"f32(value) * 2.2, -f32(value) * 2.2)";
// normalized signed/unsigned integer formats
case wgpu::TextureFormat::RGBA8Unorm:
return "vec4<f32>(f32(value) / 255.0, f32(value) / 255.0 * 2.0, "
"f32(value) / 255.0 * 3.0, f32(value) / 255.0 * 4.0)";
case wgpu::TextureFormat::RGBA8Snorm:
return "vec4<f32>(f32(value) / 127.0, -f32(value) / 127.0, "
"f32(value) * 2.0 / 127.0, -f32(value) * 2.0 / 127.0)";
default:
UNREACHABLE();
break;
}
}
const char* GetComparisonFunction(wgpu::TextureFormat format) {
switch (format) {
// non-normalized unsigned integer formats
case wgpu::TextureFormat::R32Uint:
case wgpu::TextureFormat::RG32Uint:
case wgpu::TextureFormat::RGBA8Uint:
case wgpu::TextureFormat::RGBA16Uint:
case wgpu::TextureFormat::RGBA32Uint:
return R"(
fn IsEqualTo(pixel : vec4<u32>, expected : vec4<u32>) -> bool {
return all(pixel == expected);
})";
// non-normalized signed integer formats
case wgpu::TextureFormat::R32Sint:
case wgpu::TextureFormat::RG32Sint:
case wgpu::TextureFormat::RGBA8Sint:
case wgpu::TextureFormat::RGBA16Sint:
case wgpu::TextureFormat::RGBA32Sint:
return R"(
fn IsEqualTo(pixel : vec4<i32>, expected : vec4<i32>) -> bool {
return all(pixel == expected);
})";
// float formats
case wgpu::TextureFormat::R32Float:
case wgpu::TextureFormat::RG32Float:
case wgpu::TextureFormat::RGBA16Float:
case wgpu::TextureFormat::RGBA32Float:
return R"(
fn IsEqualTo(pixel : vec4<f32>, expected : vec4<f32>) -> bool {
return all(pixel == expected);
})";
// normalized signed/unsigned integer formats
case wgpu::TextureFormat::RGBA8Unorm:
case wgpu::TextureFormat::RGBA8Snorm:
// On Windows Intel drivers the tests will fail if tolerance <= 0.00000001f.
return R"(
fn IsEqualTo(pixel : vec4<f32>, expected : vec4<f32>) -> bool {
const tolerance : f32 = 0.0000001;
return all(abs(pixel - expected) < vec4<f32>(tolerance, tolerance, tolerance, tolerance));
})";
default:
UNREACHABLE();
break;
}
return "";
}
std::string CommonReadOnlyTestCode(wgpu::TextureFormat format,
int layerCount = 1,
bool is2DArray = false) {
// TODO(bclayton): Dynamically retrieve layerCount
std::string componentFmt = utils::GetColorTextureComponentWGSLType(format);
auto texelType = "vec4<" + componentFmt + ">";
auto* textureLoad = is2DArray ? "textureLoad(storageImage0, vec2<i32>(x, y), i32(layer))"
: "textureLoad(storageImage0, vec2<i32>(x, y))";
std::ostringstream ostream;
ostream << GetImageDeclaration(format, "read", is2DArray, 0) << "\n"
<< GetComparisonFunction(format) << "\n";
ostream << "fn doTest() -> bool {\n";
ostream << " var size : vec2<i32> = textureDimensions(storageImage0);\n";
ostream << " const layerCount : i32 = " << layerCount << ";\n";
ostream << " for (var layer : i32 = 0; layer < layerCount; layer = layer + 1) {\n";
ostream << " for (var y : i32 = 0; y < size.y; y = y + 1) {\n";
ostream << " for (var x : i32 = 0; x < size.x; x = x + 1) {\n";
ostream << " var value : i32 = " << kComputeExpectedValue << ";\n";
ostream << " var expected : " << texelType << " = " << GetExpectedPixelValue(format)
<< ";\n";
ostream << " var pixel : " << texelType << " = " << textureLoad << ";\n";
ostream << " if (!IsEqualTo(pixel, expected)) {\n";
ostream << " return false;\n";
ostream << " }\n";
ostream << " }\n";
ostream << " }\n";
ostream << " }\n";
ostream << " return true;\n";
ostream << "}\n";
return ostream.str();
}
std::string CommonWriteOnlyTestCode(const char* stage,
wgpu::TextureFormat format,
int layerCount = 1,
bool is2DArray = false) {
// TODO(bclayton): Dynamically retrieve layerCount
std::string componentFmt = utils::GetColorTextureComponentWGSLType(format);
auto texelType = "vec4<" + componentFmt + ">";
auto* textureStore = is2DArray
? "textureStore(storageImage0, vec2<i32>(x, y), layer, expected)"
: "textureStore(storageImage0, vec2<i32>(x, y), expected)";
std::ostringstream ostream;
ostream << GetImageDeclaration(format, "write", is2DArray, 0) << "\n";
ostream << "[[stage(" << stage << ")]]\n";
ostream << "fn main() -> void {\n";
ostream << " var size : vec2<i32> = textureDimensions(storageImage0);\n";
ostream << " const layerCount : i32 = " << layerCount << ";\n";
ostream << " for (var layer : i32 = 0; layer < layerCount; layer = layer + 1) {\n";
ostream << " for (var y : i32 = 0; y < size.y; y = y + 1) {\n";
ostream << " for (var x : i32 = 0; x < size.x; x = x + 1) {\n";
ostream << " var value : i32 = " << kComputeExpectedValue << ";\n";
ostream << " var expected : " << texelType << " = " << GetExpectedPixelValue(format)
<< ";\n";
ostream << " " << textureStore << ";\n";
ostream << " }\n";
ostream << " }\n";
ostream << " }\n";
ostream << "}\n";
return ostream.str();
}
std::string CommonReadWriteTestCode(wgpu::TextureFormat format,
int layerCount = 1,
bool is2DArray = false) {
// TODO(bclayton): Dynamically retrieve layerCount
auto* textureStore = is2DArray ? "textureStore(storageImage0, texcoord, layer, "
"textureLoad(storageImage1, texcoord, layer))"
: "textureStore(storageImage0, texcoord, "
"textureLoad(storageImage1, texcoord))";
std::ostringstream ostream;
ostream << GetImageDeclaration(format, "write", is2DArray, 0) << "\n";
ostream << GetImageDeclaration(format, "read", is2DArray, 1) << "\n";
ostream << "[[stage(compute)]] fn main() -> void {\n";
ostream << " var size : vec2<i32> = textureDimensions(storageImage0);\n";
ostream << " const layerCount : i32 = " << layerCount << ";\n";
ostream << " for (var layer : i32 = 0; layer < layerCount; layer = layer + 1) {\n";
ostream << " for (var y : i32 = 0; y < size.y; y = y + 1) {\n";
ostream << " for (var x : i32 = 0; x < size.x; x = x + 1) {\n";
ostream << " var texcoord : vec2<i32> = vec2<i32>(x, y);\n";
ostream << " " << textureStore << ";\n";
ostream << " }\n";
ostream << " }\n";
ostream << " }\n";
ostream << "}\n";
return ostream.str();
}
static std::vector<uint8_t> GetExpectedData(wgpu::TextureFormat format,
uint32_t arrayLayerCount = 1) {
const uint32_t texelSizeInBytes = utils::GetTexelBlockSizeInBytes(format);
std::vector<uint8_t> outputData(texelSizeInBytes * kWidth * kHeight * arrayLayerCount);
for (uint32_t i = 0; i < outputData.size() / texelSizeInBytes; ++i) {
uint8_t* pixelValuePtr = &outputData[i * texelSizeInBytes];
const uint32_t x = i % kWidth;
const uint32_t y = (i % (kWidth * kHeight)) / kWidth;
const uint32_t arrayLayer = i / (kWidth * kHeight);
FillExpectedData(pixelValuePtr, format, x, y, arrayLayer);
}
return outputData;
}
wgpu::Texture CreateTexture(wgpu::TextureFormat format,
wgpu::TextureUsage usage,
uint32_t width = kWidth,
uint32_t height = kHeight,
uint32_t arrayLayerCount = 1) {
wgpu::TextureDescriptor descriptor;
descriptor.size = {width, height, arrayLayerCount};
descriptor.format = format;
descriptor.usage = usage;
return device.CreateTexture(&descriptor);
}
wgpu::Buffer CreateEmptyBufferForTextureCopy(uint32_t texelSize, uint32_t arrayLayerCount = 1) {
ASSERT(kWidth * texelSize <= kTextureBytesPerRowAlignment);
const size_t uploadBufferSize =
kTextureBytesPerRowAlignment * (kHeight * arrayLayerCount - 1) + kWidth * texelSize;
wgpu::BufferDescriptor descriptor;
descriptor.size = uploadBufferSize;
descriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
return device.CreateBuffer(&descriptor);
}
wgpu::Texture CreateTextureWithTestData(const std::vector<uint8_t>& initialTextureData,
wgpu::TextureFormat format) {
uint32_t texelSize = utils::GetTexelBlockSizeInBytes(format);
ASSERT(kWidth * texelSize <= kTextureBytesPerRowAlignment);
const uint32_t bytesPerTextureRow = texelSize * kWidth;
const uint32_t arrayLayerCount =
static_cast<uint32_t>(initialTextureData.size() / texelSize / (kWidth * kHeight));
const size_t uploadBufferSize =
kTextureBytesPerRowAlignment * (kHeight * arrayLayerCount - 1) +
kWidth * bytesPerTextureRow;
std::vector<uint8_t> uploadBufferData(uploadBufferSize);
for (uint32_t layer = 0; layer < arrayLayerCount; ++layer) {
const size_t initialDataOffset = bytesPerTextureRow * kHeight * layer;
for (size_t y = 0; y < kHeight; ++y) {
for (size_t x = 0; x < bytesPerTextureRow; ++x) {
uint8_t data =
initialTextureData[initialDataOffset + bytesPerTextureRow * y + x];
size_t indexInUploadBuffer =
(kHeight * layer + y) * kTextureBytesPerRowAlignment + x;
uploadBufferData[indexInUploadBuffer] = data;
}
}
}
wgpu::Buffer uploadBuffer =
utils::CreateBufferFromData(device, uploadBufferData.data(), uploadBufferSize,
wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst);
wgpu::Texture outputTexture =
CreateTexture(format, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopyDst, kWidth,
kHeight, arrayLayerCount);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
const wgpu::Extent3D copyExtent = {kWidth, kHeight, arrayLayerCount};
wgpu::BufferCopyView bufferCopyView =
utils::CreateBufferCopyView(uploadBuffer, 0, kTextureBytesPerRowAlignment, kHeight);
wgpu::TextureCopyView textureCopyView;
textureCopyView.texture = outputTexture;
encoder.CopyBufferToTexture(&bufferCopyView, &textureCopyView, &copyExtent);
wgpu::CommandBuffer commandBuffer = encoder.Finish();
queue.Submit(1, &commandBuffer);
return outputTexture;
}
wgpu::ComputePipeline CreateComputePipeline(const char* computeShader) {
wgpu::ShaderModule csModule = utils::CreateShaderModuleFromWGSL(device, computeShader);
wgpu::ComputePipelineDescriptor computeDescriptor;
computeDescriptor.layout = nullptr;
computeDescriptor.computeStage.module = csModule;
computeDescriptor.computeStage.entryPoint = "main";
return device.CreateComputePipeline(&computeDescriptor);
}
wgpu::RenderPipeline CreateRenderPipeline(const char* vertexShader,
const char* fragmentShader) {
wgpu::ShaderModule vsModule = utils::CreateShaderModuleFromWGSL(device, vertexShader);
wgpu::ShaderModule fsModule = utils::CreateShaderModuleFromWGSL(device, fragmentShader);
utils::ComboRenderPipelineDescriptor desc(device);
desc.vertexStage.module = vsModule;
desc.cFragmentStage.module = fsModule;
desc.cColorStates[0].format = kRenderAttachmentFormat;
desc.primitiveTopology = wgpu::PrimitiveTopology::PointList;
return device.CreateRenderPipeline(&desc);
}
void CheckDrawsGreen(const char* vertexShader,
const char* fragmentShader,
wgpu::Texture readonlyStorageTexture) {
wgpu::RenderPipeline pipeline = CreateRenderPipeline(vertexShader, fragmentShader);
wgpu::BindGroup bindGroup = utils::MakeBindGroup(
device, pipeline.GetBindGroupLayout(0), {{0, readonlyStorageTexture.CreateView()}});
// Clear the output attachment to red at the beginning of the render pass.
wgpu::Texture outputTexture =
CreateTexture(kRenderAttachmentFormat,
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc, 1, 1);
utils::ComboRenderPassDescriptor renderPassDescriptor({outputTexture.CreateView()});
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPassDescriptor.cColorAttachments[0].clearColor = {1.f, 0.f, 0.f, 1.f};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPassEncoder = encoder.BeginRenderPass(&renderPassDescriptor);
renderPassEncoder.SetBindGroup(0, bindGroup);
renderPassEncoder.SetPipeline(pipeline);
renderPassEncoder.Draw(1);
renderPassEncoder.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
queue.Submit(1, &commandBuffer);
// Check if the contents in the output texture are all as expected (green).
EXPECT_PIXEL_RGBA8_EQ(RGBA8::kGreen, outputTexture, 0, 0)
<< "\nVertex Shader:\n"
<< vertexShader << "\n\nFragment Shader:\n"
<< fragmentShader;
}
void CheckResultInStorageBuffer(wgpu::Texture readonlyStorageTexture,
const std::string& computeShader) {
wgpu::ComputePipeline pipeline = CreateComputePipeline(computeShader.c_str());
// Clear the content of the result buffer into 0.
constexpr uint32_t kInitialValue = 0;
wgpu::Buffer resultBuffer =
utils::CreateBufferFromData(device, &kInitialValue, sizeof(kInitialValue),
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{{0, readonlyStorageTexture.CreateView()}, {1, resultBuffer}});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computeEncoder = encoder.BeginComputePass();
computeEncoder.SetBindGroup(0, bindGroup);
computeEncoder.SetPipeline(pipeline);
computeEncoder.Dispatch(1);
computeEncoder.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
queue.Submit(1, &commandBuffer);
// Check if the contents in the result buffer are what we expect.
constexpr uint32_t kExpectedValue = 1u;
EXPECT_BUFFER_U32_RANGE_EQ(&kExpectedValue, resultBuffer, 0, 1u);
}
void WriteIntoStorageTextureInRenderPass(wgpu::Texture writeonlyStorageTexture,
const char* kVertexShader,
const char* kFragmentShader) {
// Create a render pipeline that writes the expected pixel values into the storage texture
// without fragment shader outputs.
wgpu::RenderPipeline pipeline = CreateRenderPipeline(kVertexShader, kFragmentShader);
wgpu::BindGroup bindGroup = utils::MakeBindGroup(
device, pipeline.GetBindGroupLayout(0), {{0, writeonlyStorageTexture.CreateView()}});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
// TODO(jiawei.shao@intel.com): remove the output attachment when Dawn supports beginning a
// render pass with no attachments.
wgpu::Texture dummyOutputTexture =
CreateTexture(kRenderAttachmentFormat,
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc, 1, 1);
utils::ComboRenderPassDescriptor renderPassDescriptor({dummyOutputTexture.CreateView()});
wgpu::RenderPassEncoder renderPassEncoder = encoder.BeginRenderPass(&renderPassDescriptor);
renderPassEncoder.SetBindGroup(0, bindGroup);
renderPassEncoder.SetPipeline(pipeline);
renderPassEncoder.Draw(1);
renderPassEncoder.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
queue.Submit(1, &commandBuffer);
}
void WriteIntoStorageTextureInComputePass(wgpu::Texture writeonlyStorageTexture,
const char* computeShader) {
// Create a compute pipeline that writes the expected pixel values into the storage texture.
wgpu::ComputePipeline pipeline = CreateComputePipeline(computeShader);
wgpu::BindGroup bindGroup = utils::MakeBindGroup(
device, pipeline.GetBindGroupLayout(0), {{0, writeonlyStorageTexture.CreateView()}});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePassEncoder = encoder.BeginComputePass();
computePassEncoder.SetBindGroup(0, bindGroup);
computePassEncoder.SetPipeline(pipeline);
computePassEncoder.Dispatch(1);
computePassEncoder.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
queue.Submit(1, &commandBuffer);
}
void ReadWriteIntoStorageTextureInComputePass(wgpu::Texture readonlyStorageTexture,
wgpu::Texture writeonlyStorageTexture,
const char* computeShader) {
// Create a compute pipeline that writes the expected pixel values into the storage texture.
wgpu::ComputePipeline pipeline = CreateComputePipeline(computeShader);
wgpu::BindGroup bindGroup = utils::MakeBindGroup(
device, pipeline.GetBindGroupLayout(0),
{{0, writeonlyStorageTexture.CreateView()}, {1, readonlyStorageTexture.CreateView()}});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePassEncoder = encoder.BeginComputePass();
computePassEncoder.SetBindGroup(0, bindGroup);
computePassEncoder.SetPipeline(pipeline);
computePassEncoder.Dispatch(1);
computePassEncoder.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
queue.Submit(1, &commandBuffer);
}
void CheckOutputStorageTexture(wgpu::Texture writeonlyStorageTexture,
wgpu::TextureFormat format,
uint32_t arrayLayerCount = 1) {
const uint32_t texelSize = utils::GetTexelBlockSizeInBytes(format);
const std::vector<uint8_t>& expectedData = GetExpectedData(format, arrayLayerCount);
CheckOutputStorageTexture(writeonlyStorageTexture, texelSize, expectedData);
}
void CheckOutputStorageTexture(wgpu::Texture writeonlyStorageTexture,
uint32_t texelSize,
const std::vector<uint8_t>& expectedData) {
// Copy the content from the write-only storage texture to the result buffer.
const uint32_t arrayLayerCount =
static_cast<uint32_t>(expectedData.size() / texelSize / (kWidth * kHeight));
wgpu::Buffer resultBuffer = CreateEmptyBufferForTextureCopy(texelSize, arrayLayerCount);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
const wgpu::Extent3D copyExtent = {kWidth, kHeight, arrayLayerCount};
wgpu::TextureCopyView textureCopyView =
utils::CreateTextureCopyView(writeonlyStorageTexture, 0, {0, 0, 0});
wgpu::BufferCopyView bufferCopyView =
utils::CreateBufferCopyView(resultBuffer, 0, kTextureBytesPerRowAlignment, kHeight);
encoder.CopyTextureToBuffer(&textureCopyView, &bufferCopyView, &copyExtent);
wgpu::CommandBuffer commandBuffer = encoder.Finish();
queue.Submit(1, &commandBuffer);
// Check if the contents in the result buffer are what we expect.
for (size_t layer = 0; layer < arrayLayerCount; ++layer) {
for (size_t y = 0; y < kHeight; ++y) {
const size_t resultBufferOffset =
kTextureBytesPerRowAlignment * (kHeight * layer + y);
const size_t expectedDataOffset = texelSize * kWidth * (kHeight * layer + y);
EXPECT_BUFFER_U32_RANGE_EQ(
reinterpret_cast<const uint32_t*>(expectedData.data() + expectedDataOffset),
resultBuffer, resultBufferOffset, kWidth);
}
}
}
static constexpr size_t kWidth = 4u;
static constexpr size_t kHeight = 4u;
static constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm;
const char* kSimpleVertexShader = R"(
[[builtin(position)]] var<out> position : vec4<f32>;
[[stage(vertex)]] fn main() -> void {
position = vec4<f32>(0.0, 0.0, 0.0, 1.0);
})";
const char* kComputeExpectedValue = "1 + x + size.x * (y + size.y * layer)";
};
// Test that using read-only storage texture and write-only storage texture in BindGroupLayout is
// valid on all backends. This test is a regression test for chromium:1061156 and passes by not
// asserting or crashing.
TEST_P(StorageTextureTests, BindGroupLayoutWithStorageTextureBindingType) {
// ReadOnly is a valid storage texture binding type to create a bind group
// layout.
{
wgpu::BindGroupLayoutEntry entry;
entry.binding = 0;
entry.visibility = wgpu::ShaderStage::Compute;
entry.storageTexture.access = wgpu::StorageTextureAccess::ReadOnly;
entry.storageTexture.format = wgpu::TextureFormat::R32Float;
wgpu::BindGroupLayoutDescriptor descriptor;
descriptor.entryCount = 1;
descriptor.entries = &entry;
device.CreateBindGroupLayout(&descriptor);
}
// WriteOnly is a valid storage texture binding type to create a bind group
// layout.
{
wgpu::BindGroupLayoutEntry entry;
entry.binding = 0;
entry.visibility = wgpu::ShaderStage::Compute;
entry.storageTexture.access = wgpu::StorageTextureAccess::WriteOnly;
entry.storageTexture.format = wgpu::TextureFormat::R32Float;
wgpu::BindGroupLayoutDescriptor descriptor;
descriptor.entryCount = 1;
descriptor.entries = &entry;
device.CreateBindGroupLayout(&descriptor);
}
}
// Test that read-only storage textures are supported in compute shader.
TEST_P(StorageTextureTests, ReadonlyStorageTextureInComputeShader) {
for (wgpu::TextureFormat format : utils::kAllTextureFormats) {
if (!utils::TextureFormatSupportsStorageTexture(format)) {
continue;
}
if (IsOpenGLES() && !OpenGLESSupportsStorageTexture(format)) {
continue;
}
// Prepare the read-only storage texture and fill it with the expected data.
const std::vector<uint8_t> kInitialTextureData = GetExpectedData(format);
wgpu::Texture readonlyStorageTexture =
CreateTextureWithTestData(kInitialTextureData, format);
// Create a compute shader that reads the pixels from the read-only storage texture and
// writes 1 to DstBuffer if they all have to expected value.
std::ostringstream csStream;
csStream << R"(
[[block]] struct DstBuffer {
[[offset(0)]] result : u32;
};
[[set(0), binding(1)]] var<storage_buffer> dstBuffer : DstBuffer;
)" << CommonReadOnlyTestCode(format)
<< R"(
[[stage(compute)]] fn main() -> void {
if (doTest()) {
dstBuffer.result = 1u;
} else {
dstBuffer.result = 0u;
}
})";
CheckResultInStorageBuffer(readonlyStorageTexture, csStream.str());
}
}
// Test that read-only storage textures are supported in vertex shader.
TEST_P(StorageTextureTests, ReadonlyStorageTextureInVertexShader) {
for (wgpu::TextureFormat format : utils::kAllTextureFormats) {
if (!utils::TextureFormatSupportsStorageTexture(format)) {
continue;
}
if (IsOpenGLES() && !OpenGLESSupportsStorageTexture(format)) {
continue;
}
// Prepare the read-only storage texture and fill it with the expected data.
const std::vector<uint8_t> kInitialTextureData = GetExpectedData(format);
wgpu::Texture readonlyStorageTexture =
CreateTextureWithTestData(kInitialTextureData, format);
// Create a rendering pipeline that reads the pixels from the read-only storage texture and
// uses green as the output color, otherwise uses red instead.
std::ostringstream vsStream;
vsStream << R"(
[[builtin(position)]] var<out> position : vec4<f32>;
[[location(0)]] var<out> o_color : vec4<f32>;
)" << CommonReadOnlyTestCode(format)
<< R"(
[[stage(vertex)]] fn main() -> void {
position = vec4<f32>(0.0, 0.0, 0.0, 1.0);
if (doTest()) {
o_color = vec4<f32>(0.0, 1.0, 0.0, 1.0);
} else {
o_color = vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
})";
const char* kFragmentShader = R"(
[[location(0)]] var<in> o_color : vec4<f32>;
[[location(0)]] var<out> fragColor : vec4<f32>;
[[stage(fragment)]] fn main() -> void {
fragColor = o_color;
})";
CheckDrawsGreen(vsStream.str().c_str(), kFragmentShader, readonlyStorageTexture);
}
}
// Test that read-only storage textures are supported in fragment shader.
TEST_P(StorageTextureTests, ReadonlyStorageTextureInFragmentShader) {
// TODO(crbug.com/dawn/624): this test fails on GLES. Investigate why.
DAWN_SKIP_TEST_IF(IsOpenGLES());
for (wgpu::TextureFormat format : utils::kAllTextureFormats) {
if (!utils::TextureFormatSupportsStorageTexture(format)) {
continue;
}
if (IsOpenGLES() && !OpenGLESSupportsStorageTexture(format)) {
continue;
}
// Prepare the read-only storage texture and fill it with the expected data.
const std::vector<uint8_t> kInitialTextureData = GetExpectedData(format);
wgpu::Texture readonlyStorageTexture =
CreateTextureWithTestData(kInitialTextureData, format);
// Create a rendering pipeline that reads the pixels from the read-only storage texture and
// uses green as the output color if the pixel value is expected, otherwise uses red
// instead.
std::ostringstream fsStream;
fsStream << R"(
[[location(0)]] var<out> o_color : vec4<f32>;
)" << CommonReadOnlyTestCode(format)
<< R"(
[[stage(fragment)]] fn main() -> void {
if (doTest()) {
o_color = vec4<f32>(0.0, 1.0, 0.0, 1.0);
} else {
o_color = vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
})";
CheckDrawsGreen(kSimpleVertexShader, fsStream.str().c_str(), readonlyStorageTexture);
}
}
// Test that write-only storage textures are supported in compute shader.
TEST_P(StorageTextureTests, WriteonlyStorageTextureInComputeShader) {
// TODO(crbug.com/dawn/581): this test requires glClearTexSubImage(), unsupported on GLES.
DAWN_SKIP_TEST_IF(IsOpenGLES());
for (wgpu::TextureFormat format : utils::kAllTextureFormats) {
if (!utils::TextureFormatSupportsStorageTexture(format)) {
continue;
}
// TODO(jiawei.shao@intel.com): investigate why this test fails with RGBA8Snorm on Linux
// Intel OpenGL driver.
if (format == wgpu::TextureFormat::RGBA8Snorm && IsIntel() && IsOpenGL() && IsLinux()) {
continue;
}
// Prepare the write-only storage texture.
wgpu::Texture writeonlyStorageTexture =
CreateTexture(format, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc);
// Write the expected pixel values into the write-only storage texture.
const std::string computeShader = CommonWriteOnlyTestCode("compute", format);
WriteIntoStorageTextureInComputePass(writeonlyStorageTexture, computeShader.c_str());
// Verify the pixel data in the write-only storage texture is expected.
CheckOutputStorageTexture(writeonlyStorageTexture, format);
}
}
// Test that reading from one read-only storage texture then writing into another write-only storage
// texture in one dispatch are supported in compute shader.
TEST_P(StorageTextureTests, ReadWriteDifferentStorageTextureInOneDispatchInComputeShader) {
// TODO(crbug.com/dawn/581): this test requires glClearTexSubImage(), unsupported on GLES.
DAWN_SKIP_TEST_IF(IsOpenGLES());
for (wgpu::TextureFormat format : utils::kAllTextureFormats) {
if (!utils::TextureFormatSupportsStorageTexture(format)) {
continue;
}
// TODO(jiawei.shao@intel.com): investigate why this test fails with RGBA8Snorm on Linux
// Intel OpenGL driver.
if (format == wgpu::TextureFormat::RGBA8Snorm && IsIntel() && IsOpenGL() && IsLinux()) {
continue;
}
// Prepare the read-only storage texture.
const std::vector<uint8_t> kInitialTextureData = GetExpectedData(format);
wgpu::Texture readonlyStorageTexture =
CreateTextureWithTestData(kInitialTextureData, format);
// Prepare the write-only storage texture.
wgpu::Texture writeonlyStorageTexture =
CreateTexture(format, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc);
// Write the expected pixel values into the write-only storage texture.
const std::string computeShader = CommonReadWriteTestCode(format);
ReadWriteIntoStorageTextureInComputePass(readonlyStorageTexture, writeonlyStorageTexture,
computeShader.c_str());
// Verify the pixel data in the write-only storage texture is expected.
CheckOutputStorageTexture(writeonlyStorageTexture, format);
}
}
// Test that write-only storage textures are supported in fragment shader.
TEST_P(StorageTextureTests, WriteonlyStorageTextureInFragmentShader) {
// TODO(crbug.com/dawn/581): this test requires glClearTexSubImage(), unsupported on GLES.
DAWN_SKIP_TEST_IF(IsOpenGLES());
for (wgpu::TextureFormat format : utils::kAllTextureFormats) {
if (!utils::TextureFormatSupportsStorageTexture(format)) {
continue;
}
// TODO(jiawei.shao@intel.com): investigate why this test fails with RGBA8Snorm on Linux
// Intel OpenGL driver.
if (format == wgpu::TextureFormat::RGBA8Snorm && IsIntel() && IsOpenGL() && IsLinux()) {
continue;
}
// Prepare the write-only storage texture.
wgpu::Texture writeonlyStorageTexture =
CreateTexture(format, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc);
// Write the expected pixel values into the write-only storage texture.
const std::string fragmentShader = CommonWriteOnlyTestCode("fragment", format);
WriteIntoStorageTextureInRenderPass(writeonlyStorageTexture, kSimpleVertexShader,
fragmentShader.c_str());
// Verify the pixel data in the write-only storage texture is expected.
CheckOutputStorageTexture(writeonlyStorageTexture, format);
}
}
// Verify 2D array read-only storage texture works correctly.
TEST_P(StorageTextureTests, Readonly2DArrayStorageTexture) {
constexpr uint32_t kArrayLayerCount = 3u;
constexpr wgpu::TextureFormat kTextureFormat = wgpu::TextureFormat::R32Uint;
const std::vector<uint8_t> initialTextureData =
GetExpectedData(kTextureFormat, kArrayLayerCount);
wgpu::Texture readonlyStorageTexture =
CreateTextureWithTestData(initialTextureData, kTextureFormat);
// Create a compute shader that reads the pixels from the read-only storage texture and writes 1
// to DstBuffer if they all have to expected value.
std::ostringstream csStream;
csStream << R"(
[[block]] struct DstBuffer {
[[offset(0)]] result : u32;
};
[[set(0), binding(1)]] var<storage_buffer> dstBuffer : DstBuffer;
)" << CommonReadOnlyTestCode(kTextureFormat, kArrayLayerCount, true)
<< R"(
[[stage(compute)]] fn main() -> void {
if (doTest()) {
dstBuffer.result = 1u;
} else {
dstBuffer.result = 0u;
}
})";
CheckResultInStorageBuffer(readonlyStorageTexture, csStream.str());
}
// Verify 2D array write-only storage texture works correctly.
TEST_P(StorageTextureTests, Writeonly2DArrayStorageTexture) {
// TODO(crbug.com/dawn/581): this test requires glClearTexSubImage(), unsupported on GLES.
DAWN_SKIP_TEST_IF(IsOpenGLES());
constexpr uint32_t kArrayLayerCount = 3u;
constexpr wgpu::TextureFormat kTextureFormat = wgpu::TextureFormat::R32Uint;
// Prepare the write-only storage texture.
wgpu::Texture writeonlyStorageTexture =
CreateTexture(kTextureFormat, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc,
kWidth, kHeight, kArrayLayerCount);
// Write the expected pixel values into the write-only storage texture.
const std::string computeShader =
CommonWriteOnlyTestCode("compute", kTextureFormat, kArrayLayerCount, true);
WriteIntoStorageTextureInComputePass(writeonlyStorageTexture, computeShader.c_str());
// Verify the pixel data in the write-only storage texture is expected.
CheckOutputStorageTexture(writeonlyStorageTexture, kTextureFormat, kArrayLayerCount);
}
// Test that multiple dispatches to increment values by ping-ponging between a read-only storage
// texture and a write-only storage texture are synchronized in one pass.
TEST_P(StorageTextureTests, ReadonlyAndWriteonlyStorageTexturePingPong) {
// TODO(crbug.com/dawn/581): this test requires glClearTexSubImage(), unsupported on GLES.
DAWN_SKIP_TEST_IF(IsOpenGLES());
constexpr wgpu::TextureFormat kTextureFormat = wgpu::TextureFormat::R32Uint;
wgpu::Texture storageTexture1 = CreateTexture(
kTextureFormat, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc, 1u, 1u);
wgpu::Texture storageTexture2 = CreateTexture(
kTextureFormat, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc, 1u, 1u);
wgpu::ShaderModule module = utils::CreateShaderModuleFromWGSL(device, R"(
[[set(0), binding(0)]] var<uniform_constant> Src : [[access(read)]] texture_storage_2d<r32uint>;
[[set(0), binding(1)]] var<uniform_constant> Dst : [[access(write)]] texture_storage_2d<r32uint>;
[[stage(compute)]] fn main() -> void {
var srcValue : vec4<u32> = textureLoad(Src, vec2<i32>(0, 0));
srcValue.x = srcValue.x + 1u;
textureStore(Dst, vec2<i32>(0, 0), srcValue);
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.computeStage.module = module;
pipelineDesc.computeStage.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
// In bindGroupA storageTexture1 is bound as read-only storage texture and storageTexture2 is
// bound as write-only storage texture.
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, storageTexture1.CreateView()},
{1, storageTexture2.CreateView()},
});
// In bindGroupA storageTexture2 is bound as read-only storage texture and storageTexture1 is
// bound as write-only storage texture.
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, storageTexture2.CreateView()},
{1, storageTexture1.CreateView()},
});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
// After the first dispatch the value in storageTexture2 should be 1u.
pass.SetBindGroup(0, bindGroupA);
pass.Dispatch(1);
// After the second dispatch the value in storageTexture1 should be 2u;
pass.SetBindGroup(0, bindGroupB);
pass.Dispatch(1);
pass.EndPass();
wgpu::BufferDescriptor bufferDescriptor;
bufferDescriptor.size = sizeof(uint32_t);
bufferDescriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer resultBuffer = device.CreateBuffer(&bufferDescriptor);
wgpu::TextureCopyView textureCopyView;
textureCopyView.texture = storageTexture1;
wgpu::BufferCopyView bufferCopyView = utils::CreateBufferCopyView(resultBuffer, 0, 256, 1);
wgpu::Extent3D extent3D = {1, 1, 1};
encoder.CopyTextureToBuffer(&textureCopyView, &bufferCopyView, &extent3D);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
constexpr uint32_t kFinalPixelValueInTexture1 = 2u;
EXPECT_BUFFER_U32_EQ(kFinalPixelValueInTexture1, resultBuffer, 0);
}
// Test that multiple dispatches to increment values by ping-ponging between a sampled texture and
// a write-only storage texture are synchronized in one pass.
TEST_P(StorageTextureTests, SampledAndWriteonlyStorageTexturePingPong) {
// TODO(crbug.com/dawn/581): this test requires glClearTexSubImage(), unsupported on GLES.
DAWN_SKIP_TEST_IF(IsOpenGLES());
constexpr wgpu::TextureFormat kTextureFormat = wgpu::TextureFormat::R32Uint;
wgpu::Texture storageTexture1 = CreateTexture(
kTextureFormat,
wgpu::TextureUsage::Sampled | wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc, 1u,
1u);
wgpu::Texture storageTexture2 = CreateTexture(
kTextureFormat, wgpu::TextureUsage::Sampled | wgpu::TextureUsage::Storage, 1u, 1u);
wgpu::ShaderModule module = utils::CreateShaderModuleFromWGSL(device, R"(
[[set(0), binding(0)]] var<uniform_constant> Src : texture_2d<u32>;
[[set(0), binding(1)]] var<uniform_constant> Dst : [[access(write)]] texture_storage_2d<r32uint>;
[[stage(compute)]] fn main() -> void {
var srcValue : vec4<u32> = textureLoad(Src, vec2<i32>(0, 0));
srcValue.x = srcValue.x + 1u;
textureStore(Dst, vec2<i32>(0, 0), srcValue);
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.computeStage.module = module;
pipelineDesc.computeStage.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
// In bindGroupA storageTexture1 is bound as read-only storage texture and storageTexture2 is
// bound as write-only storage texture.
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, storageTexture1.CreateView()},
{1, storageTexture2.CreateView()},
});
// In bindGroupA storageTexture2 is bound as read-only storage texture and storageTexture1 is
// bound as write-only storage texture.
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, storageTexture2.CreateView()},
{1, storageTexture1.CreateView()},
});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
// After the first dispatch the value in storageTexture2 should be 1u.
pass.SetBindGroup(0, bindGroupA);
pass.Dispatch(1);
// After the second dispatch the value in storageTexture1 should be 2u;
pass.SetBindGroup(0, bindGroupB);
pass.Dispatch(1);
pass.EndPass();
wgpu::BufferDescriptor bufferDescriptor;
bufferDescriptor.size = sizeof(uint32_t);
bufferDescriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer resultBuffer = device.CreateBuffer(&bufferDescriptor);
wgpu::TextureCopyView textureCopyView;
textureCopyView.texture = storageTexture1;
wgpu::BufferCopyView bufferCopyView = utils::CreateBufferCopyView(resultBuffer, 0, 256, 1);
wgpu::Extent3D extent3D = {1, 1, 1};
encoder.CopyTextureToBuffer(&textureCopyView, &bufferCopyView, &extent3D);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
constexpr uint32_t kFinalPixelValueInTexture1 = 2u;
EXPECT_BUFFER_U32_EQ(kFinalPixelValueInTexture1, resultBuffer, 0);
}
DAWN_INSTANTIATE_TEST(StorageTextureTests,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
class StorageTextureZeroInitTests : public StorageTextureTests {
public:
static std::vector<uint8_t> GetExpectedData() {
constexpr wgpu::TextureFormat kTextureFormat = wgpu::TextureFormat::R32Uint;
const uint32_t texelSizeInBytes = utils::GetTexelBlockSizeInBytes(kTextureFormat);
const size_t kDataCount = texelSizeInBytes * kWidth * kHeight;
std::vector<uint8_t> outputData(kDataCount, 0);
uint32_t* outputDataPtr = reinterpret_cast<uint32_t*>(&outputData[0]);
*outputDataPtr = 1u;
return outputData;
}
const char* kCommonReadOnlyZeroInitTestCode = R"(
fn doTest() -> bool {
for (var y : i32 = 0; y < 4; y = y + 1) {
for (var x : i32 = 0; x < 4; x = x + 1) {
var pixel : vec4<u32> = textureLoad(srcImage, vec2<i32>(x, y));
if (any(pixel != vec4<u32>(0u, 0u, 0u, 1u))) {
return false;
}
}
}
return true;
})";
const char* kCommonWriteOnlyZeroInitTestCodeFragment = R"(
[[set(0), binding(0)]] var<uniform_constant> dstImage : [[access(write)]] texture_storage_2d<r32uint>;
[[stage(fragment)]] fn main() -> void {
textureStore(dstImage, vec2<i32>(0, 0), vec4<u32>(1u, 0u, 0u, 1u));
})";
const char* kCommonWriteOnlyZeroInitTestCodeCompute = R"(
[[set(0), binding(0)]] var<uniform_constant> dstImage : [[access(write)]] texture_storage_2d<r32uint>;
[[stage(compute)]] fn main() -> void {
textureStore(dstImage, vec2<i32>(0, 0), vec4<u32>(1u, 0u, 0u, 1u));
})";
};
// Verify that the texture is correctly cleared to 0 before its first usage as a read-only storage
// texture in a render pass.
TEST_P(StorageTextureZeroInitTests, ReadonlyStorageTextureClearsToZeroInRenderPass) {
wgpu::Texture readonlyStorageTexture =
CreateTexture(wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage);
// Create a rendering pipeline that reads the pixels from the read-only storage texture and uses
// green as the output color, otherwise uses red instead.
const char* kVertexShader = kSimpleVertexShader;
const std::string kFragmentShader = std::string(R"(
[[set(0), binding(0)]] var<uniform_constant> srcImage : [[access(read)]] texture_storage_2d<r32uint>;
[[location(0)]] var<out> o_color : vec4<f32>;
)") + kCommonReadOnlyZeroInitTestCode +
R"(
[[stage(fragment)]] fn main() -> void {
if (doTest()) {
o_color = vec4<f32>(0.0, 1.0, 0.0, 1.0);
} else {
o_color = vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
})";
CheckDrawsGreen(kVertexShader, kFragmentShader.c_str(), readonlyStorageTexture);
}
// Verify that the texture is correctly cleared to 0 before its first usage as a read-only storage
// texture in a compute pass.
TEST_P(StorageTextureZeroInitTests, ReadonlyStorageTextureClearsToZeroInComputePass) {
wgpu::Texture readonlyStorageTexture =
CreateTexture(wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage);
// Create a compute shader that reads the pixels from the read-only storage texture and writes 1
// to DstBuffer if they all have to expected value.
const std::string kComputeShader = std::string(R"(
[[block]] struct DstBuffer {
[[offset(0)]] result : u32;
};
[[set(0), binding(0)]] var<uniform_constant> srcImage : [[access(read)]] texture_storage_2d<r32uint>;
[[set(0), binding(1)]] var<storage_buffer> dstBuffer : DstBuffer;
)") + kCommonReadOnlyZeroInitTestCode + R"(
[[stage(compute)]] fn main() -> void {
if (doTest()) {
dstBuffer.result = 1u;
} else {
dstBuffer.result = 0u;
}
})";
CheckResultInStorageBuffer(readonlyStorageTexture, kComputeShader);
}
// Verify that the texture is correctly cleared to 0 before its first usage as a write-only storage
// storage texture in a render pass.
TEST_P(StorageTextureZeroInitTests, WriteonlyStorageTextureClearsToZeroInRenderPass) {
// Prepare the write-only storage texture.
constexpr uint32_t kTexelSizeR32Uint = 4u;
wgpu::Texture writeonlyStorageTexture = CreateTexture(
wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc);
WriteIntoStorageTextureInRenderPass(writeonlyStorageTexture, kSimpleVertexShader,
kCommonWriteOnlyZeroInitTestCodeFragment);
CheckOutputStorageTexture(writeonlyStorageTexture, kTexelSizeR32Uint, GetExpectedData());
}
// Verify that the texture is correctly cleared to 0 before its first usage as a write-only storage
// texture in a compute pass.
TEST_P(StorageTextureZeroInitTests, WriteonlyStorageTextureClearsToZeroInComputePass) {
// Prepare the write-only storage texture.
constexpr uint32_t kTexelSizeR32Uint = 4u;
wgpu::Texture writeonlyStorageTexture = CreateTexture(
wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc);
WriteIntoStorageTextureInComputePass(writeonlyStorageTexture,
kCommonWriteOnlyZeroInitTestCodeCompute);
CheckOutputStorageTexture(writeonlyStorageTexture, kTexelSizeR32Uint, GetExpectedData());
}
DAWN_INSTANTIATE_TEST(StorageTextureZeroInitTests,
D3D12Backend({"nonzero_clear_resources_on_creation_for_testing"}),
OpenGLBackend({"nonzero_clear_resources_on_creation_for_testing"}),
MetalBackend({"nonzero_clear_resources_on_creation_for_testing"}),
VulkanBackend({"nonzero_clear_resources_on_creation_for_testing"}));