blob: 89054f9df5cda2401e7a611fce5c0329a0c97fee [file] [log] [blame]
// Copyright 2019 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <utility>
#include <vector>
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
namespace dawn {
namespace {
constexpr uint32_t kRTSize = 16;
constexpr wgpu::TextureFormat kFormat = wgpu::TextureFormat::RGBA8Unorm;
class RenderPassTest : public DawnTest {
protected:
void SetUp() override {
DawnTest::SetUp();
// Shaders to draw a bottom-left triangle in blue.
mVSModule = utils::CreateShaderModule(device, R"(
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4f {
var pos = array(
vec2f(-1.0, 1.0),
vec2f( 1.0, -1.0),
vec2f(-1.0, -1.0));
return vec4f(pos[VertexIndex], 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4f {
return vec4f(0.0, 0.0, 1.0, 1.0);
})");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = mVSModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = wgpu::PrimitiveTopology::TriangleList;
descriptor.cTargets[0].format = kFormat;
pipeline = device.CreateRenderPipeline(&descriptor);
}
wgpu::Texture CreateDefault2DTexture() {
wgpu::TextureDescriptor descriptor;
descriptor.dimension = wgpu::TextureDimension::e2D;
descriptor.size.width = kRTSize;
descriptor.size.height = kRTSize;
descriptor.size.depthOrArrayLayers = 1;
descriptor.sampleCount = 1;
descriptor.format = kFormat;
descriptor.mipLevelCount = 1;
descriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
return device.CreateTexture(&descriptor);
}
wgpu::ShaderModule mVSModule;
wgpu::RenderPipeline pipeline;
};
// Test using two different render passes in one commandBuffer works correctly.
TEST_P(RenderPassTest, TwoRenderPassesInOneCommandBuffer) {
if (IsOpenGL() || IsMetal()) {
// crbug.com/950768
// This test is consistently failing on OpenGL and flaky on Metal.
return;
}
wgpu::Texture renderTarget1 = CreateDefault2DTexture();
wgpu::Texture renderTarget2 = CreateDefault2DTexture();
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
// In the first render pass we clear renderTarget1 to red and draw a blue triangle in the
// bottom left of renderTarget1.
utils::ComboRenderPassDescriptor renderPass({renderTarget1.CreateView()});
renderPass.cColorAttachments[0].clearValue = {1.0f, 0.0f, 0.0f, 1.0f};
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline);
pass.Draw(3);
pass.End();
}
{
// In the second render pass we clear renderTarget2 to green and draw a blue triangle in the
// bottom left of renderTarget2.
utils::ComboRenderPassDescriptor renderPass({renderTarget2.CreateView()});
renderPass.cColorAttachments[0].clearValue = {0.0f, 1.0f, 0.0f, 1.0f};
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline);
pass.Draw(3);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kBlue, renderTarget1, 1, kRTSize - 1);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kRed, renderTarget1, kRTSize - 1, 1);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kBlue, renderTarget2, 1, kRTSize - 1);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kGreen, renderTarget2, kRTSize - 1, 1);
}
// Verify that the content in the color attachment will not be changed if there is no corresponding
// fragment shader outputs in the render pipeline, the load operation is LoadOp::Load and the store
// operation is StoreOp::Store.
TEST_P(RenderPassTest, NoCorrespondingFragmentShaderOutputs) {
wgpu::Texture renderTarget = CreateDefault2DTexture();
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::TextureView renderTargetView = renderTarget.CreateView();
utils::ComboRenderPassDescriptor renderPass({renderTargetView});
renderPass.cColorAttachments[0].clearValue = {1.0f, 0.0f, 0.0f, 1.0f};
renderPass.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPass.cColorAttachments[0].storeOp = wgpu::StoreOp::Store;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
{
// First we draw a blue triangle in the bottom left of renderTarget.
pass.SetPipeline(pipeline);
pass.Draw(3);
}
{
// Next we use a pipeline whose fragment shader has no outputs.
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() {
})");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = mVSModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = wgpu::PrimitiveTopology::TriangleList;
descriptor.cTargets[0].format = kFormat;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
wgpu::RenderPipeline pipelineWithNoFragmentOutput =
device.CreateRenderPipeline(&descriptor);
pass.SetPipeline(pipelineWithNoFragmentOutput);
pass.Draw(3);
}
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kBlue, renderTarget, 1, kRTSize - 1);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kRed, renderTarget, kRTSize - 1, 1);
}
DAWN_INSTANTIATE_TEST(RenderPassTest,
D3D11Backend(),
D3D12Backend(),
D3D12Backend({}, {"use_d3d12_render_pass"}),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
// Test that clearing the lower mips of an R8Unorm texture works. This is a regression test for
// dawn:1071 where Intel Metal devices fail to do that correctly, requiring a workaround.
class RenderPassTest_RegressionDawn1071 : public RenderPassTest {};
TEST_P(RenderPassTest_RegressionDawn1071, ClearLowestMipOfR8Unorm) {
const uint32_t kLastMipLevel = 2;
// Create the texture and buffer used for readback.
wgpu::TextureDescriptor texDesc;
texDesc.format = wgpu::TextureFormat::R8Unorm;
texDesc.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
texDesc.size = {32, 32};
texDesc.mipLevelCount = kLastMipLevel + 1;
wgpu::Texture tex = device.CreateTexture(&texDesc);
wgpu::BufferDescriptor bufDesc;
bufDesc.size = 4;
bufDesc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::CopySrc;
wgpu::Buffer buf = device.CreateBuffer(&bufDesc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
// Clear the texture with a render pass.
{
wgpu::TextureViewDescriptor viewDesc;
viewDesc.baseMipLevel = kLastMipLevel;
utils::ComboRenderPassDescriptor renderPass({tex.CreateView(&viewDesc)});
renderPass.cColorAttachments[0].clearValue = {1.0f, 0.0f, 0.0f, 1.0f};
renderPass.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPass.cColorAttachments[0].storeOp = wgpu::StoreOp::Store;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.End();
}
// Copy the texture in the buffer.
{
wgpu::Extent3D copySize = {1, 1};
wgpu::ImageCopyTexture src = utils::CreateImageCopyTexture(tex, kLastMipLevel);
wgpu::ImageCopyBuffer dst = utils::CreateImageCopyBuffer(buf);
encoder.CopyTextureToBuffer(&src, &dst, &copySize);
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// The content of the texture should be reflected in the buffer (prior to the workaround it
// would be 0s).
EXPECT_BUFFER_U8_EQ(255, buf, 0);
}
DAWN_INSTANTIATE_TEST(RenderPassTest_RegressionDawn1071,
D3D11Backend(),
D3D12Backend(),
MetalBackend(),
MetalBackend({"metal_render_r8_rg8_unorm_small_mip_to_temp_texture"}),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
// Test that clearing a depth16unorm texture with multiple subresources works. This is a regression
// test for dawn:1389 where Intel Metal devices fail to do that correctly, requiring a workaround.
class RenderPassTest_RegressionDawn1389 : public RenderPassTest {};
TEST_P(RenderPassTest_RegressionDawn1389, ClearMultisubresourceAfterWriteDepth16Unorm) {
// TODO(crbug.com/dawn/1492): Support copying to Depth16Unorm on GL.
DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
// TODO(dawn:1705): fix this test for Intel D3D11.
DAWN_SUPPRESS_TEST_IF(IsD3D11() && IsIntel());
// TODO(crbug.com/dawn/1989): Failed on Intel Gen12 GPUs because of Windows Vulkan driver issue,
// when copying to a D16_UNORM depth texture and clearing one subresource, other subresources
// will have incorrect values. Remove this suppression once the issue is fixed.
DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsWindows() && IsIntelGen12());
// Test all combinatons of multi-mip, multi-layer
for (uint32_t mipLevelCount : {1, 5}) {
for (uint32_t arrayLayerCount : {1, 7}) {
// Only clear some of the subresources.
const auto& clearedMips =
mipLevelCount == 1 ? std::vector<std::pair<uint32_t, uint32_t>>{{0, 1}}
: std::vector<std::pair<uint32_t, uint32_t>>{{0, 2}, {3, 4}};
const auto& clearedLayers =
arrayLayerCount == 1 ? std::vector<std::pair<uint32_t, uint32_t>>{{0, 1}}
: std::vector<std::pair<uint32_t, uint32_t>>{{2, 4}, {6, 7}};
// Compute the texture size.
uint32_t width = 1u << (mipLevelCount - 1);
uint32_t height = 1u << (mipLevelCount - 1);
// Create the texture.
wgpu::TextureDescriptor texDesc;
texDesc.format = wgpu::TextureFormat::Depth16Unorm;
texDesc.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc |
wgpu::TextureUsage::CopyDst;
texDesc.size = {width, height, arrayLayerCount};
texDesc.mipLevelCount = mipLevelCount;
wgpu::Texture tex = device.CreateTexture(&texDesc);
// Initialize all subresources with WriteTexture.
for (uint32_t level = 0; level < mipLevelCount; ++level) {
for (uint32_t layer = 0; layer < arrayLayerCount; ++layer) {
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(tex, level, {0, 0, layer});
wgpu::Extent3D copySize = {width >> level, height >> level, 1};
wgpu::TextureDataLayout textureDataLayout;
textureDataLayout.offset = 0;
textureDataLayout.bytesPerRow = copySize.width * sizeof(uint16_t);
textureDataLayout.rowsPerImage = copySize.height;
// Use a distinct value for each subresource.
uint16_t value = level * 10 + layer;
std::vector<uint16_t> data(copySize.width * copySize.height, value);
queue.WriteTexture(&imageCopyTexture, data.data(),
data.size() * sizeof(uint16_t), &textureDataLayout,
&copySize);
}
}
// Prep a viewDesc for rendering to depth. The base layer and level
// will be set later.
wgpu::TextureViewDescriptor viewDesc = {};
viewDesc.mipLevelCount = 1u;
viewDesc.arrayLayerCount = 1u;
// Overwrite some subresources with a render pass
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
for (const auto& clearedMipRange : clearedMips) {
for (const auto& clearedLayerRange : clearedLayers) {
for (uint32_t level = clearedMipRange.first; level < clearedMipRange.second;
++level) {
for (uint32_t layer = clearedLayerRange.first;
layer < clearedLayerRange.second; ++layer) {
viewDesc.baseMipLevel = level;
viewDesc.baseArrayLayer = layer;
utils::ComboRenderPassDescriptor renderPass(
{}, tex.CreateView(&viewDesc));
renderPass.UnsetDepthStencilLoadStoreOpsForFormat(texDesc.format);
renderPass.cDepthStencilAttachmentInfo.depthClearValue = 0.8;
renderPass.cDepthStencilAttachmentInfo.depthLoadOp =
wgpu::LoadOp::Clear;
renderPass.cDepthStencilAttachmentInfo.depthStoreOp =
wgpu::StoreOp::Store;
encoder.BeginRenderPass(&renderPass).End();
}
}
}
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
}
// Iterate all subresources.
for (uint32_t level = 0; level < mipLevelCount; ++level) {
for (uint32_t layer = 0; layer < arrayLayerCount; ++layer) {
bool cleared = false;
for (const auto& clearedMipRange : clearedMips) {
for (const auto& clearedLayerRange : clearedLayers) {
if (level >= clearedMipRange.first && level < clearedMipRange.second &&
layer >= clearedLayerRange.first &&
layer < clearedLayerRange.second) {
cleared = true;
}
}
}
uint32_t mipWidth = width >> level;
uint32_t mipHeight = height >> level;
if (cleared) {
// Check the subresource is cleared as expected.
std::vector<uint16_t> data(mipWidth * mipHeight, 0xCCCC);
EXPECT_TEXTURE_EQ(data.data(), tex, {0, 0, layer}, {mipWidth, mipHeight},
level)
<< "cleared texture data should have been 0xCCCC at:"
<< "\nlayer: " << layer << "\nlevel: " << level;
} else {
// Otherwise, check the other subresources have the orignal contents.
// Without the workaround, they are 0.
uint16_t value =
level * 10 + layer; // Compute the expected value for the subresource.
std::vector<uint16_t> data(mipWidth * mipHeight, value);
EXPECT_TEXTURE_EQ(data.data(), tex, {0, 0, layer}, {mipWidth, mipHeight},
level)
<< "written texture data should still be " << value << " at:"
<< "\nlayer: " << layer << "\nlevel: " << level;
}
}
}
}
}
}
DAWN_INSTANTIATE_TEST(RenderPassTest_RegressionDawn1389,
D3D11Backend(),
D3D12Backend(),
MetalBackend(),
MetalBackend({"use_blit_for_buffer_to_depth_texture_copy"}),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
} // anonymous namespace
} // namespace dawn