| // Copyright 2023 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "src/tint/lang/core/ir/transform/conversion_polyfill.h" |
| |
| #include <cmath> |
| #include <utility> |
| |
| #include "src/tint/lang/core/ir/builder.h" |
| #include "src/tint/lang/core/ir/module.h" |
| #include "src/tint/lang/core/ir/validator.h" |
| |
| using namespace tint::core::fluent_types; // NOLINT |
| using namespace tint::core::number_suffixes; // NOLINT |
| |
| namespace tint::core::ir::transform { |
| |
| namespace { |
| |
| /// PIMPL state for the transform. |
| struct State { |
| /// The polyfill config. |
| const ConversionPolyfillConfig& config; |
| |
| /// The IR module. |
| Module& ir; |
| |
| /// The IR builder. |
| Builder b{ir}; |
| |
| /// The type manager. |
| core::type::Manager& ty{ir.Types()}; |
| |
| /// The symbol table. |
| SymbolTable& sym{ir.symbols}; |
| |
| /// Map from integer type to its f32toi helper function. |
| Hashmap<const type::Type*, Function*, 4> f32toi_helpers{}; |
| |
| /// Map from integer type to its f16toi helper function. |
| Hashmap<const type::Type*, Function*, 4> f16toi_helpers{}; |
| |
| /// Process the module. |
| void Process() { |
| // Find the conversion instructions that need to be polyfilled. |
| Vector<ir::Convert*, 64> ftoi_worklist; |
| for (auto* inst : ir.Instructions()) { |
| if (auto* convert = inst->As<ir::Convert>()) { |
| auto* src_ty = convert->Args()[0]->Type(); |
| auto* res_ty = convert->Result(0)->Type(); |
| if (config.ftoi && // |
| src_ty->is_float_scalar_or_vector() && // |
| res_ty->is_integer_scalar_or_vector()) { |
| ftoi_worklist.Push(convert); |
| } |
| } |
| } |
| |
| // Polyfill the conversion instructions that we found. |
| for (auto* convert : ftoi_worklist) { |
| ftoi(convert); |
| convert->Destroy(); |
| } |
| } |
| |
| /// Replace a conversion instruction with a call to helper function that manually clamps the |
| /// result to within the limit of the destination type. |
| /// @param convert the conversion instruction |
| void ftoi(ir::Convert* convert) { |
| auto* res_ty = convert->Result(0)->Type(); |
| auto* src_ty = convert->Args()[0]->Type(); |
| auto* src_el_ty = src_ty->DeepestElement(); |
| |
| auto& helpers = src_el_ty->Is<type::F32>() ? f32toi_helpers : f16toi_helpers; |
| auto* helper = helpers.GetOrAdd(res_ty, [&] { |
| // Generate a name for the helper function. |
| StringStream name; |
| name << "tint_"; |
| if (auto* src_vec = src_ty->As<type::Vector>()) { |
| name << "v" << src_vec->Width() << src_vec->type()->FriendlyName(); |
| } else { |
| name << src_ty->FriendlyName(); |
| } |
| name << "_to_"; |
| if (auto* res_vec = res_ty->As<type::Vector>()) { |
| name << "v" << res_vec->Width() << res_vec->type()->FriendlyName(); |
| } else { |
| name << res_ty->FriendlyName(); |
| } |
| |
| // Generate constants for the limits. |
| struct { |
| ir::Constant* low_limit_f = nullptr; |
| ir::Constant* high_limit_f = nullptr; |
| ir::Constant* low_limit_i = nullptr; |
| ir::Constant* high_limit_i = nullptr; |
| } limits; |
| |
| // Integer limits. |
| if (res_ty->is_signed_integer_scalar_or_vector()) { |
| limits.low_limit_i = MatchWidth(b.Constant(i32(INT32_MIN)), res_ty); |
| limits.high_limit_i = MatchWidth(b.Constant(i32(INT32_MAX)), res_ty); |
| } else { |
| limits.low_limit_i = MatchWidth(b.Constant(u32(0)), res_ty); |
| limits.high_limit_i = MatchWidth(b.Constant(u32(UINT32_MAX)), res_ty); |
| } |
| |
| // Largest integers representable in the source floating point format. |
| if (src_el_ty->Is<type::F32>()) { |
| if (res_ty->is_signed_integer_scalar_or_vector()) { |
| // INT32_MIN is -(2^31), which is exactly representable as an f32. |
| // INT32_MAX is (2^31 - 1), which is not exactly representable as an f32, so we |
| // instead use the next highest integer value in the f32 domain. |
| const float kMaxI32AsF32 = std::nexttowardf(0x1p+31f, 0.0L); |
| limits.low_limit_f = MatchWidth(b.Constant(f32(INT32_MIN)), res_ty); |
| limits.high_limit_f = MatchWidth(b.Constant(f32(kMaxI32AsF32)), res_ty); |
| } else { |
| // UINT32_MAX is (2^32 - 1), which is not exactly representable as an f32, so we |
| // instead use the next highest integer value in the f32 domain. |
| const float kMaxU32AsF32 = std::nexttowardf(0x1p+32f, 0.0L); |
| limits.low_limit_f = MatchWidth(b.Constant(f32(0)), res_ty); |
| limits.high_limit_f = MatchWidth(b.Constant(f32(kMaxU32AsF32)), res_ty); |
| } |
| } else if (src_el_ty->Is<type::F16>()) { |
| constexpr float MAX_F16 = 65504; |
| if (res_ty->is_signed_integer_scalar_or_vector()) { |
| limits.low_limit_f = MatchWidth(b.Constant(f16(-MAX_F16)), res_ty); |
| limits.high_limit_f = MatchWidth(b.Constant(f16(MAX_F16)), res_ty); |
| } else { |
| limits.low_limit_f = MatchWidth(b.Constant(f16(0)), res_ty); |
| limits.high_limit_f = MatchWidth(b.Constant(f16(MAX_F16)), res_ty); |
| } |
| } else { |
| TINT_UNIMPLEMENTED() << "unhandled floating-point type"; |
| } |
| |
| // Create the helper function. |
| auto* func = b.Function(name.str(), res_ty); |
| auto* value = b.FunctionParam("value", src_ty); |
| func->SetParams({value}); |
| b.Append(func->Block(), [&] { |
| auto* bool_ty = MatchWidth(ty.bool_(), res_ty); |
| |
| auto* converted = b.Convert(res_ty, value); |
| |
| // low = select(low_limit_i, i32(value), value >= low_limit_f) |
| auto* low_cond = b.GreaterThanEqual(bool_ty, value, limits.low_limit_f); |
| auto* select_low = b.Call(res_ty, core::BuiltinFn::kSelect, limits.low_limit_i, |
| converted, low_cond); |
| |
| // result = select(high_limit_i, low, value <= high_limit_f) |
| auto* high_cond = b.LessThanEqual(bool_ty, value, limits.high_limit_f); |
| auto* select_high = b.Call(res_ty, core::BuiltinFn::kSelect, limits.high_limit_i, |
| select_low, high_cond); |
| |
| b.Return(func, select_high->Result(0)); |
| }); |
| return func; |
| }); |
| |
| // Call the helper function, splatting the arguments to match the target vector width. |
| auto* call = b.CallWithResult(convert->DetachResult(), helper, convert->Args()[0]); |
| call->InsertBefore(convert); |
| } |
| |
| /// Return a type with element type @p type that has the same number of vector components as |
| /// @p match. If @p match is scalar just return @p type. |
| /// @param el_ty the type to extend |
| /// @param match the type to match the component count of |
| /// @returns a type with the same number of vector components as @p match |
| const core::type::Type* MatchWidth(const core::type::Type* el_ty, |
| const core::type::Type* match) { |
| if (auto* vec = match->As<core::type::Vector>()) { |
| return ty.vec(el_ty, vec->Width()); |
| } |
| return el_ty; |
| } |
| |
| /// Return a constant that has the same number of vector components as @p match, each with the |
| /// value @p element. If @p match is scalar just return @p element. |
| /// @param element the value to extend |
| /// @param match the type to match the component count of |
| /// @returns a value with the same number of vector components as @p match |
| ir::Constant* MatchWidth(ir::Constant* element, const core::type::Type* match) { |
| if (match->Is<core::type::Vector>()) { |
| return b.Splat(MatchWidth(element->Type(), match), element); |
| } |
| return element; |
| } |
| }; |
| |
| } // namespace |
| |
| Result<SuccessType> ConversionPolyfill(Module& ir, const ConversionPolyfillConfig& config) { |
| auto result = ValidateAndDumpIfNeeded(ir, "ConversionPolyfill transform"); |
| if (result != Success) { |
| return result; |
| } |
| |
| State{config, ir}.Process(); |
| |
| return Success; |
| } |
| |
| } // namespace tint::core::ir::transform |