blob: 3beb34850b36ac7895f72c4d71153f4b78c9d478 [file] [log] [blame] [edit]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn/native/ShaderModule.h"
#include "absl/strings/str_format.h"
#include "dawn/common/BitSetIterator.h"
#include "dawn/common/Constants.h"
#include "dawn/common/HashUtils.h"
#include "dawn/native/BindGroupLayout.h"
#include "dawn/native/ChainUtils_autogen.h"
#include "dawn/native/CompilationMessages.h"
#include "dawn/native/Device.h"
#include "dawn/native/ObjectContentHasher.h"
#include "dawn/native/Pipeline.h"
#include "dawn/native/PipelineLayout.h"
#include "dawn/native/RenderPipeline.h"
#include "dawn/native/TintUtils.h"
#include <tint/tint.h>
#include <sstream>
namespace dawn::native {
namespace {
tint::transform::VertexFormat ToTintVertexFormat(wgpu::VertexFormat format) {
switch (format) {
case wgpu::VertexFormat::Uint8x2:
return tint::transform::VertexFormat::kUint8x2;
case wgpu::VertexFormat::Uint8x4:
return tint::transform::VertexFormat::kUint8x4;
case wgpu::VertexFormat::Sint8x2:
return tint::transform::VertexFormat::kSint8x2;
case wgpu::VertexFormat::Sint8x4:
return tint::transform::VertexFormat::kSint8x4;
case wgpu::VertexFormat::Unorm8x2:
return tint::transform::VertexFormat::kUnorm8x2;
case wgpu::VertexFormat::Unorm8x4:
return tint::transform::VertexFormat::kUnorm8x4;
case wgpu::VertexFormat::Snorm8x2:
return tint::transform::VertexFormat::kSnorm8x2;
case wgpu::VertexFormat::Snorm8x4:
return tint::transform::VertexFormat::kSnorm8x4;
case wgpu::VertexFormat::Uint16x2:
return tint::transform::VertexFormat::kUint16x2;
case wgpu::VertexFormat::Uint16x4:
return tint::transform::VertexFormat::kUint16x4;
case wgpu::VertexFormat::Sint16x2:
return tint::transform::VertexFormat::kSint16x2;
case wgpu::VertexFormat::Sint16x4:
return tint::transform::VertexFormat::kSint16x4;
case wgpu::VertexFormat::Unorm16x2:
return tint::transform::VertexFormat::kUnorm16x2;
case wgpu::VertexFormat::Unorm16x4:
return tint::transform::VertexFormat::kUnorm16x4;
case wgpu::VertexFormat::Snorm16x2:
return tint::transform::VertexFormat::kSnorm16x2;
case wgpu::VertexFormat::Snorm16x4:
return tint::transform::VertexFormat::kSnorm16x4;
case wgpu::VertexFormat::Float16x2:
return tint::transform::VertexFormat::kFloat16x2;
case wgpu::VertexFormat::Float16x4:
return tint::transform::VertexFormat::kFloat16x4;
case wgpu::VertexFormat::Float32:
return tint::transform::VertexFormat::kFloat32;
case wgpu::VertexFormat::Float32x2:
return tint::transform::VertexFormat::kFloat32x2;
case wgpu::VertexFormat::Float32x3:
return tint::transform::VertexFormat::kFloat32x3;
case wgpu::VertexFormat::Float32x4:
return tint::transform::VertexFormat::kFloat32x4;
case wgpu::VertexFormat::Uint32:
return tint::transform::VertexFormat::kUint32;
case wgpu::VertexFormat::Uint32x2:
return tint::transform::VertexFormat::kUint32x2;
case wgpu::VertexFormat::Uint32x3:
return tint::transform::VertexFormat::kUint32x3;
case wgpu::VertexFormat::Uint32x4:
return tint::transform::VertexFormat::kUint32x4;
case wgpu::VertexFormat::Sint32:
return tint::transform::VertexFormat::kSint32;
case wgpu::VertexFormat::Sint32x2:
return tint::transform::VertexFormat::kSint32x2;
case wgpu::VertexFormat::Sint32x3:
return tint::transform::VertexFormat::kSint32x3;
case wgpu::VertexFormat::Sint32x4:
return tint::transform::VertexFormat::kSint32x4;
case wgpu::VertexFormat::Undefined:
break;
}
UNREACHABLE();
}
tint::transform::VertexStepMode ToTintVertexStepMode(wgpu::VertexStepMode mode) {
switch (mode) {
case wgpu::VertexStepMode::Vertex:
return tint::transform::VertexStepMode::kVertex;
case wgpu::VertexStepMode::Instance:
return tint::transform::VertexStepMode::kInstance;
}
UNREACHABLE();
}
ResultOrError<SingleShaderStage> TintPipelineStageToShaderStage(
tint::ast::PipelineStage stage) {
switch (stage) {
case tint::ast::PipelineStage::kVertex:
return SingleShaderStage::Vertex;
case tint::ast::PipelineStage::kFragment:
return SingleShaderStage::Fragment;
case tint::ast::PipelineStage::kCompute:
return SingleShaderStage::Compute;
case tint::ast::PipelineStage::kNone:
break;
}
UNREACHABLE();
}
BindingInfoType TintResourceTypeToBindingInfoType(
tint::inspector::ResourceBinding::ResourceType type) {
switch (type) {
case tint::inspector::ResourceBinding::ResourceType::kUniformBuffer:
case tint::inspector::ResourceBinding::ResourceType::kStorageBuffer:
case tint::inspector::ResourceBinding::ResourceType::kReadOnlyStorageBuffer:
return BindingInfoType::Buffer;
case tint::inspector::ResourceBinding::ResourceType::kSampler:
case tint::inspector::ResourceBinding::ResourceType::kComparisonSampler:
return BindingInfoType::Sampler;
case tint::inspector::ResourceBinding::ResourceType::kSampledTexture:
case tint::inspector::ResourceBinding::ResourceType::kMultisampledTexture:
case tint::inspector::ResourceBinding::ResourceType::kDepthTexture:
case tint::inspector::ResourceBinding::ResourceType::kDepthMultisampledTexture:
return BindingInfoType::Texture;
case tint::inspector::ResourceBinding::ResourceType::kWriteOnlyStorageTexture:
return BindingInfoType::StorageTexture;
case tint::inspector::ResourceBinding::ResourceType::kExternalTexture:
return BindingInfoType::ExternalTexture;
default:
UNREACHABLE();
return BindingInfoType::Buffer;
}
}
wgpu::TextureFormat TintImageFormatToTextureFormat(
tint::inspector::ResourceBinding::TexelFormat format) {
switch (format) {
case tint::inspector::ResourceBinding::TexelFormat::kR32Uint:
return wgpu::TextureFormat::R32Uint;
case tint::inspector::ResourceBinding::TexelFormat::kR32Sint:
return wgpu::TextureFormat::R32Sint;
case tint::inspector::ResourceBinding::TexelFormat::kR32Float:
return wgpu::TextureFormat::R32Float;
case tint::inspector::ResourceBinding::TexelFormat::kRgba8Unorm:
return wgpu::TextureFormat::RGBA8Unorm;
case tint::inspector::ResourceBinding::TexelFormat::kRgba8Snorm:
return wgpu::TextureFormat::RGBA8Snorm;
case tint::inspector::ResourceBinding::TexelFormat::kRgba8Uint:
return wgpu::TextureFormat::RGBA8Uint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba8Sint:
return wgpu::TextureFormat::RGBA8Sint;
case tint::inspector::ResourceBinding::TexelFormat::kRg32Uint:
return wgpu::TextureFormat::RG32Uint;
case tint::inspector::ResourceBinding::TexelFormat::kRg32Sint:
return wgpu::TextureFormat::RG32Sint;
case tint::inspector::ResourceBinding::TexelFormat::kRg32Float:
return wgpu::TextureFormat::RG32Float;
case tint::inspector::ResourceBinding::TexelFormat::kRgba16Uint:
return wgpu::TextureFormat::RGBA16Uint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba16Sint:
return wgpu::TextureFormat::RGBA16Sint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba16Float:
return wgpu::TextureFormat::RGBA16Float;
case tint::inspector::ResourceBinding::TexelFormat::kRgba32Uint:
return wgpu::TextureFormat::RGBA32Uint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba32Sint:
return wgpu::TextureFormat::RGBA32Sint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba32Float:
return wgpu::TextureFormat::RGBA32Float;
case tint::inspector::ResourceBinding::TexelFormat::kNone:
return wgpu::TextureFormat::Undefined;
default:
UNREACHABLE();
return wgpu::TextureFormat::Undefined;
}
}
wgpu::TextureViewDimension TintTextureDimensionToTextureViewDimension(
tint::inspector::ResourceBinding::TextureDimension dim) {
switch (dim) {
case tint::inspector::ResourceBinding::TextureDimension::k1d:
return wgpu::TextureViewDimension::e1D;
case tint::inspector::ResourceBinding::TextureDimension::k2d:
return wgpu::TextureViewDimension::e2D;
case tint::inspector::ResourceBinding::TextureDimension::k2dArray:
return wgpu::TextureViewDimension::e2DArray;
case tint::inspector::ResourceBinding::TextureDimension::k3d:
return wgpu::TextureViewDimension::e3D;
case tint::inspector::ResourceBinding::TextureDimension::kCube:
return wgpu::TextureViewDimension::Cube;
case tint::inspector::ResourceBinding::TextureDimension::kCubeArray:
return wgpu::TextureViewDimension::CubeArray;
case tint::inspector::ResourceBinding::TextureDimension::kNone:
return wgpu::TextureViewDimension::Undefined;
}
UNREACHABLE();
}
SampleTypeBit TintSampledKindToSampleTypeBit(
tint::inspector::ResourceBinding::SampledKind s) {
switch (s) {
case tint::inspector::ResourceBinding::SampledKind::kSInt:
return SampleTypeBit::Sint;
case tint::inspector::ResourceBinding::SampledKind::kUInt:
return SampleTypeBit::Uint;
case tint::inspector::ResourceBinding::SampledKind::kFloat:
return SampleTypeBit::Float | SampleTypeBit::UnfilterableFloat;
case tint::inspector::ResourceBinding::SampledKind::kUnknown:
return SampleTypeBit::None;
}
UNREACHABLE();
}
ResultOrError<wgpu::TextureComponentType> TintComponentTypeToTextureComponentType(
tint::inspector::ComponentType type) {
switch (type) {
case tint::inspector::ComponentType::kFloat:
return wgpu::TextureComponentType::Float;
case tint::inspector::ComponentType::kSInt:
return wgpu::TextureComponentType::Sint;
case tint::inspector::ComponentType::kUInt:
return wgpu::TextureComponentType::Uint;
case tint::inspector::ComponentType::kUnknown:
return DAWN_VALIDATION_ERROR(
"Attempted to convert 'Unknown' component type from Tint");
}
UNREACHABLE();
}
ResultOrError<VertexFormatBaseType> TintComponentTypeToVertexFormatBaseType(
tint::inspector::ComponentType type) {
switch (type) {
case tint::inspector::ComponentType::kFloat:
return VertexFormatBaseType::Float;
case tint::inspector::ComponentType::kSInt:
return VertexFormatBaseType::Sint;
case tint::inspector::ComponentType::kUInt:
return VertexFormatBaseType::Uint;
case tint::inspector::ComponentType::kUnknown:
return DAWN_VALIDATION_ERROR(
"Attempted to convert 'Unknown' component type from Tint");
}
UNREACHABLE();
}
ResultOrError<wgpu::BufferBindingType> TintResourceTypeToBufferBindingType(
tint::inspector::ResourceBinding::ResourceType resource_type) {
switch (resource_type) {
case tint::inspector::ResourceBinding::ResourceType::kUniformBuffer:
return wgpu::BufferBindingType::Uniform;
case tint::inspector::ResourceBinding::ResourceType::kStorageBuffer:
return wgpu::BufferBindingType::Storage;
case tint::inspector::ResourceBinding::ResourceType::kReadOnlyStorageBuffer:
return wgpu::BufferBindingType::ReadOnlyStorage;
default:
return DAWN_VALIDATION_ERROR("Attempted to convert non-buffer resource type");
}
UNREACHABLE();
}
ResultOrError<wgpu::StorageTextureAccess> TintResourceTypeToStorageTextureAccess(
tint::inspector::ResourceBinding::ResourceType resource_type) {
switch (resource_type) {
case tint::inspector::ResourceBinding::ResourceType::kWriteOnlyStorageTexture:
return wgpu::StorageTextureAccess::WriteOnly;
default:
return DAWN_VALIDATION_ERROR(
"Attempted to convert non-storage texture resource type");
}
UNREACHABLE();
}
ResultOrError<InterStageComponentType> TintComponentTypeToInterStageComponentType(
tint::inspector::ComponentType type) {
switch (type) {
case tint::inspector::ComponentType::kFloat:
return InterStageComponentType::Float;
case tint::inspector::ComponentType::kSInt:
return InterStageComponentType::Sint;
case tint::inspector::ComponentType::kUInt:
return InterStageComponentType::Uint;
case tint::inspector::ComponentType::kUnknown:
return DAWN_VALIDATION_ERROR(
"Attempted to convert 'Unknown' component type from Tint");
}
UNREACHABLE();
}
ResultOrError<uint32_t> TintCompositionTypeToInterStageComponentCount(
tint::inspector::CompositionType type) {
switch (type) {
case tint::inspector::CompositionType::kScalar:
return 1u;
case tint::inspector::CompositionType::kVec2:
return 2u;
case tint::inspector::CompositionType::kVec3:
return 3u;
case tint::inspector::CompositionType::kVec4:
return 4u;
case tint::inspector::CompositionType::kUnknown:
return DAWN_VALIDATION_ERROR(
"Attempt to convert 'Unknown' composition type from Tint");
}
UNREACHABLE();
}
ResultOrError<InterpolationType> TintInterpolationTypeToInterpolationType(
tint::inspector::InterpolationType type) {
switch (type) {
case tint::inspector::InterpolationType::kPerspective:
return InterpolationType::Perspective;
case tint::inspector::InterpolationType::kLinear:
return InterpolationType::Linear;
case tint::inspector::InterpolationType::kFlat:
return InterpolationType::Flat;
case tint::inspector::InterpolationType::kUnknown:
return DAWN_VALIDATION_ERROR(
"Attempted to convert 'Unknown' interpolation type from Tint");
}
UNREACHABLE();
}
ResultOrError<InterpolationSampling> TintInterpolationSamplingToInterpolationSamplingType(
tint::inspector::InterpolationSampling type) {
switch (type) {
case tint::inspector::InterpolationSampling::kNone:
return InterpolationSampling::None;
case tint::inspector::InterpolationSampling::kCenter:
return InterpolationSampling::Center;
case tint::inspector::InterpolationSampling::kCentroid:
return InterpolationSampling::Centroid;
case tint::inspector::InterpolationSampling::kSample:
return InterpolationSampling::Sample;
case tint::inspector::InterpolationSampling::kUnknown:
return DAWN_VALIDATION_ERROR(
"Attempted to convert 'Unknown' interpolation sampling type from Tint");
}
UNREACHABLE();
}
EntryPointMetadata::OverridableConstant::Type FromTintOverridableConstantType(
tint::inspector::OverridableConstant::Type type) {
switch (type) {
case tint::inspector::OverridableConstant::Type::kBool:
return EntryPointMetadata::OverridableConstant::Type::Boolean;
case tint::inspector::OverridableConstant::Type::kFloat32:
return EntryPointMetadata::OverridableConstant::Type::Float32;
case tint::inspector::OverridableConstant::Type::kInt32:
return EntryPointMetadata::OverridableConstant::Type::Int32;
case tint::inspector::OverridableConstant::Type::kUint32:
return EntryPointMetadata::OverridableConstant::Type::Uint32;
default:
UNREACHABLE();
}
}
ResultOrError<tint::Program> ParseWGSL(const tint::Source::File* file,
OwnedCompilationMessages* outMessages) {
tint::Program program = tint::reader::wgsl::Parse(file);
if (outMessages != nullptr) {
outMessages->AddMessages(program.Diagnostics());
}
if (!program.IsValid()) {
return DAWN_FORMAT_VALIDATION_ERROR(
"Tint WGSL reader failure:\nParser: %s\nShader:\n%s\n",
program.Diagnostics().str(), file->content.data);
}
return std::move(program);
}
ResultOrError<tint::Program> ParseSPIRV(const std::vector<uint32_t>& spirv,
OwnedCompilationMessages* outMessages) {
tint::Program program = tint::reader::spirv::Parse(spirv);
if (outMessages != nullptr) {
outMessages->AddMessages(program.Diagnostics());
}
if (!program.IsValid()) {
return DAWN_FORMAT_VALIDATION_ERROR("Tint SPIR-V reader failure:\nParser: %s\n",
program.Diagnostics().str());
}
return std::move(program);
}
std::vector<uint64_t> GetBindGroupMinBufferSizes(const BindingGroupInfoMap& shaderBindings,
const BindGroupLayoutBase* layout) {
std::vector<uint64_t> requiredBufferSizes(layout->GetUnverifiedBufferCount());
uint32_t packedIdx = 0;
for (BindingIndex bindingIndex{0}; bindingIndex < layout->GetBufferCount();
++bindingIndex) {
const BindingInfo& bindingInfo = layout->GetBindingInfo(bindingIndex);
if (bindingInfo.buffer.minBindingSize != 0) {
// Skip bindings that have minimum buffer size set in the layout
continue;
}
ASSERT(packedIdx < requiredBufferSizes.size());
const auto& shaderInfo = shaderBindings.find(bindingInfo.binding);
if (shaderInfo != shaderBindings.end()) {
requiredBufferSizes[packedIdx] = shaderInfo->second.buffer.minBindingSize;
} else {
// We have to include buffers if they are included in the bind group's
// packed vector. We don't actually need to check these at draw time, so
// if this is a problem in the future we can optimize it further.
requiredBufferSizes[packedIdx] = 0;
}
++packedIdx;
}
return requiredBufferSizes;
}
MaybeError ValidateCompatibilityOfSingleBindingWithLayout(
const DeviceBase* device,
const BindGroupLayoutBase* layout,
SingleShaderStage entryPointStage,
BindingNumber bindingNumber,
const ShaderBindingInfo& shaderInfo) {
const BindGroupLayoutBase::BindingMap& layoutBindings = layout->GetBindingMap();
// An external texture binding found in the shader will later be expanded into multiple
// bindings at compile time. This expansion will have already happened in the bgl - so
// the shader and bgl will always mismatch at this point. Expansion info is contained in
// the bgl object, so we can still verify the bgl used to have an external texture in
// the slot corresponding to the shader reflection.
if (shaderInfo.bindingType == BindingInfoType::ExternalTexture) {
// If an external texture binding used to exist in the bgl, it will be found as a
// key in the ExternalTextureBindingExpansions map.
ExternalTextureBindingExpansionMap expansions =
layout->GetExternalTextureBindingExpansionMap();
std::map<BindingNumber, dawn_native::ExternalTextureBindingExpansion>::iterator it =
expansions.find(bindingNumber);
// TODO(dawn:563): Provide info about the binding types.
DAWN_INVALID_IF(it == expansions.end(),
"Binding type in the shader (texture_external) doesn't match the "
"type in the layout.");
return {};
}
const auto& bindingIt = layoutBindings.find(bindingNumber);
DAWN_INVALID_IF(bindingIt == layoutBindings.end(), "Binding doesn't exist in %s.",
layout);
BindingIndex bindingIndex(bindingIt->second);
const BindingInfo& layoutInfo = layout->GetBindingInfo(bindingIndex);
// TODO(dawn:563): Provide info about the binding types.
DAWN_INVALID_IF(
layoutInfo.bindingType != shaderInfo.bindingType,
"Binding type (buffer vs. texture vs. sampler vs. external) doesn't match the type "
"in the layout.");
ExternalTextureBindingExpansionMap expansions =
layout->GetExternalTextureBindingExpansionMap();
DAWN_INVALID_IF(expansions.find(bindingNumber) != expansions.end(),
"Binding type (buffer vs. texture vs. sampler vs. external) doesn't "
"match the type in the layout.");
// TODO(dawn:563): Provide info about the visibility.
DAWN_INVALID_IF(
(layoutInfo.visibility & StageBit(entryPointStage)) == 0,
"Entry point's stage is not in the binding visibility in the layout (%s)",
layoutInfo.visibility);
switch (layoutInfo.bindingType) {
case BindingInfoType::Texture: {
DAWN_INVALID_IF(
layoutInfo.texture.multisampled != shaderInfo.texture.multisampled,
"Binding multisampled flag (%u) doesn't match the layout's multisampled "
"flag (%u)",
layoutInfo.texture.multisampled, shaderInfo.texture.multisampled);
// TODO(dawn:563): Provide info about the sample types.
DAWN_INVALID_IF((SampleTypeToSampleTypeBit(layoutInfo.texture.sampleType) &
shaderInfo.texture.compatibleSampleTypes) == 0,
"The sample type in the shader is not compatible with the "
"sample type of the layout.");
DAWN_INVALID_IF(
layoutInfo.texture.viewDimension != shaderInfo.texture.viewDimension,
"The shader's binding dimension (%s) doesn't match the shader's binding "
"dimension (%s).",
layoutInfo.texture.viewDimension, shaderInfo.texture.viewDimension);
break;
}
case BindingInfoType::StorageTexture: {
ASSERT(layoutInfo.storageTexture.format != wgpu::TextureFormat::Undefined);
ASSERT(shaderInfo.storageTexture.format != wgpu::TextureFormat::Undefined);
DAWN_INVALID_IF(
layoutInfo.storageTexture.access != shaderInfo.storageTexture.access,
"The layout's binding access (%s) isn't compatible with the shader's "
"binding access (%s).",
layoutInfo.storageTexture.access, shaderInfo.storageTexture.access);
DAWN_INVALID_IF(
layoutInfo.storageTexture.format != shaderInfo.storageTexture.format,
"The layout's binding format (%s) doesn't match the shader's binding "
"format (%s).",
layoutInfo.storageTexture.format, shaderInfo.storageTexture.format);
DAWN_INVALID_IF(layoutInfo.storageTexture.viewDimension !=
shaderInfo.storageTexture.viewDimension,
"The layout's binding dimension (%s) doesn't match the "
"shader's binding dimension (%s).",
layoutInfo.storageTexture.viewDimension,
shaderInfo.storageTexture.viewDimension);
break;
}
case BindingInfoType::Buffer: {
// Binding mismatch between shader and bind group is invalid. For example, a
// writable binding in the shader with a readonly storage buffer in the bind
// group layout is invalid. For internal usage with internal shaders, a storage
// binding in the shader with an internal storage buffer in the bind group
// layout is also valid.
bool validBindingConversion =
(layoutInfo.buffer.type == kInternalStorageBufferBinding &&
shaderInfo.buffer.type == wgpu::BufferBindingType::Storage);
DAWN_INVALID_IF(
layoutInfo.buffer.type != shaderInfo.buffer.type && !validBindingConversion,
"The buffer type in the shader (%s) is not compatible with the type in the "
"layout (%s).",
shaderInfo.buffer.type, layoutInfo.buffer.type);
DAWN_INVALID_IF(
layoutInfo.buffer.minBindingSize != 0 &&
shaderInfo.buffer.minBindingSize > layoutInfo.buffer.minBindingSize,
"The shader uses more bytes of the buffer (%u) than the layout's "
"minBindingSize (%u).",
shaderInfo.buffer.minBindingSize, layoutInfo.buffer.minBindingSize);
break;
}
case BindingInfoType::Sampler:
DAWN_INVALID_IF(
(layoutInfo.sampler.type == wgpu::SamplerBindingType::Comparison) !=
shaderInfo.sampler.isComparison,
"The sampler type in the shader (comparison: %u) doesn't match the type in "
"the layout (comparison: %u).",
shaderInfo.sampler.isComparison,
layoutInfo.sampler.type == wgpu::SamplerBindingType::Comparison);
break;
case BindingInfoType::ExternalTexture: {
UNREACHABLE();
break;
}
}
return {};
}
MaybeError ValidateCompatibilityWithBindGroupLayout(DeviceBase* device,
BindGroupIndex group,
const EntryPointMetadata& entryPoint,
const BindGroupLayoutBase* layout) {
// Iterate over all bindings used by this group in the shader, and find the
// corresponding binding in the BindGroupLayout, if it exists.
for (const auto& [bindingId, bindingInfo] : entryPoint.bindings[group]) {
DAWN_TRY_CONTEXT(ValidateCompatibilityOfSingleBindingWithLayout(
device, layout, entryPoint.stage, bindingId, bindingInfo),
"validating that the entry-point's declaration for @group(%u) "
"@binding(%u) matches %s",
static_cast<uint32_t>(group), static_cast<uint32_t>(bindingId),
layout);
}
return {};
}
ResultOrError<EntryPointMetadataTable> ReflectShaderUsingTint(
const DeviceBase* device,
const tint::Program* program) {
ASSERT(program->IsValid());
const CombinedLimits& limits = device->GetLimits();
EntryPointMetadataTable result;
tint::inspector::Inspector inspector(program);
auto entryPoints = inspector.GetEntryPoints();
DAWN_INVALID_IF(inspector.has_error(), "Tint Reflection failure: Inspector: %s\n",
inspector.error());
// TODO(dawn:563): use DAWN_TRY_CONTEXT to output the name of the entry point we're
// reflecting.
constexpr uint32_t kMaxInterStageShaderLocation = kMaxInterStageShaderVariables - 1;
for (auto& entryPoint : entryPoints) {
ASSERT(result.count(entryPoint.name) == 0);
auto metadata = std::make_unique<EntryPointMetadata>();
if (!entryPoint.overridable_constants.empty()) {
DAWN_INVALID_IF(device->IsToggleEnabled(Toggle::DisallowUnsafeAPIs),
"Pipeline overridable constants are disallowed because they "
"are partially implemented.");
const auto& name2Id = inspector.GetConstantNameToIdMap();
const auto& id2Scalar = inspector.GetConstantIDs();
for (auto& c : entryPoint.overridable_constants) {
uint32_t id = name2Id.at(c.name);
OverridableConstantScalar defaultValue;
if (c.is_initialized) {
// if it is initialized, the scalar must exist
const auto& scalar = id2Scalar.at(id);
if (scalar.IsBool()) {
defaultValue.b = scalar.AsBool();
} else if (scalar.IsU32()) {
defaultValue.u32 = scalar.AsU32();
} else if (scalar.IsI32()) {
defaultValue.i32 = scalar.AsI32();
} else if (scalar.IsFloat()) {
defaultValue.f32 = scalar.AsFloat();
} else {
UNREACHABLE();
}
}
EntryPointMetadata::OverridableConstant constant = {
id, FromTintOverridableConstantType(c.type), c.is_initialized,
defaultValue};
std::string identifier =
c.is_numeric_id_specified ? std::to_string(constant.id) : c.name;
metadata->overridableConstants[identifier] = constant;
if (!c.is_initialized) {
auto [_, inserted] =
metadata->uninitializedOverridableConstants.emplace(
std::move(identifier));
// The insertion should have taken place
ASSERT(inserted);
} else {
auto [_, inserted] = metadata->initializedOverridableConstants.emplace(
std::move(identifier));
// The insertion should have taken place
ASSERT(inserted);
}
}
}
DAWN_TRY_ASSIGN(metadata->stage, TintPipelineStageToShaderStage(entryPoint.stage));
if (metadata->stage == SingleShaderStage::Compute) {
DAWN_INVALID_IF(
entryPoint.workgroup_size_x > limits.v1.maxComputeWorkgroupSizeX ||
entryPoint.workgroup_size_y > limits.v1.maxComputeWorkgroupSizeY ||
entryPoint.workgroup_size_z > limits.v1.maxComputeWorkgroupSizeZ,
"Entry-point uses workgroup_size(%u, %u, %u) that exceeds the "
"maximum allowed (%u, %u, %u).",
entryPoint.workgroup_size_x, entryPoint.workgroup_size_y,
entryPoint.workgroup_size_z, limits.v1.maxComputeWorkgroupSizeX,
limits.v1.maxComputeWorkgroupSizeY, limits.v1.maxComputeWorkgroupSizeZ);
// Dimensions have already been validated against their individual limits above.
// Cast to uint64_t to avoid overflow in this multiplication.
uint64_t numInvocations = static_cast<uint64_t>(entryPoint.workgroup_size_x) *
entryPoint.workgroup_size_y *
entryPoint.workgroup_size_z;
DAWN_INVALID_IF(numInvocations > limits.v1.maxComputeInvocationsPerWorkgroup,
"The total number of workgroup invocations (%u) exceeds the "
"maximum allowed (%u).",
numInvocations, limits.v1.maxComputeInvocationsPerWorkgroup);
const size_t workgroupStorageSize =
inspector.GetWorkgroupStorageSize(entryPoint.name);
DAWN_INVALID_IF(workgroupStorageSize > limits.v1.maxComputeWorkgroupStorageSize,
"The total use of workgroup storage (%u bytes) is larger than "
"the maximum allowed (%u bytes).",
workgroupStorageSize, limits.v1.maxComputeWorkgroupStorageSize);
metadata->localWorkgroupSize.x = entryPoint.workgroup_size_x;
metadata->localWorkgroupSize.y = entryPoint.workgroup_size_y;
metadata->localWorkgroupSize.z = entryPoint.workgroup_size_z;
metadata->usesNumWorkgroups = entryPoint.num_workgroups_used;
}
if (metadata->stage == SingleShaderStage::Vertex) {
for (const auto& inputVar : entryPoint.input_variables) {
DAWN_INVALID_IF(
!inputVar.has_location_decoration,
"Vertex input variable \"%s\" doesn't have a location decoration.",
inputVar.name);
uint32_t unsanitizedLocation = inputVar.location_decoration;
DAWN_INVALID_IF(unsanitizedLocation >= kMaxVertexAttributes,
"Vertex input variable \"%s\" has a location (%u) that "
"exceeds the maximum (%u)",
inputVar.name, unsanitizedLocation, kMaxVertexAttributes);
VertexAttributeLocation location(static_cast<uint8_t>(unsanitizedLocation));
DAWN_TRY_ASSIGN(
metadata->vertexInputBaseTypes[location],
TintComponentTypeToVertexFormatBaseType(inputVar.component_type));
metadata->usedVertexInputs.set(location);
}
// [[position]] must be declared in a vertex shader but is not exposed as an
// output variable by Tint so we directly add its components to the total.
uint32_t totalInterStageShaderComponents = 4;
for (const auto& outputVar : entryPoint.output_variables) {
DAWN_INVALID_IF(
!outputVar.has_location_decoration,
"Vertex ouput variable \"%s\" doesn't have a location decoration.",
outputVar.name);
uint32_t location = outputVar.location_decoration;
DAWN_INVALID_IF(location > kMaxInterStageShaderLocation,
"Vertex output variable \"%s\" has a location (%u) that "
"exceeds the maximum (%u).",
outputVar.name, location, kMaxInterStageShaderLocation);
metadata->usedInterStageVariables.set(location);
DAWN_TRY_ASSIGN(
metadata->interStageVariables[location].baseType,
TintComponentTypeToInterStageComponentType(outputVar.component_type));
DAWN_TRY_ASSIGN(metadata->interStageVariables[location].componentCount,
TintCompositionTypeToInterStageComponentCount(
outputVar.composition_type));
DAWN_TRY_ASSIGN(
metadata->interStageVariables[location].interpolationType,
TintInterpolationTypeToInterpolationType(outputVar.interpolation_type));
DAWN_TRY_ASSIGN(
metadata->interStageVariables[location].interpolationSampling,
TintInterpolationSamplingToInterpolationSamplingType(
outputVar.interpolation_sampling));
totalInterStageShaderComponents +=
metadata->interStageVariables[location].componentCount;
}
DAWN_INVALID_IF(
totalInterStageShaderComponents > kMaxInterStageShaderComponents,
"Total vertex output components count (%u) exceeds the maximum (%u).",
totalInterStageShaderComponents, kMaxInterStageShaderComponents);
}
if (metadata->stage == SingleShaderStage::Fragment) {
uint32_t totalInterStageShaderComponents = 0;
for (const auto& inputVar : entryPoint.input_variables) {
DAWN_INVALID_IF(
!inputVar.has_location_decoration,
"Fragment input variable \"%s\" doesn't have a location decoration.",
inputVar.name);
uint32_t location = inputVar.location_decoration;
DAWN_INVALID_IF(location > kMaxInterStageShaderLocation,
"Fragment input variable \"%s\" has a location (%u) that "
"exceeds the maximum (%u).",
inputVar.name, location, kMaxInterStageShaderLocation);
metadata->usedInterStageVariables.set(location);
DAWN_TRY_ASSIGN(
metadata->interStageVariables[location].baseType,
TintComponentTypeToInterStageComponentType(inputVar.component_type));
DAWN_TRY_ASSIGN(metadata->interStageVariables[location].componentCount,
TintCompositionTypeToInterStageComponentCount(
inputVar.composition_type));
DAWN_TRY_ASSIGN(
metadata->interStageVariables[location].interpolationType,
TintInterpolationTypeToInterpolationType(inputVar.interpolation_type));
DAWN_TRY_ASSIGN(
metadata->interStageVariables[location].interpolationSampling,
TintInterpolationSamplingToInterpolationSamplingType(
inputVar.interpolation_sampling));
totalInterStageShaderComponents +=
metadata->interStageVariables[location].componentCount;
}
if (entryPoint.front_facing_used) {
totalInterStageShaderComponents += 1;
}
if (entryPoint.input_sample_mask_used) {
totalInterStageShaderComponents += 1;
}
if (entryPoint.sample_index_used) {
totalInterStageShaderComponents += 1;
}
if (entryPoint.input_position_used) {
totalInterStageShaderComponents += 4;
}
DAWN_INVALID_IF(
totalInterStageShaderComponents > kMaxInterStageShaderComponents,
"Total fragment input components count (%u) exceeds the maximum (%u).",
totalInterStageShaderComponents, kMaxInterStageShaderComponents);
for (const auto& outputVar : entryPoint.output_variables) {
DAWN_INVALID_IF(
!outputVar.has_location_decoration,
"Fragment input variable \"%s\" doesn't have a location decoration.",
outputVar.name);
uint32_t unsanitizedAttachment = outputVar.location_decoration;
DAWN_INVALID_IF(unsanitizedAttachment >= kMaxColorAttachments,
"Fragment output variable \"%s\" has a location (%u) that "
"exceeds the maximum (%u).",
outputVar.name, unsanitizedAttachment,
kMaxColorAttachments);
ColorAttachmentIndex attachment(
static_cast<uint8_t>(unsanitizedAttachment));
DAWN_TRY_ASSIGN(
metadata->fragmentOutputVariables[attachment].baseType,
TintComponentTypeToTextureComponentType(outputVar.component_type));
uint32_t componentCount;
DAWN_TRY_ASSIGN(componentCount,
TintCompositionTypeToInterStageComponentCount(
outputVar.composition_type));
// componentCount should be no larger than 4u
ASSERT(componentCount <= 4u);
metadata->fragmentOutputVariables[attachment].componentCount =
componentCount;
metadata->fragmentOutputsWritten.set(attachment);
}
}
for (const tint::inspector::ResourceBinding& resource :
inspector.GetResourceBindings(entryPoint.name)) {
DAWN_INVALID_IF(resource.bind_group >= kMaxBindGroups,
"The entry-point uses a binding with a group decoration (%u) "
"that exceeds the maximum (%u).",
resource.bind_group, kMaxBindGroups);
BindingNumber bindingNumber(resource.binding);
BindGroupIndex bindGroupIndex(resource.bind_group);
DAWN_INVALID_IF(bindingNumber > kMaxBindingNumberTyped,
"Binding number (%u) exceeds the maximum binding number (%u).",
uint32_t(bindingNumber), uint32_t(kMaxBindingNumberTyped));
const auto& [binding, inserted] = metadata->bindings[bindGroupIndex].emplace(
bindingNumber, ShaderBindingInfo{});
DAWN_INVALID_IF(
!inserted,
"Entry-point has a duplicate binding for (group:%u, binding:%u).",
resource.binding, resource.bind_group);
ShaderBindingInfo* info = &binding->second;
info->bindingType = TintResourceTypeToBindingInfoType(resource.resource_type);
switch (info->bindingType) {
case BindingInfoType::Buffer:
info->buffer.minBindingSize = resource.size_no_padding;
DAWN_TRY_ASSIGN(info->buffer.type, TintResourceTypeToBufferBindingType(
resource.resource_type));
break;
case BindingInfoType::Sampler:
switch (resource.resource_type) {
case tint::inspector::ResourceBinding::ResourceType::kSampler:
info->sampler.isComparison = false;
break;
case tint::inspector::ResourceBinding::ResourceType::
kComparisonSampler:
info->sampler.isComparison = true;
break;
default:
UNREACHABLE();
}
break;
case BindingInfoType::Texture:
info->texture.viewDimension =
TintTextureDimensionToTextureViewDimension(resource.dim);
if (resource.resource_type ==
tint::inspector::ResourceBinding::ResourceType::kDepthTexture ||
resource.resource_type ==
tint::inspector::ResourceBinding::ResourceType::
kDepthMultisampledTexture) {
info->texture.compatibleSampleTypes = SampleTypeBit::Depth;
} else {
info->texture.compatibleSampleTypes =
TintSampledKindToSampleTypeBit(resource.sampled_kind);
}
info->texture.multisampled =
resource.resource_type == tint::inspector::ResourceBinding::
ResourceType::kMultisampledTexture ||
resource.resource_type ==
tint::inspector::ResourceBinding::ResourceType::
kDepthMultisampledTexture;
break;
case BindingInfoType::StorageTexture:
DAWN_TRY_ASSIGN(
info->storageTexture.access,
TintResourceTypeToStorageTextureAccess(resource.resource_type));
info->storageTexture.format =
TintImageFormatToTextureFormat(resource.image_format);
info->storageTexture.viewDimension =
TintTextureDimensionToTextureViewDimension(resource.dim);
break;
case BindingInfoType::ExternalTexture:
break;
default:
return DAWN_VALIDATION_ERROR("Unknown binding type in Shader");
}
}
std::vector<tint::inspector::SamplerTexturePair> samplerTextureUses =
inspector.GetSamplerTextureUses(entryPoint.name);
metadata->samplerTexturePairs.reserve(samplerTextureUses.size());
std::transform(
samplerTextureUses.begin(), samplerTextureUses.end(),
std::back_inserter(metadata->samplerTexturePairs),
[](const tint::inspector::SamplerTexturePair& pair) {
EntryPointMetadata::SamplerTexturePair result;
result.sampler = {BindGroupIndex(pair.sampler_binding_point.group),
BindingNumber(pair.sampler_binding_point.binding)};
result.texture = {BindGroupIndex(pair.texture_binding_point.group),
BindingNumber(pair.texture_binding_point.binding)};
return result;
});
result[entryPoint.name] = std::move(metadata);
}
return std::move(result);
}
} // anonymous namespace
ShaderModuleParseResult::ShaderModuleParseResult() = default;
ShaderModuleParseResult::~ShaderModuleParseResult() = default;
ShaderModuleParseResult::ShaderModuleParseResult(ShaderModuleParseResult&& rhs) = default;
ShaderModuleParseResult& ShaderModuleParseResult::operator=(ShaderModuleParseResult&& rhs) =
default;
bool ShaderModuleParseResult::HasParsedShader() const {
return tintProgram != nullptr;
}
// TintSource is a PIMPL container for a tint::Source::File, which needs to be kept alive for as
// long as tint diagnostics are inspected / printed.
class TintSource {
public:
template <typename... ARGS>
TintSource(ARGS&&... args) : file(std::forward<ARGS>(args)...) {
}
tint::Source::File file;
};
MaybeError ValidateShaderModuleDescriptor(DeviceBase* device,
const ShaderModuleDescriptor* descriptor,
ShaderModuleParseResult* parseResult,
OwnedCompilationMessages* outMessages) {
ASSERT(parseResult != nullptr);
const ChainedStruct* chainedDescriptor = descriptor->nextInChain;
DAWN_INVALID_IF(chainedDescriptor == nullptr,
"Shader module descriptor missing chained descriptor");
// For now only a single SPIRV or WGSL subdescriptor is allowed.
DAWN_TRY(ValidateSingleSType(chainedDescriptor, wgpu::SType::ShaderModuleSPIRVDescriptor,
wgpu::SType::ShaderModuleWGSLDescriptor));
ScopedTintICEHandler scopedICEHandler(device);
const ShaderModuleSPIRVDescriptor* spirvDesc = nullptr;
FindInChain(chainedDescriptor, &spirvDesc);
const ShaderModuleWGSLDescriptor* wgslDesc = nullptr;
FindInChain(chainedDescriptor, &wgslDesc);
// We have a temporary toggle to force the SPIRV ingestion to go through a WGSL
// intermediate step. It is done by switching the spirvDesc for a wgslDesc below.
ShaderModuleWGSLDescriptor newWgslDesc;
std::string newWgslCode;
if (spirvDesc && device->IsToggleEnabled(Toggle::ForceWGSLStep)) {
std::vector<uint32_t> spirv(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize);
tint::Program program;
DAWN_TRY_ASSIGN(program, ParseSPIRV(spirv, outMessages));
tint::writer::wgsl::Options options;
auto result = tint::writer::wgsl::Generate(&program, options);
DAWN_INVALID_IF(!result.success, "Tint WGSL failure: Generator: %s", result.error);
newWgslCode = std::move(result.wgsl);
newWgslDesc.source = newWgslCode.c_str();
spirvDesc = nullptr;
wgslDesc = &newWgslDesc;
}
if (spirvDesc) {
DAWN_INVALID_IF(device->IsToggleEnabled(Toggle::DisallowSpirv),
"SPIR-V is disallowed.");
std::vector<uint32_t> spirv(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize);
tint::Program program;
DAWN_TRY_ASSIGN(program, ParseSPIRV(spirv, outMessages));
parseResult->tintProgram = std::make_unique<tint::Program>(std::move(program));
} else if (wgslDesc) {
auto tintSource = std::make_unique<TintSource>("", wgslDesc->source);
if (device->IsToggleEnabled(Toggle::DumpShaders)) {
std::ostringstream dumpedMsg;
dumpedMsg << "// Dumped WGSL:" << std::endl << wgslDesc->source;
device->EmitLog(WGPULoggingType_Info, dumpedMsg.str().c_str());
}
tint::Program program;
DAWN_TRY_ASSIGN(program, ParseWGSL(&tintSource->file, outMessages));
parseResult->tintProgram = std::make_unique<tint::Program>(std::move(program));
parseResult->tintSource = std::move(tintSource);
}
return {};
}
RequiredBufferSizes ComputeRequiredBufferSizesForLayout(const EntryPointMetadata& entryPoint,
const PipelineLayoutBase* layout) {
RequiredBufferSizes bufferSizes;
for (BindGroupIndex group : IterateBitSet(layout->GetBindGroupLayoutsMask())) {
bufferSizes[group] = GetBindGroupMinBufferSizes(entryPoint.bindings[group],
layout->GetBindGroupLayout(group));
}
return bufferSizes;
}
ResultOrError<tint::Program> RunTransforms(tint::transform::Transform* transform,
const tint::Program* program,
const tint::transform::DataMap& inputs,
tint::transform::DataMap* outputs,
OwnedCompilationMessages* outMessages) {
tint::transform::Output output = transform->Run(program, inputs);
if (outMessages != nullptr) {
outMessages->AddMessages(output.program.Diagnostics());
}
DAWN_INVALID_IF(!output.program.IsValid(), "Tint program failure: %s\n",
output.program.Diagnostics().str());
if (outputs != nullptr) {
*outputs = std::move(output.data);
}
return std::move(output.program);
}
void AddVertexPullingTransformConfig(const RenderPipelineBase& renderPipeline,
const std::string& entryPoint,
BindGroupIndex pullingBufferBindingSet,
tint::transform::DataMap* transformInputs) {
tint::transform::VertexPulling::Config cfg;
cfg.entry_point_name = entryPoint;
cfg.pulling_group = static_cast<uint32_t>(pullingBufferBindingSet);
cfg.vertex_state.resize(renderPipeline.GetVertexBufferCount());
for (VertexBufferSlot slot : IterateBitSet(renderPipeline.GetVertexBufferSlotsUsed())) {
const VertexBufferInfo& dawnInfo = renderPipeline.GetVertexBuffer(slot);
tint::transform::VertexBufferLayoutDescriptor* tintInfo =
&cfg.vertex_state[static_cast<uint8_t>(slot)];
tintInfo->array_stride = dawnInfo.arrayStride;
tintInfo->step_mode = ToTintVertexStepMode(dawnInfo.stepMode);
}
for (VertexAttributeLocation location :
IterateBitSet(renderPipeline.GetAttributeLocationsUsed())) {
const VertexAttributeInfo& dawnInfo = renderPipeline.GetAttribute(location);
tint::transform::VertexAttributeDescriptor tintInfo;
tintInfo.format = ToTintVertexFormat(dawnInfo.format);
tintInfo.offset = dawnInfo.offset;
tintInfo.shader_location = static_cast<uint32_t>(static_cast<uint8_t>(location));
uint8_t vertexBufferSlot = static_cast<uint8_t>(dawnInfo.vertexBufferSlot);
cfg.vertex_state[vertexBufferSlot].attributes.push_back(tintInfo);
}
transformInputs->Add<tint::transform::VertexPulling::Config>(cfg);
}
MaybeError ValidateCompatibilityWithPipelineLayout(DeviceBase* device,
const EntryPointMetadata& entryPoint,
const PipelineLayoutBase* layout) {
for (BindGroupIndex group : IterateBitSet(layout->GetBindGroupLayoutsMask())) {
DAWN_TRY_CONTEXT(ValidateCompatibilityWithBindGroupLayout(
device, group, entryPoint, layout->GetBindGroupLayout(group)),
"validating the entry-point's compatibility for group %u with %s",
static_cast<uint32_t>(group), layout->GetBindGroupLayout(group));
}
for (BindGroupIndex group : IterateBitSet(~layout->GetBindGroupLayoutsMask())) {
DAWN_INVALID_IF(entryPoint.bindings[group].size() > 0,
"The entry-point uses bindings in group %u but %s doesn't have a "
"BindGroupLayout for this index",
static_cast<uint32_t>(group), layout);
}
// Validate that filtering samplers are not used with unfilterable textures.
for (const auto& pair : entryPoint.samplerTexturePairs) {
const BindGroupLayoutBase* samplerBGL = layout->GetBindGroupLayout(pair.sampler.group);
const BindingInfo& samplerInfo =
samplerBGL->GetBindingInfo(samplerBGL->GetBindingIndex(pair.sampler.binding));
if (samplerInfo.sampler.type != wgpu::SamplerBindingType::Filtering) {
continue;
}
const BindGroupLayoutBase* textureBGL = layout->GetBindGroupLayout(pair.texture.group);
const BindingInfo& textureInfo =
textureBGL->GetBindingInfo(textureBGL->GetBindingIndex(pair.texture.binding));
ASSERT(textureInfo.bindingType != BindingInfoType::Buffer &&
textureInfo.bindingType != BindingInfoType::Sampler &&
textureInfo.bindingType != BindingInfoType::StorageTexture);
if (textureInfo.bindingType != BindingInfoType::Texture) {
continue;
}
// Uint/sint can't be statically used with a sampler, so they any
// texture bindings reflected must be float or depth textures. If
// the shader uses a float/depth texture but the bind group layout
// specifies a uint/sint texture binding,
// |ValidateCompatibilityWithBindGroupLayout| will fail since the
// sampleType does not match.
ASSERT(textureInfo.texture.sampleType != wgpu::TextureSampleType::Undefined &&
textureInfo.texture.sampleType != wgpu::TextureSampleType::Uint &&
textureInfo.texture.sampleType != wgpu::TextureSampleType::Sint);
DAWN_INVALID_IF(
textureInfo.texture.sampleType == wgpu::TextureSampleType::UnfilterableFloat,
"Texture binding (group:%u, binding:%u) is %s but used statically with a sampler "
"(group:%u, binding:%u) that's %s",
static_cast<uint32_t>(pair.texture.group),
static_cast<uint32_t>(pair.texture.binding),
wgpu::TextureSampleType::UnfilterableFloat,
static_cast<uint32_t>(pair.sampler.group),
static_cast<uint32_t>(pair.sampler.binding), wgpu::SamplerBindingType::Filtering);
}
return {};
}
// ShaderModuleBase
ShaderModuleBase::ShaderModuleBase(DeviceBase* device,
const ShaderModuleDescriptor* descriptor,
ApiObjectBase::UntrackedByDeviceTag tag)
: ApiObjectBase(device, descriptor->label), mType(Type::Undefined) {
ASSERT(descriptor->nextInChain != nullptr);
const ShaderModuleSPIRVDescriptor* spirvDesc = nullptr;
FindInChain(descriptor->nextInChain, &spirvDesc);
const ShaderModuleWGSLDescriptor* wgslDesc = nullptr;
FindInChain(descriptor->nextInChain, &wgslDesc);
ASSERT(spirvDesc || wgslDesc);
if (spirvDesc) {
mType = Type::Spirv;
mOriginalSpirv.assign(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize);
} else if (wgslDesc) {
mType = Type::Wgsl;
mWgsl = std::string(wgslDesc->source);
}
}
ShaderModuleBase::ShaderModuleBase(DeviceBase* device, const ShaderModuleDescriptor* descriptor)
: ShaderModuleBase(device, descriptor, kUntrackedByDevice) {
TrackInDevice();
}
ShaderModuleBase::ShaderModuleBase(DeviceBase* device)
: ApiObjectBase(device, kLabelNotImplemented) {
TrackInDevice();
}
ShaderModuleBase::ShaderModuleBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag), mType(Type::Undefined) {
}
ShaderModuleBase::~ShaderModuleBase() = default;
void ShaderModuleBase::DestroyImpl() {
if (IsCachedReference()) {
// Do not uncache the actual cached object if we are a blueprint.
GetDevice()->UncacheShaderModule(this);
}
}
// static
Ref<ShaderModuleBase> ShaderModuleBase::MakeError(DeviceBase* device) {
return AcquireRef(new ShaderModuleBase(device, ObjectBase::kError));
}
ObjectType ShaderModuleBase::GetType() const {
return ObjectType::ShaderModule;
}
bool ShaderModuleBase::HasEntryPoint(const std::string& entryPoint) const {
return mEntryPoints.count(entryPoint) > 0;
}
const EntryPointMetadata& ShaderModuleBase::GetEntryPoint(const std::string& entryPoint) const {
ASSERT(HasEntryPoint(entryPoint));
return *mEntryPoints.at(entryPoint);
}
size_t ShaderModuleBase::ComputeContentHash() {
ObjectContentHasher recorder;
recorder.Record(mType);
recorder.Record(mOriginalSpirv);
recorder.Record(mWgsl);
return recorder.GetContentHash();
}
bool ShaderModuleBase::EqualityFunc::operator()(const ShaderModuleBase* a,
const ShaderModuleBase* b) const {
return a->mType == b->mType && a->mOriginalSpirv == b->mOriginalSpirv &&
a->mWgsl == b->mWgsl;
}
const tint::Program* ShaderModuleBase::GetTintProgram() const {
ASSERT(mTintProgram);
return mTintProgram.get();
}
void ShaderModuleBase::APIGetCompilationInfo(wgpu::CompilationInfoCallback callback,
void* userdata) {
if (callback == nullptr) {
return;
}
callback(WGPUCompilationInfoRequestStatus_Success,
mCompilationMessages->GetCompilationInfo(), userdata);
}
void ShaderModuleBase::InjectCompilationMessages(
std::unique_ptr<OwnedCompilationMessages> compilationMessages) {
// TODO(dawn:944): ensure the InjectCompilationMessages is properly handled for shader
// module returned from cache.
// InjectCompilationMessages should be called only once for a shader module, after it is
// created. However currently InjectCompilationMessages may be called on a shader module
// returned from cache rather than newly created, and violate the rule. We just skip the
// injection in this case for now, but a proper solution including ensure the cache goes
// before the validation is required.
if (mCompilationMessages != nullptr) {
return;
}
// Move the compilationMessages into the shader module and emit the tint errors and warnings
mCompilationMessages = std::move(compilationMessages);
// Emit the formatted Tint errors and warnings within the moved compilationMessages
const std::vector<std::string>& formattedTintMessages =
mCompilationMessages->GetFormattedTintMessages();
if (formattedTintMessages.empty()) {
return;
}
std::ostringstream t;
for (auto pMessage = formattedTintMessages.begin(); pMessage != formattedTintMessages.end();
pMessage++) {
if (pMessage != formattedTintMessages.begin()) {
t << std::endl;
}
t << *pMessage;
}
this->GetDevice()->EmitLog(WGPULoggingType_Warning, t.str().c_str());
}
OwnedCompilationMessages* ShaderModuleBase::GetCompilationMessages() const {
return mCompilationMessages.get();
}
// static
void ShaderModuleBase::AddExternalTextureTransform(const PipelineLayoutBase* layout,
tint::transform::Manager* transformManager,
tint::transform::DataMap* transformInputs) {
tint::transform::MultiplanarExternalTexture::BindingsMap newBindingsMap;
for (BindGroupIndex i : IterateBitSet(layout->GetBindGroupLayoutsMask())) {
const BindGroupLayoutBase* bgl = layout->GetBindGroupLayout(i);
for (const auto& expansion : bgl->GetExternalTextureBindingExpansionMap()) {
newBindingsMap[{static_cast<uint32_t>(i),
static_cast<uint32_t>(expansion.second.plane0)}] = {
{static_cast<uint32_t>(i), static_cast<uint32_t>(expansion.second.plane1)},
{static_cast<uint32_t>(i), static_cast<uint32_t>(expansion.second.params)}};
}
}
if (!newBindingsMap.empty()) {
transformManager->Add<tint::transform::MultiplanarExternalTexture>();
transformInputs->Add<tint::transform::MultiplanarExternalTexture::NewBindingPoints>(
newBindingsMap);
}
}
MaybeError ShaderModuleBase::InitializeBase(ShaderModuleParseResult* parseResult) {
mTintProgram = std::move(parseResult->tintProgram);
mTintSource = std::move(parseResult->tintSource);
DAWN_TRY_ASSIGN(mEntryPoints, ReflectShaderUsingTint(GetDevice(), mTintProgram.get()));
return {};
}
size_t PipelineLayoutEntryPointPairHashFunc::operator()(
const PipelineLayoutEntryPointPair& pair) const {
size_t hash = 0;
HashCombine(&hash, pair.first, pair.second);
return hash;
}
} // namespace dawn::native