blob: 20cb9231c2f4a222ec59cca86593f56d963736f6 [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/DawnTest.h"
#include "common/Assert.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/DawnHelpers.h"
using dawn::InputStepMode;
using dawn::VertexFormat;
// Input state tests all work the same way: the test will render triangles in a grid up to 4x4. Each triangle
// is position in the grid such that X will correspond to the "triangle number" and the Y to the instance number.
// Each test will set up an input state and buffers, and the vertex shader will check that the vertex attributes
// corresponds to predetermined values. On success it outputs green, otherwise red.
//
// The predetermined values are "K * gl_VertexID + componentIndex" for vertex-indexed buffers, and
// "K * gl_InstanceID + componentIndex" for instance-indexed buffers.
constexpr static unsigned int kRTSize = 400;
constexpr static unsigned int kRTCellOffset = 50;
constexpr static unsigned int kRTCellSize = 100;
class InputStateTest : public DawnTest {
protected:
void SetUp() override {
DawnTest::SetUp();
renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
}
bool ShouldComponentBeDefault(VertexFormat format, int component) {
EXPECT_TRUE(component >= 0 && component < 4);
switch (format) {
case VertexFormat::FloatR32G32B32A32:
case VertexFormat::UnormR8G8B8A8:
return component >= 4;
case VertexFormat::FloatR32G32B32:
return component >= 3;
case VertexFormat::FloatR32G32:
case VertexFormat::UnormR8G8:
return component >= 2;
case VertexFormat::FloatR32:
return component >= 1;
default:
DAWN_UNREACHABLE();
}
}
struct ShaderTestSpec {
uint32_t location;
VertexFormat format;
InputStepMode step;
};
dawn::RenderPipeline MakeTestPipeline(const dawn::InputState& inputState, int multiplier, std::vector<ShaderTestSpec> testSpec) {
std::ostringstream vs;
vs << "#version 450\n";
// TODO(cwallez@chromium.org): this only handles float attributes, we should extend it to other types
// Adds line of the form
// layout(location=1) in vec4 input1;
for (const auto& input : testSpec) {
vs << "layout(location=" << input.location << ") in vec4 input" << input.location << ";\n";
}
vs << "layout(location = 0) out vec4 color;\n";
vs << "void main() {\n";
// Hard code the triangle in the shader so that we don't have to add a vertex input for it.
// Also this places the triangle in the grid based on its VertexID and InstanceID
vs << " const vec2 pos[3] = vec2[3](vec2(0.5f, 1.0f), vec2(0.0f, 0.0f), vec2(1.0f, 0.0f));\n";
vs << " vec2 offset = vec2(float(gl_VertexIndex / 3), float(gl_InstanceIndex));\n";
vs << " vec2 worldPos = pos[gl_VertexIndex % 3] + offset;\n";
vs << " gl_Position = vec4(worldPos / 2 - vec2(1.0f), 0.0f, 1.0f);\n";
// Perform the checks by successively ANDing a boolean
vs << " bool success = true;\n";
for (const auto& input : testSpec) {
for (int component = 0; component < 4; ++component) {
vs << " success = success && (input" << input.location << "[" << component << "] == ";
if (ShouldComponentBeDefault(input.format, component)) {
vs << (component == 3 ? "1.0f" : "0.0f");
} else {
if (input.step == InputStepMode::Vertex) {
vs << multiplier << " * gl_VertexIndex + " << component << ".0f";
} else {
vs << multiplier << " * gl_InstanceIndex + " << component << ".0f";
}
}
vs << ");\n";
}
}
// Choose the color
vs << " if (success) {\n";
vs << " color = vec4(0.0f, 1.0f, 0.0f, 1.0f);\n";
vs << " } else {\n";
vs << " color = vec4(1.0f, 0.0f, 0.0f, 1.0f);\n";
vs << " }\n;";
vs << "}\n";
dawn::ShaderModule vsModule = utils::CreateShaderModule(device, dawn::ShaderStage::Vertex, vs.str().c_str());
dawn::ShaderModule fsModule = utils::CreateShaderModule(device, dawn::ShaderStage::Fragment, R"(
#version 450
layout(location = 0) in vec4 color;
layout(location = 0) out vec4 fragColor;
void main() {
fragColor = color;
})"
);
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.cVertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.inputState = inputState;
descriptor.cColorStates[0]->format = renderPass.colorFormat;
return device.CreateRenderPipeline(&descriptor);
}
struct InputSpec {
uint32_t slot;
uint32_t stride;
InputStepMode step;
};
struct AttributeSpec {
uint32_t location;
uint32_t slot;
uint32_t offset;
VertexFormat format;
};
dawn::InputState MakeInputState(std::vector<InputSpec> inputs, std::vector<AttributeSpec> attributes) {
dawn::InputStateBuilder builder = device.CreateInputStateBuilder();
for (const auto& input : inputs) {
dawn::VertexInputDescriptor descriptor;
descriptor.inputSlot = input.slot;
descriptor.stride = input.stride;
descriptor.stepMode = input.step;
builder.SetInput(&descriptor);
}
for (const auto& attribute : attributes) {
dawn::VertexAttributeDescriptor descriptor;
descriptor.shaderLocation = attribute.location;
descriptor.inputSlot = attribute.slot;
descriptor.offset = attribute.offset;
descriptor.format = attribute.format;
builder.SetAttribute(&descriptor);
}
return builder.GetResult();
}
template<typename T>
dawn::Buffer MakeVertexBuffer(std::vector<T> data) {
return utils::CreateBufferFromData(device, data.data(), static_cast<uint32_t>(data.size() * sizeof(T)), dawn::BufferUsageBit::Vertex);
}
struct DrawVertexBuffer {
uint32_t location;
dawn::Buffer* buffer;
};
void DoTestDraw(const dawn::RenderPipeline& pipeline, unsigned int triangles, unsigned int instances, std::vector<DrawVertexBuffer> vertexBuffers) {
EXPECT_LE(triangles, 4u);
EXPECT_LE(instances, 4u);
dawn::CommandEncoder encoder = device.CreateCommandEncoder();
dawn::RenderPassEncoder pass = encoder.BeginRenderPass(renderPass.renderPassInfo);
pass.SetPipeline(pipeline);
uint32_t zeroOffset = 0;
for (const auto& buffer : vertexBuffers) {
pass.SetVertexBuffers(buffer.location, 1, buffer.buffer, &zeroOffset);
}
pass.Draw(triangles * 3, instances, 0, 0);
pass.EndPass();
dawn::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
CheckResult(triangles, instances);
}
void CheckResult(unsigned int triangles, unsigned int instances) {
// Check that the center of each triangle is pure green, so that if a single vertex shader
// instance fails, linear interpolation makes the pixel check fail.
for (unsigned int triangle = 0; triangle < 4; triangle++) {
for (unsigned int instance = 0; instance < 4; instance++) {
unsigned int x = kRTCellOffset + kRTCellSize * triangle;
unsigned int y = kRTCellOffset + kRTCellSize * instance;
if (triangle < triangles && instance < instances) {
EXPECT_PIXEL_RGBA8_EQ(RGBA8(0, 255, 0, 255), renderPass.color, x, y);
} else {
EXPECT_PIXEL_RGBA8_EQ(RGBA8(0, 0, 0, 0), renderPass.color, x, y);
}
}
}
}
utils::BasicRenderPass renderPass;
};
// Test compilation and usage of the fixture :)
TEST_P(InputStateTest, Basic) {
dawn::InputState inputState = MakeInputState({
{0, 4 * sizeof(float), InputStepMode::Vertex}
}, {
{0, 0, 0, VertexFormat::FloatR32G32B32A32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 1, {
{0, VertexFormat::FloatR32G32B32A32, InputStepMode::Vertex}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3,
1, 2, 3, 4,
2, 3, 4, 5
});
DoTestDraw(pipeline, 1, 1, {DrawVertexBuffer{0, &buffer0}});
}
// Test a stride of 0 works
TEST_P(InputStateTest, ZeroStride) {
// This test was failing only on AMD but the OpenGL backend doesn't gather PCI info yet.
DAWN_SKIP_TEST_IF(IsLinux() && IsOpenGL());
dawn::InputState inputState = MakeInputState({
{0, 0, InputStepMode::Vertex}
}, {
{0, 0, 0, VertexFormat::FloatR32G32B32A32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 0, {
{0, VertexFormat::FloatR32G32B32A32, InputStepMode::Vertex}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3,
});
DoTestDraw(pipeline, 1, 1, {DrawVertexBuffer{0, &buffer0}});
}
// Test attributes defaults to (0, 0, 0, 1) if the input state doesn't have all components
TEST_P(InputStateTest, AttributeExpanding) {
// This test was failing only on AMD but the OpenGL backend doesn't gather PCI info yet.
DAWN_SKIP_TEST_IF(IsLinux() && IsOpenGL());
// R32F case
{
dawn::InputState inputState = MakeInputState({
{0, 0, InputStepMode::Vertex}
}, {
{0, 0, 0, VertexFormat::FloatR32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 0, {
{0, VertexFormat::FloatR32, InputStepMode::Vertex}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3
});
DoTestDraw(pipeline, 1, 1, {DrawVertexBuffer{0, &buffer0}});
}
// RG32F case
{
dawn::InputState inputState = MakeInputState({
{0, 0, InputStepMode::Vertex}
}, {
{0, 0, 0, VertexFormat::FloatR32G32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 0, {
{0, VertexFormat::FloatR32G32, InputStepMode::Vertex}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3
});
DoTestDraw(pipeline, 1, 1, {DrawVertexBuffer{0, &buffer0}});
}
// RGB32F case
{
dawn::InputState inputState = MakeInputState({
{0, 0, InputStepMode::Vertex}
}, {
{0, 0, 0, VertexFormat::FloatR32G32B32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 0, {
{0, VertexFormat::FloatR32G32B32, InputStepMode::Vertex}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3
});
DoTestDraw(pipeline, 1, 1, {DrawVertexBuffer{0, &buffer0}});
}
}
// Test a stride larger than the attributes
TEST_P(InputStateTest, StrideLargerThanAttributes) {
// This test was failing only on AMD but the OpenGL backend doesn't gather PCI info yet.
DAWN_SKIP_TEST_IF(IsLinux() && IsOpenGL());
dawn::InputState inputState = MakeInputState({
{0, 8 * sizeof(float), InputStepMode::Vertex}
}, {
{0, 0, 0, VertexFormat::FloatR32G32B32A32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 1, {
{0, VertexFormat::FloatR32G32B32A32, InputStepMode::Vertex}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3, 0, 0, 0, 0,
1, 2, 3, 4, 0, 0, 0, 0,
2, 3, 4, 5, 0, 0, 0, 0,
});
DoTestDraw(pipeline, 1, 1, {DrawVertexBuffer{0, &buffer0}});
}
// Test two attributes at an offset, vertex version
TEST_P(InputStateTest, TwoAttributesAtAnOffsetVertex) {
dawn::InputState inputState = MakeInputState({
{0, 8 * sizeof(float), InputStepMode::Vertex}
}, {
{0, 0, 0, VertexFormat::FloatR32G32B32A32},
{1, 0, 4 * sizeof(float), VertexFormat::FloatR32G32B32A32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 1, {
{0, VertexFormat::FloatR32G32B32A32, InputStepMode::Vertex}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3, 0, 1, 2, 3,
1, 2, 3, 4, 1, 2, 3, 4,
2, 3, 4, 5, 2, 3, 4, 5,
});
DoTestDraw(pipeline, 1, 1, {DrawVertexBuffer{0, &buffer0}});
}
// Test two attributes at an offset, instance version
TEST_P(InputStateTest, TwoAttributesAtAnOffsetInstance) {
dawn::InputState inputState = MakeInputState({
{0, 8 * sizeof(float), InputStepMode::Instance}
}, {
{0, 0, 0, VertexFormat::FloatR32G32B32A32},
{1, 0, 4 * sizeof(float), VertexFormat::FloatR32G32B32A32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 1, {
{0, VertexFormat::FloatR32G32B32A32, InputStepMode::Instance}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3, 0, 1, 2, 3,
1, 2, 3, 4, 1, 2, 3, 4,
2, 3, 4, 5, 2, 3, 4, 5,
});
DoTestDraw(pipeline, 1, 1, {DrawVertexBuffer{0, &buffer0}});
}
// Test a pure-instance input state
TEST_P(InputStateTest, PureInstance) {
dawn::InputState inputState = MakeInputState({
{0, 4 * sizeof(float), InputStepMode::Instance}
}, {
{0, 0, 0, VertexFormat::FloatR32G32B32A32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 1, {
{0, VertexFormat::FloatR32G32B32A32, InputStepMode::Instance}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3,
1, 2, 3, 4,
2, 3, 4, 5,
3, 4, 5, 6,
});
DoTestDraw(pipeline, 1, 4, {DrawVertexBuffer{0, &buffer0}});
}
// Test with mixed everything, vertex vs. instance, different stride and offsets
// different attribute types
TEST_P(InputStateTest, MixedEverything) {
dawn::InputState inputState = MakeInputState({
{0, 12 * sizeof(float), InputStepMode::Vertex},
{1, 10 * sizeof(float), InputStepMode::Instance},
}, {
{0, 0, 0, VertexFormat::FloatR32},
{1, 0, 6 * sizeof(float), VertexFormat::FloatR32G32},
{2, 1, 0, VertexFormat::FloatR32G32B32},
{3, 1, 5 * sizeof(float), VertexFormat::FloatR32G32B32A32}
}
);
dawn::RenderPipeline pipeline = MakeTestPipeline(inputState, 1, {
{0, VertexFormat::FloatR32, InputStepMode::Vertex},
{1, VertexFormat::FloatR32G32, InputStepMode::Vertex},
{2, VertexFormat::FloatR32G32B32, InputStepMode::Instance},
{3, VertexFormat::FloatR32G32B32A32, InputStepMode::Instance}
});
dawn::Buffer buffer0 = MakeVertexBuffer<float>({
0, 1, 2, 3, 0, 0, 0, 1, 2, 3, 0, 0,
1, 2, 3, 4, 0, 0, 1, 2, 3, 4, 0, 0,
2, 3, 4, 5, 0, 0, 2, 3, 4, 5, 0, 0,
3, 4, 5, 6, 0, 0, 3, 4, 5, 6, 0, 0,
});
dawn::Buffer buffer1 = MakeVertexBuffer<float>({
0, 1, 2, 3, 0, 0, 1, 2, 3, 0,
1, 2, 3, 4, 0, 1, 2, 3, 4, 0,
2, 3, 4, 5, 0, 2, 3, 4, 5, 0,
3, 4, 5, 6, 0, 3, 4, 5, 6, 0,
});
DoTestDraw(pipeline, 1, 1, {{0, &buffer0}, {1, &buffer1}});
}
// Test input state is unaffected by unused vertex slot
TEST_P(InputStateTest, UnusedVertexSlot) {
// Instance input state, using slot 1
dawn::InputState instanceInputState =
MakeInputState({{1, 4 * sizeof(float), InputStepMode::Instance}},
{{0, 1, 0, VertexFormat::FloatR32G32B32A32}});
dawn::RenderPipeline instancePipeline = MakeTestPipeline(
instanceInputState, 1, {{0, VertexFormat::FloatR32G32B32A32, InputStepMode::Instance}});
dawn::Buffer buffer = MakeVertexBuffer<float>({
0, 1, 2, 3,
1, 2, 3, 4,
2, 3, 4, 5,
3, 4, 5, 6,
});
dawn::CommandEncoder encoder = device.CreateCommandEncoder();
dawn::RenderPassEncoder pass = encoder.BeginRenderPass(renderPass.renderPassInfo);
uint32_t zeroOffset = 0;
pass.SetVertexBuffers(0, 1, &buffer, &zeroOffset);
pass.SetVertexBuffers(1, 1, &buffer, &zeroOffset);
pass.SetPipeline(instancePipeline);
pass.Draw(1 * 3, 4, 0, 0);
pass.EndPass();
dawn::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
CheckResult(1, 4);
}
// Test setting a different pipeline with a different input state.
// This was a problem with the D3D12 backend where SetVertexBuffers
// was getting the input from the last set pipeline, not the current.
// SetVertexBuffers should be reapplied when the input state changes.
TEST_P(InputStateTest, MultiplePipelinesMixedInputState) {
// Basic input state, using slot 0
dawn::InputState vertexInputState =
MakeInputState({{0, 4 * sizeof(float), InputStepMode::Vertex}},
{{0, 0, 0, VertexFormat::FloatR32G32B32A32}});
dawn::RenderPipeline vertexPipeline = MakeTestPipeline(
vertexInputState, 1, {{0, VertexFormat::FloatR32G32B32A32, InputStepMode::Vertex}});
// Instance input state, using slot 1
dawn::InputState instanceInputState =
MakeInputState({{1, 4 * sizeof(float), InputStepMode::Instance}},
{{0, 1, 0, VertexFormat::FloatR32G32B32A32}});
dawn::RenderPipeline instancePipeline = MakeTestPipeline(
instanceInputState, 1, {{0, VertexFormat::FloatR32G32B32A32, InputStepMode::Instance}});
dawn::Buffer buffer = MakeVertexBuffer<float>({
0, 1, 2, 3,
1, 2, 3, 4,
2, 3, 4, 5,
3, 4, 5, 6,
});
dawn::CommandEncoder encoder = device.CreateCommandEncoder();
dawn::RenderPassEncoder pass = encoder.BeginRenderPass(renderPass.renderPassInfo);
uint32_t zeroOffset = 0;
pass.SetVertexBuffers(0, 1, &buffer, &zeroOffset);
pass.SetVertexBuffers(1, 1, &buffer, &zeroOffset);
pass.SetPipeline(vertexPipeline);
pass.Draw(1 * 3, 1, 0, 0);
pass.SetPipeline(instancePipeline);
pass.Draw(1 * 3, 4, 0, 0);
pass.EndPass();
dawn::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
CheckResult(1, 4);
}
DAWN_INSTANTIATE_TEST(InputStateTest, D3D12Backend, MetalBackend, OpenGLBackend, VulkanBackend);
// TODO for the input state:
// - Add more vertex formats
// - Add checks that the stride is enough to contain all attributes
// - Add checks stride less than some limit
// - Add checks for alignement of vertex buffers and attributes if needed
// - Check for attribute narrowing
// - Check that the input state and the pipeline vertex input types match