blob: 426cdb3107908ed8ed16331e25484397197c8ddd [file] [log] [blame] [edit]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/d3d12/ShaderModuleD3D12.h"
#include "common/Assert.h"
#include "common/BitSetIterator.h"
#include "common/Log.h"
#include "dawn_native/TintUtils.h"
#include "dawn_native/d3d12/BindGroupLayoutD3D12.h"
#include "dawn_native/d3d12/D3D12Error.h"
#include "dawn_native/d3d12/DeviceD3D12.h"
#include "dawn_native/d3d12/PipelineLayoutD3D12.h"
#include "dawn_native/d3d12/PlatformFunctions.h"
#include "dawn_native/d3d12/UtilsD3D12.h"
#include <d3dcompiler.h>
#include <tint/tint.h>
namespace dawn_native { namespace d3d12 {
namespace {
std::vector<const wchar_t*> GetDXCArguments(uint32_t compileFlags, bool enable16BitTypes) {
std::vector<const wchar_t*> arguments;
if (compileFlags & D3DCOMPILE_ENABLE_BACKWARDS_COMPATIBILITY) {
arguments.push_back(L"/Gec");
}
if (compileFlags & D3DCOMPILE_IEEE_STRICTNESS) {
arguments.push_back(L"/Gis");
}
if (compileFlags & D3DCOMPILE_OPTIMIZATION_LEVEL2) {
switch (compileFlags & D3DCOMPILE_OPTIMIZATION_LEVEL2) {
case D3DCOMPILE_OPTIMIZATION_LEVEL0:
arguments.push_back(L"/O0");
break;
case D3DCOMPILE_OPTIMIZATION_LEVEL2:
arguments.push_back(L"/O2");
break;
case D3DCOMPILE_OPTIMIZATION_LEVEL3:
arguments.push_back(L"/O3");
break;
}
}
if (compileFlags & D3DCOMPILE_DEBUG) {
arguments.push_back(L"/Zi");
}
if (compileFlags & D3DCOMPILE_PACK_MATRIX_ROW_MAJOR) {
arguments.push_back(L"/Zpr");
}
if (compileFlags & D3DCOMPILE_PACK_MATRIX_COLUMN_MAJOR) {
arguments.push_back(L"/Zpc");
}
if (compileFlags & D3DCOMPILE_AVOID_FLOW_CONTROL) {
arguments.push_back(L"/Gfa");
}
if (compileFlags & D3DCOMPILE_PREFER_FLOW_CONTROL) {
arguments.push_back(L"/Gfp");
}
if (compileFlags & D3DCOMPILE_RESOURCES_MAY_ALIAS) {
arguments.push_back(L"/res_may_alias");
}
if (enable16BitTypes) {
// enable-16bit-types are only allowed in -HV 2018 (default)
arguments.push_back(L"/enable-16bit-types");
}
arguments.push_back(L"-HV");
arguments.push_back(L"2018");
return arguments;
}
} // anonymous namespace
ResultOrError<ComPtr<IDxcBlob>> CompileShaderDXC(Device* device,
SingleShaderStage stage,
const std::string& hlslSource,
const char* entryPoint,
uint32_t compileFlags) {
ComPtr<IDxcLibrary> dxcLibrary = device->GetDxcLibrary();
ComPtr<IDxcBlobEncoding> sourceBlob;
DAWN_TRY(CheckHRESULT(dxcLibrary->CreateBlobWithEncodingOnHeapCopy(
hlslSource.c_str(), hlslSource.length(), CP_UTF8, &sourceBlob),
"DXC create blob"));
ComPtr<IDxcCompiler> dxcCompiler = device->GetDxcCompiler();
std::wstring entryPointW;
DAWN_TRY_ASSIGN(entryPointW, ConvertStringToWstring(entryPoint));
std::vector<const wchar_t*> arguments =
GetDXCArguments(compileFlags, device->IsExtensionEnabled(Extension::ShaderFloat16));
ComPtr<IDxcOperationResult> result;
DAWN_TRY(CheckHRESULT(
dxcCompiler->Compile(sourceBlob.Get(), nullptr, entryPointW.c_str(),
device->GetDeviceInfo().shaderProfiles[stage].c_str(),
arguments.data(), arguments.size(), nullptr, 0, nullptr, &result),
"DXC compile"));
HRESULT hr;
DAWN_TRY(CheckHRESULT(result->GetStatus(&hr), "DXC get status"));
if (FAILED(hr)) {
ComPtr<IDxcBlobEncoding> errors;
DAWN_TRY(CheckHRESULT(result->GetErrorBuffer(&errors), "DXC get error buffer"));
std::string message = std::string("DXC compile failed with ") +
static_cast<char*>(errors->GetBufferPointer());
return DAWN_VALIDATION_ERROR(message);
}
ComPtr<IDxcBlob> compiledShader;
DAWN_TRY(CheckHRESULT(result->GetResult(&compiledShader), "DXC get result"));
return std::move(compiledShader);
}
ResultOrError<ComPtr<ID3DBlob>> CompileShaderFXC(Device* device,
SingleShaderStage stage,
const std::string& hlslSource,
const char* entryPoint,
uint32_t compileFlags) {
const char* targetProfile = nullptr;
switch (stage) {
case SingleShaderStage::Vertex:
targetProfile = "vs_5_1";
break;
case SingleShaderStage::Fragment:
targetProfile = "ps_5_1";
break;
case SingleShaderStage::Compute:
targetProfile = "cs_5_1";
break;
}
ComPtr<ID3DBlob> compiledShader;
ComPtr<ID3DBlob> errors;
const PlatformFunctions* functions = device->GetFunctions();
if (FAILED(functions->d3dCompile(hlslSource.c_str(), hlslSource.length(), nullptr, nullptr,
nullptr, entryPoint, targetProfile, compileFlags, 0,
&compiledShader, &errors))) {
std::string message = std::string("D3D compile failed with ") +
static_cast<char*>(errors->GetBufferPointer());
return DAWN_VALIDATION_ERROR(message);
}
return std::move(compiledShader);
}
// static
ResultOrError<Ref<ShaderModule>> ShaderModule::Create(Device* device,
const ShaderModuleDescriptor* descriptor,
ShaderModuleParseResult* parseResult) {
Ref<ShaderModule> module = AcquireRef(new ShaderModule(device, descriptor));
DAWN_TRY(module->Initialize(parseResult));
return module;
}
ShaderModule::ShaderModule(Device* device, const ShaderModuleDescriptor* descriptor)
: ShaderModuleBase(device, descriptor) {
}
MaybeError ShaderModule::Initialize(ShaderModuleParseResult* parseResult) {
ScopedTintICEHandler scopedICEHandler(GetDevice());
return InitializeBase(parseResult);
}
ResultOrError<std::string> ShaderModule::TranslateToHLSL(
const char* entryPointName,
SingleShaderStage stage,
PipelineLayout* layout,
std::string* remappedEntryPointName,
FirstOffsetInfo* firstOffsetInfo) const {
ASSERT(!IsError());
ScopedTintICEHandler scopedICEHandler(GetDevice());
using BindingRemapper = tint::transform::BindingRemapper;
using BindingPoint = tint::transform::BindingPoint;
BindingRemapper::BindingPoints bindingPoints;
BindingRemapper::AccessControls accessControls;
const BindingInfoArray& moduleBindingInfo = GetEntryPoint(entryPointName).bindings;
// d3d12::BindGroupLayout packs the bindings per HLSL register-space.
// We modify the Tint AST to make the "bindings" decoration match the
// offset chosen by d3d12::BindGroupLayout so that Tint produces HLSL
// with the correct registers assigned to each interface variable.
for (BindGroupIndex group : IterateBitSet(layout->GetBindGroupLayoutsMask())) {
const BindGroupLayout* bgl = ToBackend(layout->GetBindGroupLayout(group));
const auto& groupBindingInfo = moduleBindingInfo[group];
for (const auto& it : groupBindingInfo) {
BindingNumber binding = it.first;
auto const& bindingInfo = it.second;
BindingIndex bindingIndex = bgl->GetBindingIndex(binding);
BindingPoint srcBindingPoint{static_cast<uint32_t>(group),
static_cast<uint32_t>(binding)};
BindingPoint dstBindingPoint{static_cast<uint32_t>(group),
bgl->GetShaderRegister(bindingIndex)};
if (srcBindingPoint != dstBindingPoint) {
bindingPoints.emplace(srcBindingPoint, dstBindingPoint);
}
// Declaring a read-only storage buffer in HLSL but specifying a
// storage buffer in the BGL produces the wrong output.
// Force read-only storage buffer bindings to be treated as UAV
// instead of SRV.
// Internal storage buffer is a storage buffer used in the internal pipeline.
const bool forceStorageBufferAsUAV =
(bindingInfo.buffer.type == wgpu::BufferBindingType::ReadOnlyStorage &&
(bgl->GetBindingInfo(bindingIndex).buffer.type ==
wgpu::BufferBindingType::Storage ||
bgl->GetBindingInfo(bindingIndex).buffer.type ==
kInternalStorageBufferBinding));
if (forceStorageBufferAsUAV) {
accessControls.emplace(srcBindingPoint, tint::ast::Access::kReadWrite);
}
}
}
std::ostringstream errorStream;
errorStream << "Tint HLSL failure:" << std::endl;
tint::transform::Manager transformManager;
tint::transform::DataMap transformInputs;
if (GetDevice()->IsRobustnessEnabled()) {
transformManager.Add<tint::transform::BoundArrayAccessors>();
}
transformManager.Add<tint::transform::BindingRemapper>();
// The FirstIndexOffset transform must be done after the BindingRemapper because it assumes
// that the register space has already flattened (and uses the next register). Otherwise
// intermediate ASTs can be produced where the extra registers conflict with one of the
// user-declared bind points.
if (stage == SingleShaderStage::Vertex) {
transformManager.Add<tint::transform::FirstIndexOffset>();
transformInputs.Add<tint::transform::FirstIndexOffset::BindingPoint>(
layout->GetFirstIndexOffsetShaderRegister(),
layout->GetFirstIndexOffsetRegisterSpace());
}
transformManager.Add<tint::transform::Renamer>();
if (GetDevice()->IsToggleEnabled(Toggle::DisableSymbolRenaming)) {
// We still need to rename HLSL reserved keywords
transformInputs.Add<tint::transform::Renamer::Config>(
tint::transform::Renamer::Target::kHlslKeywords);
}
// D3D12 registers like `t3` and `c3` have the same bindingOffset number in the
// remapping but should not be considered a collision because they have different types.
const bool mayCollide = true;
transformInputs.Add<BindingRemapper::Remappings>(std::move(bindingPoints),
std::move(accessControls), mayCollide);
tint::Program program;
tint::transform::DataMap transformOutputs;
DAWN_TRY_ASSIGN(program, RunTransforms(&transformManager, GetTintProgram(), transformInputs,
&transformOutputs, nullptr));
if (auto* data = transformOutputs.Get<tint::transform::FirstIndexOffset::Data>()) {
firstOffsetInfo->usesVertexIndex = data->has_vertex_index;
if (firstOffsetInfo->usesVertexIndex) {
firstOffsetInfo->vertexIndexOffset = data->first_vertex_offset;
}
firstOffsetInfo->usesInstanceIndex = data->has_instance_index;
if (firstOffsetInfo->usesInstanceIndex) {
firstOffsetInfo->instanceIndexOffset = data->first_instance_offset;
}
}
if (auto* data = transformOutputs.Get<tint::transform::Renamer::Data>()) {
auto it = data->remappings.find(entryPointName);
if (it != data->remappings.end()) {
*remappedEntryPointName = it->second;
} else {
if (GetDevice()->IsToggleEnabled(Toggle::DisableSymbolRenaming)) {
*remappedEntryPointName = entryPointName;
} else {
return DAWN_VALIDATION_ERROR("Could not find remapped name for entry point.");
}
}
} else {
return DAWN_VALIDATION_ERROR("Transform output missing renamer data.");
}
tint::writer::hlsl::Options options;
options.disable_workgroup_init = GetDevice()->IsToggleEnabled(Toggle::DisableWorkgroupInit);
auto result = tint::writer::hlsl::Generate(&program, options);
if (!result.success) {
errorStream << "Generator: " << result.error << std::endl;
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
return std::move(result.hlsl);
}
ResultOrError<CompiledShader> ShaderModule::Compile(const char* entryPointName,
SingleShaderStage stage,
PipelineLayout* layout,
uint32_t compileFlags) {
Device* device = ToBackend(GetDevice());
// Compile the source shader to HLSL.
std::string hlslSource;
std::string remappedEntryPoint;
CompiledShader compiledShader = {};
DAWN_TRY_ASSIGN(hlslSource,
TranslateToHLSL(entryPointName, stage, layout, &remappedEntryPoint,
&compiledShader.firstOffsetInfo));
entryPointName = remappedEntryPoint.c_str();
if (device->IsToggleEnabled(Toggle::DumpShaders)) {
std::ostringstream dumpedMsg;
dumpedMsg << "/* Dumped generated HLSL */" << std::endl << hlslSource;
GetDevice()->EmitLog(WGPULoggingType_Info, dumpedMsg.str().c_str());
}
// Use HLSL source as the input for the key since it does need to know about the pipeline
// layout. The pipeline layout is only required if we key from WGSL: two different pipeline
// layouts could be used to produce different shader blobs and the wrong shader blob could
// be loaded since the pipeline layout was missing from the key.
// The compiler flags or version used could also produce different HLSL source. HLSL key
// needs both to ensure the shader cache key is unique to the HLSL source.
// TODO(dawn:549): Consider keying from WGSL and serialize the pipeline layout it used.
PersistentCacheKey shaderCacheKey;
DAWN_TRY_ASSIGN(shaderCacheKey,
CreateHLSLKey(entryPointName, stage, hlslSource, compileFlags));
DAWN_TRY_ASSIGN(compiledShader.cachedShader,
device->GetPersistentCache()->GetOrCreate(
shaderCacheKey, [&](auto doCache) -> MaybeError {
if (device->IsToggleEnabled(Toggle::UseDXC)) {
DAWN_TRY_ASSIGN(compiledShader.compiledDXCShader,
CompileShaderDXC(device, stage, hlslSource,
entryPointName, compileFlags));
} else {
DAWN_TRY_ASSIGN(compiledShader.compiledFXCShader,
CompileShaderFXC(device, stage, hlslSource,
entryPointName, compileFlags));
}
const D3D12_SHADER_BYTECODE shader =
compiledShader.GetD3D12ShaderBytecode();
doCache(shader.pShaderBytecode, shader.BytecodeLength);
return {};
}));
return std::move(compiledShader);
}
D3D12_SHADER_BYTECODE CompiledShader::GetD3D12ShaderBytecode() const {
if (cachedShader.buffer != nullptr) {
return {cachedShader.buffer.get(), cachedShader.bufferSize};
} else if (compiledFXCShader != nullptr) {
return {compiledFXCShader->GetBufferPointer(), compiledFXCShader->GetBufferSize()};
} else if (compiledDXCShader != nullptr) {
return {compiledDXCShader->GetBufferPointer(), compiledDXCShader->GetBufferSize()};
}
UNREACHABLE();
return {};
}
ResultOrError<PersistentCacheKey> ShaderModule::CreateHLSLKey(const char* entryPointName,
SingleShaderStage stage,
const std::string& hlslSource,
uint32_t compileFlags) const {
std::stringstream stream;
// Prefix the key with the type to avoid collisions from another type that could have the
// same key.
stream << static_cast<uint32_t>(PersistentKeyType::Shader);
// Provide "guard" strings that the user cannot provide to help ensure the generated HLSL
// used to create this key is not being manufactured by the user to load the wrong shader
// blob.
// These strings can be HLSL comments because Tint does not emit HLSL comments.
// TODO(dawn:549): Replace guards strings with something more secure.
constexpr char kStartGuard[] = "// Start shader autogenerated by Dawn.";
constexpr char kEndGuard[] = "// End shader autogenerated by Dawn.";
ASSERT(hlslSource.find(kStartGuard) == std::string::npos);
ASSERT(hlslSource.find(kEndGuard) == std::string::npos);
stream << kStartGuard << "\n";
stream << hlslSource;
stream << "\n" << kEndGuard;
stream << compileFlags;
// Add the HLSL compiler version for good measure.
// Prepend the compiler name to ensure the version is always unique.
if (GetDevice()->IsToggleEnabled(Toggle::UseDXC)) {
uint64_t dxCompilerVersion;
DAWN_TRY_ASSIGN(dxCompilerVersion, GetDXCompilerVersion());
stream << "DXC" << dxCompilerVersion;
} else {
stream << "FXC" << GetD3DCompilerVersion();
}
// If the source contains multiple entry points, ensure they are cached seperately
// per stage since DX shader code can only be compiled per stage using the same
// entry point.
stream << static_cast<uint32_t>(stage);
stream << entryPointName;
return PersistentCacheKey(std::istreambuf_iterator<char>{stream},
std::istreambuf_iterator<char>{});
}
ResultOrError<uint64_t> ShaderModule::GetDXCompilerVersion() const {
ComPtr<IDxcValidator> dxcValidator = ToBackend(GetDevice())->GetDxcValidator();
ComPtr<IDxcVersionInfo> versionInfo;
DAWN_TRY(CheckHRESULT(dxcValidator.As(&versionInfo),
"D3D12 QueryInterface IDxcValidator to IDxcVersionInfo"));
uint32_t compilerMajor, compilerMinor;
DAWN_TRY(CheckHRESULT(versionInfo->GetVersion(&compilerMajor, &compilerMinor),
"IDxcVersionInfo::GetVersion"));
// Pack both into a single version number.
return (uint64_t(compilerMajor) << uint64_t(32)) + compilerMinor;
}
uint64_t ShaderModule::GetD3DCompilerVersion() const {
return D3D_COMPILER_VERSION;
}
}} // namespace dawn_native::d3d12