blob: 64353c44fb394a1abe716294bc8c778bd4ac1c11 [file] [log] [blame] [edit]
// Copyright 2021 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/perf_tests/DawnPerfTest.h"
#include "utils/WGPUHelpers.h"
namespace {
constexpr uint32_t kTileSize = 32u;
const std::string& kMatMulFloatHeader = R"(
struct Uniforms {
dimAOuter : u32;
dimInner : u32;
dimBOuter : u32;
};
struct Matrix {
numbers: array<f32>;
};
[[group(0), binding(0)]] var<storage, read> firstMatrix : Matrix;
[[group(0), binding(1)]] var<storage, read> secondMatrix : Matrix;
[[group(0), binding(2)]] var<storage, write> resultMatrix : Matrix;
[[group(0), binding(3)]] var<uniform> uniforms : Uniforms;
fn mm_readA(row : u32, col : u32) -> f32 {
if (row < uniforms.dimAOuter && col < uniforms.dimInner)
{
let result : f32 = firstMatrix.numbers[row * uniforms.dimInner + col];
return result;
}
return 0.;
}
fn mm_readB(row : u32, col : u32) -> f32 {
if (row < uniforms.dimInner && col < uniforms.dimBOuter)
{
let result : f32 = secondMatrix.numbers[row * uniforms.dimBOuter + col];
return result;
}
return 0.;
}
fn mm_write(row : u32, col : u32, value : f32) {
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
let index : u32 = col + row * uniforms.dimBOuter;
resultMatrix.numbers[index] = value;
}
}
let RowPerThread : u32 = 4u;
let ColPerThread : u32 = 4u;
let TileAOuter : u32 = 32u;
let TileBOuter : u32 = 32u;
let TileInner : u32 = 32u;)";
const std::string& kMatMulFloatSharedArray1D = R"(
var<workgroup> mm_Asub : array<f32, 1024>;
var<workgroup> mm_Bsub : array<f32, 1024>;)";
const std::string& kMatMulFloatSharedArray2D = R"(
var<workgroup> mm_Asub : array<array<f32, 32>, 32>;
var<workgroup> mm_Bsub : array<array<f32, 32>, 32>;)";
const std::string& kMatMulFloatBodyPart1 = R"(
[[stage(compute), workgroup_size(8, 8, 1)]]
fn main([[builtin(local_invocation_id)]] local_id : vec3<u32>,
[[builtin(global_invocation_id)]] global_id : vec3<u32>) {
let tileRow : u32 = local_id.y * RowPerThread;
let tileCol : u32 = local_id.x * ColPerThread;
let globalRow : u32 = global_id.y * RowPerThread;
let globalCol : u32 = global_id.x * ColPerThread;
let numTiles : u32 = (uniforms.dimInner - 1u) / TileInner + 1u;
var acc: array<f32, 16>;
var ACached : f32;
var BCached : array<f32, 4>;
// Without this initialization strange values show up in acc.
// TODO: Remove it once the following bug is fixed.
// https://bugs.chromium.org/p/tint/issues/detail?id=759
for (var index : u32 = 0u; index < RowPerThread * ColPerThread; index = index + 1u) {
acc[index] = 0.;
}
let ColPerThreadA : u32 = TileInner / 8u;
let tileColA : u32 = local_id.x * ColPerThreadA;
let RowPerThreadB : u32 = TileInner / 8u;
let tileRowB : u32 = local_id.y * RowPerThreadB;
// Loop over shared dimension.
for (var t : u32 = 0u; t < numTiles; t = t + 1u) {
// Load one tile of A into local memory.
for (var innerRow : u32 = 0u; innerRow < RowPerThread; innerRow = innerRow + 1u) {
for (var innerCol : u32 = 0u; innerCol < ColPerThreadA; innerCol = innerCol + 1u) {
let inputRow : u32 = tileRow + innerRow;
let inputCol : u32 = tileColA + innerCol;)";
const std::string& kMatMulFloatBodyPart2Array1D = R"(
let index : u32 = inputRow * TileInner + inputCol;
mm_Asub[index] = mm_readA(globalRow + innerRow, t * TileInner + inputCol);
}
}
// Load one tile of B into local memory.
for (var innerRow : u32 = 0u; innerRow < RowPerThreadB; innerRow = innerRow + 1u) {
for (var innerCol : u32 = 0u; innerCol < ColPerThread; innerCol = innerCol + 1u) {
let inputRow : u32 = tileRowB + innerRow;
let inputCol : u32 = tileCol + innerCol;
let index : u32 = inputRow * TileBOuter + inputCol;
mm_Bsub[index] = mm_readB(t * TileInner + inputRow, globalCol + innerCol);;
}
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k : u32 = 0u; k < TileInner; k = k + 1u) {
for (var inner : u32 = 0u; inner < ColPerThread; inner = inner + 1u) {
BCached[inner] = mm_Bsub[k * TileBOuter + tileCol + inner];
}
for (var innerRow : u32 = 0u; innerRow < RowPerThread; innerRow = innerRow + 1u) {
ACached = mm_Asub[(tileRow + innerRow) * TileInner + k];)";
const std::string& kMatMulFloatBodyPart2Array2D = R"(
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, t * TileInner + inputCol);
}
}
// Load one tile of B into local memory.
for (var innerRow : u32 = 0u; innerRow < RowPerThreadB; innerRow = innerRow + 1u) {
for (var innerCol : u32 = 0u; innerCol < ColPerThread; innerCol = innerCol + 1u) {
let inputRow : u32 = tileRowB + innerRow;
let inputCol : u32 = tileCol + innerCol;
mm_Bsub[innerCol][inputCol] = mm_readB(t * TileInner + inputRow, globalCol + innerCol);;
}
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k : u32 = 0u; k < TileInner; k = k + 1u) {
for (var inner : u32 = 0u; inner < ColPerThread; inner = inner + 1u) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow : u32 = 0u; innerRow < RowPerThread; innerRow = innerRow + 1u) {
ACached = mm_Asub[tileRow + innerRow][k];)";
const std::string& kMatMulFloatBodyPart3 = R"(
for (var innerCol : u32 = 0u; innerCol < ColPerThread; innerCol = innerCol + 1u) {
let index : u32 = innerRow * ColPerThread + innerCol;
acc[index] = acc[index] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow : u32 = 0u; innerRow < RowPerThread; innerRow = innerRow + 1u) {
for (var innerCol : u32 = 0u; innerCol < ColPerThread; innerCol = innerCol + 1u) {
let index : u32 = innerRow * ColPerThread + innerCol;
mm_write(globalRow + innerRow,
globalCol + innerCol,
acc[index]);
}
}
})";
const std::string& kMatMulFloatOneDimensionalSharedArray =
kMatMulFloatHeader + kMatMulFloatSharedArray1D + kMatMulFloatBodyPart1 +
kMatMulFloatBodyPart2Array1D + kMatMulFloatBodyPart3;
const std::string& kMatMulFloatTwoDimensionalSharedArray =
kMatMulFloatHeader + kMatMulFloatSharedArray2D + kMatMulFloatBodyPart1 +
kMatMulFloatBodyPart2Array2D + kMatMulFloatBodyPart3;
// The vec4 version requires that dimInner and dimBOuter are divisible by 4.
const std::string& kMatMulVec4Header = R"(
struct Uniforms {
dimAOuter : u32;
dimInner : u32;
dimBOuter : u32;
};
struct Matrix {
numbers: array<vec4<f32>>;
};
[[group(0), binding(0)]] var<storage, read> firstMatrix : Matrix;
[[group(0), binding(1)]] var<storage, read> secondMatrix : Matrix;
[[group(0), binding(2)]] var<storage, write> resultMatrix : Matrix;
[[group(0), binding(3)]] var<uniform> uniforms : Uniforms;
fn mm_readA(row : u32, col : u32) -> vec4<f32> {
if (row < uniforms.dimAOuter && col < uniforms.dimInner)
{
let result : vec4<f32> = firstMatrix.numbers[row * uniforms.dimInner / 4u + col];
return result;
}
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
}
fn mm_readB(row : u32, col : u32) -> vec4<f32> {
if (row < uniforms.dimInner && col < uniforms.dimBOuter)
{
let result : vec4<f32> = secondMatrix.numbers[row * uniforms.dimBOuter / 4u + col];
return result;
}
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
}
fn mm_write(row : u32, col : u32, value : vec4<f32>) {
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
let index : u32 = col + row * uniforms.dimBOuter / 4u;
resultMatrix.numbers[index] = value;
}
}
let RowPerThread : u32 = 4u;
let ColPerThread : u32 = 4u;
let TileOuter : u32 = 32u;
let TileInner : u32 = 32u;)";
const std::string& kMatMulVec4SharedArray1D = R"(
var<workgroup> mm_Asub : array<vec4<f32>, 256>;
var<workgroup> mm_Bsub : array<vec4<f32>, 256>;)";
const std::string& kMatMulVec4SharedArray2D = R"(
var<workgroup> mm_Asub : array<array<vec4<f32>, 8>, 32>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, 8>, 32>;)";
const std::string& kMatMulVec4BodyPart1 = R"(
[[stage(compute), workgroup_size(8, 8, 1)]]
fn main([[builtin(local_invocation_id)]] local_id : vec3<u32>,
[[builtin(global_invocation_id)]] global_id : vec3<u32>) {
let tileRow : u32 = local_id.y * RowPerThread;
let tileCol : u32 = local_id.x;
let globalRow : u32 = global_id.y * RowPerThread;
let globalCol : u32 = global_id.x;
let numTiles : u32 = (uniforms.dimInner - 1u) / TileInner + 1u;
var acc: array<vec4<f32>, 4>;
var ACached : vec4<f32>;
var BCached : array<vec4<f32>, 4>;
// Without this initialization strange values show up in acc.
// TODO: Remove it once the following bug is fixed.
// https://bugs.chromium.org/p/tint/issues/detail?id=759
for (var index : u32 = 0u; index < RowPerThread; index = index + 1u) {
acc[index] = vec4<f32>(0.0, 0.0, 0.0, 0.0);
}
var globalColA : u32 = tileCol;
let RowPerThreadB : u32 = TileInner / 8u;
let tileRowB : u32 = local_id.y * RowPerThreadB;
// Loop over shared dimension.
for (var t : u32 = 0u; t < numTiles; t = t + 1u) {
// Load one tile of A into local memory.
for (var innerRow : u32 = 0u; innerRow < RowPerThread; innerRow = innerRow + 1u) {
let inputRow : u32 = tileRow + innerRow;
let inputCol : u32 = tileCol;)";
const std::string& kMatMulVec4BodyPart2Array1D = R"(
let index : u32 = inputRow * TileInner / ColPerThread + inputCol;
mm_Asub[index] = mm_readA(globalRow + innerRow, globalColA);
}
globalColA = globalColA + TileInner / ColPerThread;
// Load one tile of B into local memory.
for (var innerRow : u32 = 0u; innerRow < RowPerThreadB; innerRow = innerRow + 1u) {
let inputRow : u32 = tileRowB + innerRow;
let inputCol : u32 = tileCol;
let index : u32 = inputRow * TileOuter / ColPerThread + inputCol;
mm_Bsub[index] = mm_readB(t * TileInner + inputRow, globalCol);;
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k : u32 = 0u; k < TileInner / ColPerThread; k = k + 1u) {
BCached[0] = mm_Bsub[(k * ColPerThread) * (TileOuter / ColPerThread) + tileCol];
BCached[1] = mm_Bsub[(k * ColPerThread + 1u) * (TileOuter / ColPerThread) + tileCol];
BCached[2] = mm_Bsub[(k * ColPerThread + 2u) * (TileOuter / ColPerThread) + tileCol];
BCached[3] = mm_Bsub[(k * ColPerThread + 3u) * (TileOuter / ColPerThread) + tileCol];
for (var i : u32 = 0u; i < RowPerThread; i = i + 1u) {
ACached = mm_Asub[(tileRow + i) * (TileInner / ColPerThread) + k];)";
const std::string& kMatMulVec4BodyPart2Array2D = R"(
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA);
}
globalColA = globalColA + TileInner / ColPerThread;
// Load one tile of B into local memory.
for (var innerRow : u32 = 0u; innerRow < RowPerThreadB; innerRow = innerRow + 1u) {
let inputRow : u32 = tileRowB + innerRow;
let inputCol : u32 = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol);;
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k : u32 = 0u; k < TileInner / ColPerThread; k = k + 1u) {
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
BCached[1] = mm_Bsub[k * ColPerThread + 1u][tileCol];
BCached[2] = mm_Bsub[k * ColPerThread + 2u][tileCol];
BCached[3] = mm_Bsub[k * ColPerThread + 3u][tileCol];
for (var i : u32 = 0u; i < RowPerThread; i = i + 1u) {
ACached = mm_Asub[tileRow + i][k];)";
const std::string& kMatMulVec4BodyPart3 = R"(
acc[i] = BCached[0] * ACached.x + acc[i];
acc[i] = BCached[1] * ACached.y + acc[i];
acc[i] = BCached[2] * ACached.z + acc[i];
acc[i] = BCached[3] * ACached.w + acc[i];
}
}
workgroupBarrier();
}
for (var innerRow : u32 = 0u; innerRow < RowPerThread; innerRow = innerRow + 1u) {
mm_write(globalRow + innerRow,
globalCol,
acc[innerRow]);
}
})";
const std::string& kMatMulVec4OneDimensionalSharedArray =
kMatMulVec4Header + kMatMulVec4SharedArray1D + kMatMulVec4BodyPart1 +
kMatMulVec4BodyPart2Array1D + kMatMulVec4BodyPart3;
const std::string& kMatMulVec4TwoDimensionalSharedArray =
kMatMulVec4Header + kMatMulVec4SharedArray2D + kMatMulVec4BodyPart1 +
kMatMulVec4BodyPart2Array2D + kMatMulVec4BodyPart3;
constexpr unsigned int kNumIterations = 50;
enum class MatMulMethod {
MatMulFloatOneDimSharedArray,
MatMulFloatTwoDimSharedArray,
MatMulVec4OneDimSharedArray,
MatMulVec4TwoDimSharedArray
};
std::ostream& operator<<(std::ostream& ostream, const MatMulMethod& matMulMethod) {
switch (matMulMethod) {
case MatMulMethod::MatMulFloatOneDimSharedArray:
ostream << "MatMulFloatOneDimSharedArray";
break;
case MatMulMethod::MatMulFloatTwoDimSharedArray:
ostream << "MatMulFloatTwoDimSharedArray";
break;
case MatMulMethod::MatMulVec4OneDimSharedArray:
ostream << "MatMulVec4OneDimSharedArray";
break;
case MatMulMethod::MatMulVec4TwoDimSharedArray:
ostream << "MatMulVec4TwoDimSharedArray";
break;
}
return ostream;
}
using DimAOuter = uint32_t;
using DimInner = uint32_t;
using DimBOuter = uint32_t;
DAWN_TEST_PARAM_STRUCT(ShaderRobustnessParams, MatMulMethod, DimAOuter, DimInner, DimBOuter);
} // namespace
// Test the execution time of matrix multiplication (A [dimAOuter, dimInner] * B [dimInner,
// dimBOuter]) on the GPU and see the difference between robustness on and off.
class ShaderRobustnessPerf : public DawnPerfTestWithParams<ShaderRobustnessParams> {
public:
ShaderRobustnessPerf()
: DawnPerfTestWithParams(kNumIterations, 1),
mDimAOuter(GetParam().mDimAOuter),
mDimInner(GetParam().mDimInner),
mDimBOuter(GetParam().mDimBOuter) {
}
~ShaderRobustnessPerf() override = default;
void SetUp() override;
private:
void Step() override;
wgpu::BindGroup mBindGroup;
wgpu::ComputePipeline mPipeline;
uint32_t mDimAOuter;
uint32_t mDimInner;
uint32_t mDimBOuter;
};
void ShaderRobustnessPerf::SetUp() {
DawnPerfTestWithParams<ShaderRobustnessParams>::SetUp();
// TODO(crbug.com/dawn/786): D3D12_Microsoft_Basic_Render_Driver_CPU
DAWN_SUPPRESS_TEST_IF(IsD3D12() && IsWARP());
// TODO(crbug.com/dawn/945): Generation via SPIRV-Cross fails
DAWN_SUPPRESS_TEST_IF(IsOpenGL());
const size_t dataASize = mDimAOuter * mDimInner;
std::vector<float> dataA(dataASize);
uint64_t byteASize = sizeof(float) * dataA.size();
// It's ok to use all zeros to do the matrix multiplication for performance test.
wgpu::Buffer bufA =
utils::CreateBufferFromData(device, dataA.data(), byteASize, wgpu::BufferUsage::Storage);
const size_t dataBSize = mDimInner * mDimBOuter;
std::vector<float> dataB(dataBSize);
uint64_t byteBSize = sizeof(float) * dataB.size();
wgpu::Buffer bufB =
utils::CreateBufferFromData(device, dataB.data(), byteBSize, wgpu::BufferUsage::Storage);
uint64_t byteDstSize = sizeof(float) * mDimAOuter * mDimBOuter;
wgpu::BufferDescriptor desc = {};
desc.usage = wgpu::BufferUsage::Storage;
desc.size = byteDstSize;
wgpu::Buffer dst = device.CreateBuffer(&desc);
uint32_t uniformData[] = {mDimAOuter, mDimInner, mDimBOuter};
wgpu::Buffer uniformBuffer = utils::CreateBufferFromData(
device, uniformData, sizeof(uniformData), wgpu::BufferUsage::Uniform);
wgpu::ShaderModule module;
switch (GetParam().mMatMulMethod) {
case MatMulMethod::MatMulFloatOneDimSharedArray: {
module =
utils::CreateShaderModule(device, kMatMulFloatOneDimensionalSharedArray.c_str());
break;
}
case MatMulMethod::MatMulFloatTwoDimSharedArray: {
module =
utils::CreateShaderModule(device, kMatMulFloatTwoDimensionalSharedArray.c_str());
break;
}
case MatMulMethod::MatMulVec4OneDimSharedArray: {
module =
utils::CreateShaderModule(device, kMatMulVec4OneDimensionalSharedArray.c_str());
break;
}
case MatMulMethod::MatMulVec4TwoDimSharedArray: {
module =
utils::CreateShaderModule(device, kMatMulVec4TwoDimensionalSharedArray.c_str());
break;
}
}
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = module;
csDesc.compute.entryPoint = "main";
mPipeline = device.CreateComputePipeline(&csDesc);
mBindGroup = utils::MakeBindGroup(device, mPipeline.GetBindGroupLayout(0),
{
{0, bufA, 0, byteASize},
{1, bufB, 0, byteBSize},
{2, dst, 0, byteDstSize},
{3, uniformBuffer, 0, sizeof(uniformData)},
});
}
void ShaderRobustnessPerf::Step() {
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(mPipeline);
pass.SetBindGroup(0, mBindGroup);
for (unsigned int i = 0; i < kNumIterations; ++i) {
pass.Dispatch(ceil(float(mDimBOuter) / float(kTileSize)),
ceil(float(mDimAOuter) / float(kTileSize)), 1);
}
pass.EndPass();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
}
TEST_P(ShaderRobustnessPerf, Run) {
RunTest();
}
DAWN_INSTANTIATE_TEST_P(ShaderRobustnessPerf,
{D3D12Backend(), D3D12Backend({"disable_robustness"}, {}), MetalBackend(),
MetalBackend({"disable_robustness"}, {}), OpenGLBackend(),
OpenGLBackend({"disable_robustness"}, {}), VulkanBackend(),
VulkanBackend({"disable_robustness"}, {})},
{MatMulMethod::MatMulFloatOneDimSharedArray,
MatMulMethod::MatMulFloatTwoDimSharedArray,
MatMulMethod::MatMulVec4OneDimSharedArray,
MatMulMethod::MatMulVec4TwoDimSharedArray},
{512u},
{512u},
{512u});