blob: 166d59f817715f29745e3ca3e56c3ee746f2b94c [file] [log] [blame] [edit]
// Copyright 2019 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/d3d12/ResourceAllocatorManagerD3D12.h"
#include "dawn_native/d3d12/D3D12Error.h"
#include "dawn_native/d3d12/DeviceD3D12.h"
#include "dawn_native/d3d12/HeapAllocatorD3D12.h"
#include "dawn_native/d3d12/HeapD3D12.h"
#include "dawn_native/d3d12/ResidencyManagerD3D12.h"
#include "dawn_native/d3d12/UtilsD3D12.h"
namespace dawn_native { namespace d3d12 {
namespace {
MemorySegment GetMemorySegment(Device* device, D3D12_HEAP_TYPE heapType) {
if (device->GetDeviceInfo().isUMA) {
return MemorySegment::Local;
}
D3D12_HEAP_PROPERTIES heapProperties =
device->GetD3D12Device()->GetCustomHeapProperties(0, heapType);
if (heapProperties.MemoryPoolPreference == D3D12_MEMORY_POOL_L1) {
return MemorySegment::Local;
}
return MemorySegment::NonLocal;
}
D3D12_HEAP_TYPE GetD3D12HeapType(ResourceHeapKind resourceHeapKind) {
switch (resourceHeapKind) {
case Readback_OnlyBuffers:
case Readback_AllBuffersAndTextures:
return D3D12_HEAP_TYPE_READBACK;
case Default_AllBuffersAndTextures:
case Default_OnlyBuffers:
case Default_OnlyNonRenderableOrDepthTextures:
case Default_OnlyRenderableOrDepthTextures:
return D3D12_HEAP_TYPE_DEFAULT;
case Upload_OnlyBuffers:
case Upload_AllBuffersAndTextures:
return D3D12_HEAP_TYPE_UPLOAD;
case EnumCount:
UNREACHABLE();
}
}
D3D12_HEAP_FLAGS GetD3D12HeapFlags(ResourceHeapKind resourceHeapKind) {
switch (resourceHeapKind) {
case Default_AllBuffersAndTextures:
case Readback_AllBuffersAndTextures:
case Upload_AllBuffersAndTextures:
return D3D12_HEAP_FLAG_ALLOW_ALL_BUFFERS_AND_TEXTURES;
case Default_OnlyBuffers:
case Readback_OnlyBuffers:
case Upload_OnlyBuffers:
return D3D12_HEAP_FLAG_ALLOW_ONLY_BUFFERS;
case Default_OnlyNonRenderableOrDepthTextures:
return D3D12_HEAP_FLAG_ALLOW_ONLY_NON_RT_DS_TEXTURES;
case Default_OnlyRenderableOrDepthTextures:
return D3D12_HEAP_FLAG_ALLOW_ONLY_RT_DS_TEXTURES;
case EnumCount:
UNREACHABLE();
}
}
ResourceHeapKind GetResourceHeapKind(D3D12_RESOURCE_DIMENSION dimension,
D3D12_HEAP_TYPE heapType,
D3D12_RESOURCE_FLAGS flags,
uint32_t resourceHeapTier) {
if (resourceHeapTier >= 2) {
switch (heapType) {
case D3D12_HEAP_TYPE_UPLOAD:
return Upload_AllBuffersAndTextures;
case D3D12_HEAP_TYPE_DEFAULT:
return Default_AllBuffersAndTextures;
case D3D12_HEAP_TYPE_READBACK:
return Readback_AllBuffersAndTextures;
default:
UNREACHABLE();
}
}
switch (dimension) {
case D3D12_RESOURCE_DIMENSION_BUFFER: {
switch (heapType) {
case D3D12_HEAP_TYPE_UPLOAD:
return Upload_OnlyBuffers;
case D3D12_HEAP_TYPE_DEFAULT:
return Default_OnlyBuffers;
case D3D12_HEAP_TYPE_READBACK:
return Readback_OnlyBuffers;
default:
UNREACHABLE();
}
break;
}
case D3D12_RESOURCE_DIMENSION_TEXTURE1D:
case D3D12_RESOURCE_DIMENSION_TEXTURE2D:
case D3D12_RESOURCE_DIMENSION_TEXTURE3D: {
switch (heapType) {
case D3D12_HEAP_TYPE_DEFAULT: {
if ((flags & D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL) ||
(flags & D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET)) {
return Default_OnlyRenderableOrDepthTextures;
}
return Default_OnlyNonRenderableOrDepthTextures;
}
default:
UNREACHABLE();
}
break;
}
default:
UNREACHABLE();
}
}
uint64_t GetResourcePlacementAlignment(ResourceHeapKind resourceHeapKind,
uint32_t sampleCount,
uint64_t requestedAlignment) {
switch (resourceHeapKind) {
// Small resources can take advantage of smaller alignments. For example,
// if the most detailed mip can fit under 64KB, 4KB alignments can be used.
// Must be non-depth or without render-target to use small resource alignment.
// This also applies to MSAA textures (4MB => 64KB).
//
// Note: Only known to be used for small textures; however, MSDN suggests
// it could be extended for more cases. If so, this could default to always
// attempt small resource placement.
// https://docs.microsoft.com/en-us/windows/win32/api/d3d12/ns-d3d12-d3d12_resource_desc
case Default_OnlyNonRenderableOrDepthTextures:
return (sampleCount > 1) ? D3D12_SMALL_MSAA_RESOURCE_PLACEMENT_ALIGNMENT
: D3D12_SMALL_RESOURCE_PLACEMENT_ALIGNMENT;
default:
return requestedAlignment;
}
}
bool IsClearValueOptimizable(const D3D12_RESOURCE_DESC& resourceDescriptor) {
// Optimized clear color cannot be set on buffers, non-render-target/depth-stencil
// textures, or typeless resources
// https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device-createcommittedresource
// https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device-createplacedresource
return !IsTypeless(resourceDescriptor.Format) &&
resourceDescriptor.Dimension != D3D12_RESOURCE_DIMENSION_BUFFER &&
(resourceDescriptor.Flags & (D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET |
D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL)) != 0;
}
} // namespace
ResourceAllocatorManager::ResourceAllocatorManager(Device* device) : mDevice(device) {
mResourceHeapTier = (mDevice->IsToggleEnabled(Toggle::UseD3D12ResourceHeapTier2))
? mDevice->GetDeviceInfo().resourceHeapTier
: 1;
for (uint32_t i = 0; i < ResourceHeapKind::EnumCount; i++) {
const ResourceHeapKind resourceHeapKind = static_cast<ResourceHeapKind>(i);
mHeapAllocators[i] = std::make_unique<HeapAllocator>(
mDevice, GetD3D12HeapType(resourceHeapKind), GetD3D12HeapFlags(resourceHeapKind),
GetMemorySegment(device, GetD3D12HeapType(resourceHeapKind)));
mPooledHeapAllocators[i] =
std::make_unique<PooledResourceMemoryAllocator>(mHeapAllocators[i].get());
mSubAllocatedResourceAllocators[i] = std::make_unique<BuddyMemoryAllocator>(
kMaxHeapSize, kMinHeapSize, mPooledHeapAllocators[i].get());
}
}
ResultOrError<ResourceHeapAllocation> ResourceAllocatorManager::AllocateMemory(
D3D12_HEAP_TYPE heapType,
const D3D12_RESOURCE_DESC& resourceDescriptor,
D3D12_RESOURCE_STATES initialUsage) {
// In order to suppress a warning in the D3D12 debug layer, we need to specify an
// optimized clear value. As there are no negative consequences when picking a mismatched
// clear value, we use zero as the optimized clear value. This also enables fast clears on
// some architectures.
D3D12_CLEAR_VALUE zero{};
D3D12_CLEAR_VALUE* optimizedClearValue = nullptr;
if (IsClearValueOptimizable(resourceDescriptor)) {
zero.Format = resourceDescriptor.Format;
optimizedClearValue = &zero;
}
// TODO(crbug.com/dawn/849): Conditionally disable sub-allocation.
// For very large resources, there is no benefit to suballocate.
// For very small resources, it is inefficent to suballocate given the min. heap
// size could be much larger then the resource allocation.
// Attempt to satisfy the request using sub-allocation (placed resource in a heap).
ResourceHeapAllocation subAllocation;
DAWN_TRY_ASSIGN(subAllocation, CreatePlacedResource(heapType, resourceDescriptor,
optimizedClearValue, initialUsage));
if (subAllocation.GetInfo().mMethod != AllocationMethod::kInvalid) {
return std::move(subAllocation);
}
// If sub-allocation fails, fall-back to direct allocation (committed resource).
ResourceHeapAllocation directAllocation;
DAWN_TRY_ASSIGN(directAllocation,
CreateCommittedResource(heapType, resourceDescriptor, optimizedClearValue,
initialUsage));
if (directAllocation.GetInfo().mMethod != AllocationMethod::kInvalid) {
return std::move(directAllocation);
}
// If direct allocation fails, the system is probably out of memory.
return DAWN_OUT_OF_MEMORY_ERROR("Allocation failed");
}
void ResourceAllocatorManager::Tick(ExecutionSerial completedSerial) {
for (ResourceHeapAllocation& allocation :
mAllocationsToDelete.IterateUpTo(completedSerial)) {
if (allocation.GetInfo().mMethod == AllocationMethod::kSubAllocated) {
FreeMemory(allocation);
}
}
mAllocationsToDelete.ClearUpTo(completedSerial);
}
void ResourceAllocatorManager::DeallocateMemory(ResourceHeapAllocation& allocation) {
if (allocation.GetInfo().mMethod == AllocationMethod::kInvalid) {
return;
}
mAllocationsToDelete.Enqueue(allocation, mDevice->GetPendingCommandSerial());
// Directly allocated ResourceHeapAllocations are created with a heap object that must be
// manually deleted upon deallocation. See ResourceAllocatorManager::CreateCommittedResource
// for more information.
if (allocation.GetInfo().mMethod == AllocationMethod::kDirect) {
delete allocation.GetResourceHeap();
}
// Invalidate the allocation immediately in case one accidentally
// calls DeallocateMemory again using the same allocation.
allocation.Invalidate();
ASSERT(allocation.GetD3D12Resource() == nullptr);
}
void ResourceAllocatorManager::FreeMemory(ResourceHeapAllocation& allocation) {
ASSERT(allocation.GetInfo().mMethod == AllocationMethod::kSubAllocated);
D3D12_HEAP_PROPERTIES heapProp;
allocation.GetD3D12Resource()->GetHeapProperties(&heapProp, nullptr);
const D3D12_RESOURCE_DESC resourceDescriptor = allocation.GetD3D12Resource()->GetDesc();
const size_t resourceHeapKindIndex =
GetResourceHeapKind(resourceDescriptor.Dimension, heapProp.Type,
resourceDescriptor.Flags, mResourceHeapTier);
mSubAllocatedResourceAllocators[resourceHeapKindIndex]->Deallocate(allocation);
}
ResultOrError<ResourceHeapAllocation> ResourceAllocatorManager::CreatePlacedResource(
D3D12_HEAP_TYPE heapType,
const D3D12_RESOURCE_DESC& requestedResourceDescriptor,
const D3D12_CLEAR_VALUE* optimizedClearValue,
D3D12_RESOURCE_STATES initialUsage) {
const ResourceHeapKind resourceHeapKind =
GetResourceHeapKind(requestedResourceDescriptor.Dimension, heapType,
requestedResourceDescriptor.Flags, mResourceHeapTier);
D3D12_RESOURCE_DESC resourceDescriptor = requestedResourceDescriptor;
resourceDescriptor.Alignment = GetResourcePlacementAlignment(
resourceHeapKind, requestedResourceDescriptor.SampleDesc.Count,
requestedResourceDescriptor.Alignment);
// TODO(bryan.bernhart): Figure out how to compute the alignment without calling this
// twice.
D3D12_RESOURCE_ALLOCATION_INFO resourceInfo =
mDevice->GetD3D12Device()->GetResourceAllocationInfo(0, 1, &resourceDescriptor);
// If the requested resource alignment was rejected, let D3D tell us what the
// required alignment is for this resource.
if (resourceDescriptor.Alignment != 0 &&
resourceDescriptor.Alignment != resourceInfo.Alignment) {
resourceDescriptor.Alignment = 0;
resourceInfo =
mDevice->GetD3D12Device()->GetResourceAllocationInfo(0, 1, &resourceDescriptor);
}
// If d3d tells us the resource size is invalid, treat the error as OOM.
// Otherwise, creating the resource could cause a device loss (too large).
// This is because NextPowerOfTwo(UINT64_MAX) overflows and proceeds to
// incorrectly allocate a mismatched size.
if (resourceInfo.SizeInBytes == 0 ||
resourceInfo.SizeInBytes == std::numeric_limits<uint64_t>::max()) {
return DAWN_OUT_OF_MEMORY_ERROR("Resource allocation size was invalid.");
}
BuddyMemoryAllocator* allocator =
mSubAllocatedResourceAllocators[static_cast<size_t>(resourceHeapKind)].get();
ResourceMemoryAllocation allocation;
DAWN_TRY_ASSIGN(allocation,
allocator->Allocate(resourceInfo.SizeInBytes, resourceInfo.Alignment));
if (allocation.GetInfo().mMethod == AllocationMethod::kInvalid) {
return ResourceHeapAllocation{}; // invalid
}
Heap* heap = ToBackend(allocation.GetResourceHeap());
// Before calling CreatePlacedResource, we must ensure the target heap is resident.
// CreatePlacedResource will fail if it is not.
DAWN_TRY(mDevice->GetResidencyManager()->LockAllocation(heap));
// With placed resources, a single heap can be reused.
// The resource placed at an offset is only reclaimed
// upon Tick or after the last command list using the resource has completed
// on the GPU. This means the same physical memory is not reused
// within the same command-list and does not require additional synchronization (aliasing
// barrier).
// https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device-createplacedresource
ComPtr<ID3D12Resource> placedResource;
DAWN_TRY(CheckOutOfMemoryHRESULT(
mDevice->GetD3D12Device()->CreatePlacedResource(
heap->GetD3D12Heap(), allocation.GetOffset(), &resourceDescriptor, initialUsage,
optimizedClearValue, IID_PPV_ARGS(&placedResource)),
"ID3D12Device::CreatePlacedResource"));
// After CreatePlacedResource has finished, the heap can be unlocked from residency. This
// will insert it into the residency LRU.
mDevice->GetResidencyManager()->UnlockAllocation(heap);
return ResourceHeapAllocation{allocation.GetInfo(), allocation.GetOffset(),
std::move(placedResource), heap};
}
ResultOrError<ResourceHeapAllocation> ResourceAllocatorManager::CreateCommittedResource(
D3D12_HEAP_TYPE heapType,
const D3D12_RESOURCE_DESC& resourceDescriptor,
const D3D12_CLEAR_VALUE* optimizedClearValue,
D3D12_RESOURCE_STATES initialUsage) {
D3D12_HEAP_PROPERTIES heapProperties;
heapProperties.Type = heapType;
heapProperties.CPUPageProperty = D3D12_CPU_PAGE_PROPERTY_UNKNOWN;
heapProperties.MemoryPoolPreference = D3D12_MEMORY_POOL_UNKNOWN;
heapProperties.CreationNodeMask = 0;
heapProperties.VisibleNodeMask = 0;
// If d3d tells us the resource size is invalid, treat the error as OOM.
// Otherwise, creating the resource could cause a device loss (too large).
// This is because NextPowerOfTwo(UINT64_MAX) overflows and proceeds to
// incorrectly allocate a mismatched size.
D3D12_RESOURCE_ALLOCATION_INFO resourceInfo =
mDevice->GetD3D12Device()->GetResourceAllocationInfo(0, 1, &resourceDescriptor);
if (resourceInfo.SizeInBytes == 0 ||
resourceInfo.SizeInBytes == std::numeric_limits<uint64_t>::max()) {
return DAWN_OUT_OF_MEMORY_ERROR("Resource allocation size was invalid.");
}
if (resourceInfo.SizeInBytes > kMaxHeapSize) {
return ResourceHeapAllocation{}; // Invalid
}
// CreateCommittedResource will implicitly make the created resource resident. We must
// ensure enough free memory exists before allocating to avoid an out-of-memory error when
// overcommitted.
DAWN_TRY(mDevice->GetResidencyManager()->EnsureCanAllocate(
resourceInfo.SizeInBytes, GetMemorySegment(mDevice, heapType)));
// Note: Heap flags are inferred by the resource descriptor and do not need to be explicitly
// provided to CreateCommittedResource.
ComPtr<ID3D12Resource> committedResource;
DAWN_TRY(CheckOutOfMemoryHRESULT(
mDevice->GetD3D12Device()->CreateCommittedResource(
&heapProperties, D3D12_HEAP_FLAG_NONE, &resourceDescriptor, initialUsage,
optimizedClearValue, IID_PPV_ARGS(&committedResource)),
"ID3D12Device::CreateCommittedResource"));
// When using CreateCommittedResource, D3D12 creates an implicit heap that contains the
// resource allocation. Because Dawn's memory residency management occurs at the resource
// heap granularity, every directly allocated ResourceHeapAllocation also stores a Heap
// object. This object is created manually, and must be deleted manually upon deallocation
// of the committed resource.
Heap* heap = new Heap(committedResource, GetMemorySegment(mDevice, heapType),
resourceInfo.SizeInBytes);
// Calling CreateCommittedResource implicitly calls MakeResident on the resource. We must
// track this to avoid calling MakeResident a second time.
mDevice->GetResidencyManager()->TrackResidentAllocation(heap);
AllocationInfo info;
info.mMethod = AllocationMethod::kDirect;
return ResourceHeapAllocation{info,
/*offset*/ 0, std::move(committedResource), heap};
}
void ResourceAllocatorManager::DestroyPool() {
for (auto& alloc : mPooledHeapAllocators) {
alloc->DestroyPool();
}
}
}} // namespace dawn_native::d3d12