blob: 3ec6bdcd3ec1bf191475f4421a66aa8f93166f1a [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn/native/RenderPipeline.h"
#include <algorithm>
#include <cmath>
#include <sstream>
#include "dawn/common/BitSetIterator.h"
#include "dawn/native/ChainUtils_autogen.h"
#include "dawn/native/Commands.h"
#include "dawn/native/Device.h"
#include "dawn/native/InternalPipelineStore.h"
#include "dawn/native/ObjectContentHasher.h"
#include "dawn/native/ObjectType_autogen.h"
#include "dawn/native/ValidationUtils_autogen.h"
#include "dawn/native/VertexFormat.h"
namespace dawn::native {
// Helper functions
namespace {
MaybeError ValidateVertexAttribute(
DeviceBase* device,
const VertexAttribute* attribute,
const EntryPointMetadata& metadata,
uint64_t vertexBufferStride,
ityp::bitset<VertexAttributeLocation, kMaxVertexAttributes>* attributesSetMask) {
DAWN_TRY(ValidateVertexFormat(attribute->format));
const VertexFormatInfo& formatInfo = GetVertexFormatInfo(attribute->format);
DAWN_INVALID_IF(
attribute->shaderLocation >= kMaxVertexAttributes,
"Attribute shader location (%u) exceeds the maximum number of vertex attributes "
"(%u).",
attribute->shaderLocation, kMaxVertexAttributes);
VertexAttributeLocation location(static_cast<uint8_t>(attribute->shaderLocation));
// No underflow is possible because the max vertex format size is smaller than
// kMaxVertexBufferArrayStride.
ASSERT(kMaxVertexBufferArrayStride >= formatInfo.byteSize);
DAWN_INVALID_IF(
attribute->offset > kMaxVertexBufferArrayStride - formatInfo.byteSize,
"Attribute offset (%u) with format %s (size: %u) doesn't fit in the maximum vertex "
"buffer stride (%u).",
attribute->offset, attribute->format, formatInfo.byteSize, kMaxVertexBufferArrayStride);
// No overflow is possible because the offset is already validated to be less
// than kMaxVertexBufferArrayStride.
ASSERT(attribute->offset < kMaxVertexBufferArrayStride);
DAWN_INVALID_IF(
vertexBufferStride > 0 && attribute->offset + formatInfo.byteSize > vertexBufferStride,
"Attribute offset (%u) with format %s (size: %u) doesn't fit in the vertex buffer "
"stride (%u).",
attribute->offset, attribute->format, formatInfo.byteSize, vertexBufferStride);
DAWN_INVALID_IF(attribute->offset % std::min(4u, formatInfo.byteSize) != 0,
"Attribute offset (%u) in not a multiple of %u.", attribute->offset,
std::min(4u, formatInfo.byteSize));
DAWN_INVALID_IF(metadata.usedVertexInputs[location] &&
formatInfo.baseType != metadata.vertexInputBaseTypes[location],
"Attribute base type (%s) does not match the "
"shader's base type (%s) in location (%u).",
formatInfo.baseType, metadata.vertexInputBaseTypes[location],
attribute->shaderLocation);
DAWN_INVALID_IF((*attributesSetMask)[location],
"Attribute shader location (%u) is used more than once.",
attribute->shaderLocation);
attributesSetMask->set(location);
return {};
}
MaybeError ValidateVertexBufferLayout(
DeviceBase* device,
const VertexBufferLayout* buffer,
const EntryPointMetadata& metadata,
ityp::bitset<VertexAttributeLocation, kMaxVertexAttributes>* attributesSetMask) {
DAWN_TRY(ValidateVertexStepMode(buffer->stepMode));
DAWN_INVALID_IF(buffer->arrayStride > kMaxVertexBufferArrayStride,
"Vertex buffer arrayStride (%u) is larger than the maximum array stride (%u).",
buffer->arrayStride, kMaxVertexBufferArrayStride);
DAWN_INVALID_IF(buffer->arrayStride % 4 != 0,
"Vertex buffer arrayStride (%u) is not a multiple of 4.", buffer->arrayStride);
for (uint32_t i = 0; i < buffer->attributeCount; ++i) {
DAWN_TRY_CONTEXT(ValidateVertexAttribute(device, &buffer->attributes[i], metadata,
buffer->arrayStride, attributesSetMask),
"validating attributes[%u].", i);
}
return {};
}
MaybeError ValidateVertexState(DeviceBase* device,
const VertexState* descriptor,
const PipelineLayoutBase* layout) {
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
DAWN_INVALID_IF(descriptor->bufferCount > kMaxVertexBuffers,
"Vertex buffer count (%u) exceeds the maximum number of vertex buffers (%u).",
descriptor->bufferCount, kMaxVertexBuffers);
DAWN_TRY_CONTEXT(ValidateProgrammableStage(device, descriptor->module, descriptor->entryPoint,
descriptor->constantCount, descriptor->constants,
layout, SingleShaderStage::Vertex),
"validating vertex stage (module: %s, entryPoint: %s).", descriptor->module,
descriptor->entryPoint);
const EntryPointMetadata& vertexMetadata =
descriptor->module->GetEntryPoint(descriptor->entryPoint);
ityp::bitset<VertexAttributeLocation, kMaxVertexAttributes> attributesSetMask;
uint32_t totalAttributesNum = 0;
for (uint32_t i = 0; i < descriptor->bufferCount; ++i) {
DAWN_TRY_CONTEXT(ValidateVertexBufferLayout(device, &descriptor->buffers[i], vertexMetadata,
&attributesSetMask),
"validating buffers[%u].", i);
totalAttributesNum += descriptor->buffers[i].attributeCount;
}
// Every vertex attribute has a member called shaderLocation, and there are some
// requirements for shaderLocation: 1) >=0, 2) values are different across different
// attributes, 3) can't exceed kMaxVertexAttributes. So it can ensure that total
// attribute number never exceed kMaxVertexAttributes.
ASSERT(totalAttributesNum <= kMaxVertexAttributes);
// TODO(dawn:563): Specify which inputs were not used in error message.
DAWN_INVALID_IF(!IsSubset(vertexMetadata.usedVertexInputs, attributesSetMask),
"Pipeline vertex stage uses vertex buffers not in the vertex state");
return {};
}
MaybeError ValidatePrimitiveState(const DeviceBase* device, const PrimitiveState* descriptor) {
DAWN_TRY(
ValidateSingleSType(descriptor->nextInChain, wgpu::SType::PrimitiveDepthClampingState));
const PrimitiveDepthClampingState* clampInfo = nullptr;
FindInChain(descriptor->nextInChain, &clampInfo);
if (clampInfo && !device->IsFeatureEnabled(Feature::DepthClamping)) {
return DAWN_VALIDATION_ERROR("The depth clamping feature is not supported");
}
DAWN_TRY(ValidatePrimitiveTopology(descriptor->topology));
DAWN_TRY(ValidateIndexFormat(descriptor->stripIndexFormat));
DAWN_TRY(ValidateFrontFace(descriptor->frontFace));
DAWN_TRY(ValidateCullMode(descriptor->cullMode));
// Pipeline descriptors must have stripIndexFormat == undefined if they are using
// non-strip topologies.
if (!IsStripPrimitiveTopology(descriptor->topology)) {
DAWN_INVALID_IF(descriptor->stripIndexFormat != wgpu::IndexFormat::Undefined,
"StripIndexFormat (%s) is not undefined when using a non-strip primitive "
"topology (%s).",
descriptor->stripIndexFormat, descriptor->topology);
}
return {};
}
MaybeError ValidateDepthStencilState(const DeviceBase* device,
const DepthStencilState* descriptor) {
if (descriptor->nextInChain != nullptr) {
return DAWN_VALIDATION_ERROR("nextInChain must be nullptr");
}
DAWN_TRY(ValidateCompareFunction(descriptor->depthCompare));
DAWN_TRY(ValidateCompareFunction(descriptor->stencilFront.compare));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilFront.failOp));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilFront.depthFailOp));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilFront.passOp));
DAWN_TRY(ValidateCompareFunction(descriptor->stencilBack.compare));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilBack.failOp));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilBack.depthFailOp));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilBack.passOp));
const Format* format;
DAWN_TRY_ASSIGN(format, device->GetInternalFormat(descriptor->format));
DAWN_INVALID_IF(!format->HasDepthOrStencil() || !format->isRenderable,
"Depth stencil format (%s) is not depth-stencil renderable.",
descriptor->format);
DAWN_INVALID_IF(
std::isnan(descriptor->depthBiasSlopeScale) || std::isnan(descriptor->depthBiasClamp),
"Either depthBiasSlopeScale (%f) or depthBiasClamp (%f) is NaN.",
descriptor->depthBiasSlopeScale, descriptor->depthBiasClamp);
DAWN_INVALID_IF(
!format->HasDepth() && (descriptor->depthCompare != wgpu::CompareFunction::Always ||
descriptor->depthWriteEnabled),
"Depth stencil format (%s) doesn't have depth aspect while depthCompare (%s) is "
"not %s or depthWriteEnabled (%u) is true.",
descriptor->format, descriptor->depthCompare, wgpu::CompareFunction::Always,
descriptor->depthWriteEnabled);
DAWN_INVALID_IF(!format->HasStencil() && StencilTestEnabled(descriptor),
"Depth stencil format (%s) doesn't have stencil aspect while stencil "
"test or stencil write is enabled.",
descriptor->format);
return {};
}
MaybeError ValidateMultisampleState(const MultisampleState* descriptor) {
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
DAWN_INVALID_IF(!IsValidSampleCount(descriptor->count),
"Multisample count (%u) is not supported.", descriptor->count);
DAWN_INVALID_IF(descriptor->alphaToCoverageEnabled && descriptor->count <= 1,
"Multisample count (%u) must be > 1 when alphaToCoverage is enabled.",
descriptor->count);
return {};
}
MaybeError ValidateBlendComponent(BlendComponent blendComponent) {
if (blendComponent.operation == wgpu::BlendOperation::Min ||
blendComponent.operation == wgpu::BlendOperation::Max) {
DAWN_INVALID_IF(blendComponent.srcFactor != wgpu::BlendFactor::One ||
blendComponent.dstFactor != wgpu::BlendFactor::One,
"Blend factor is not %s when blend operation is %s.",
wgpu::BlendFactor::One, blendComponent.operation);
}
return {};
}
MaybeError ValidateBlendState(DeviceBase* device, const BlendState* descriptor) {
DAWN_TRY(ValidateBlendOperation(descriptor->alpha.operation));
DAWN_TRY(ValidateBlendFactor(descriptor->alpha.srcFactor));
DAWN_TRY(ValidateBlendFactor(descriptor->alpha.dstFactor));
DAWN_TRY(ValidateBlendOperation(descriptor->color.operation));
DAWN_TRY(ValidateBlendFactor(descriptor->color.srcFactor));
DAWN_TRY(ValidateBlendFactor(descriptor->color.dstFactor));
DAWN_TRY(ValidateBlendComponent(descriptor->alpha));
DAWN_TRY(ValidateBlendComponent(descriptor->color));
return {};
}
bool BlendFactorContainsSrcAlpha(const wgpu::BlendFactor& blendFactor) {
return blendFactor == wgpu::BlendFactor::SrcAlpha ||
blendFactor == wgpu::BlendFactor::OneMinusSrcAlpha ||
blendFactor == wgpu::BlendFactor::SrcAlphaSaturated;
}
MaybeError ValidateColorTargetState(
DeviceBase* device,
const ColorTargetState* descriptor,
bool fragmentWritten,
const EntryPointMetadata::FragmentOutputVariableInfo& fragmentOutputVariable) {
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
if (descriptor->blend) {
DAWN_TRY_CONTEXT(ValidateBlendState(device, descriptor->blend), "validating blend state.");
}
DAWN_TRY(ValidateColorWriteMask(descriptor->writeMask));
const Format* format;
DAWN_TRY_ASSIGN(format, device->GetInternalFormat(descriptor->format));
DAWN_INVALID_IF(!format->IsColor() || !format->isRenderable,
"Color format (%s) is not color renderable.", descriptor->format);
DAWN_INVALID_IF(
descriptor->blend &&
!(format->GetAspectInfo(Aspect::Color).supportedSampleTypes & SampleTypeBit::Float),
"Blending is enabled but color format (%s) is not blendable.", descriptor->format);
if (fragmentWritten) {
DAWN_INVALID_IF(
fragmentOutputVariable.baseType != format->GetAspectInfo(Aspect::Color).baseType,
"Color format (%s) base type (%s) doesn't match the fragment "
"module output type (%s).",
descriptor->format, format->GetAspectInfo(Aspect::Color).baseType,
fragmentOutputVariable.baseType);
DAWN_INVALID_IF(fragmentOutputVariable.componentCount < format->componentCount,
"The fragment stage has fewer output components (%u) than the color format "
"(%s) component count (%u).",
fragmentOutputVariable.componentCount, descriptor->format,
format->componentCount);
if (descriptor->blend) {
if (fragmentOutputVariable.componentCount < 4u) {
// No alpha channel output
// Make sure there's no alpha involved in the blending operation
DAWN_INVALID_IF(BlendFactorContainsSrcAlpha(descriptor->blend->color.srcFactor) ||
BlendFactorContainsSrcAlpha(descriptor->blend->color.dstFactor),
"Color blending srcfactor (%s) or dstFactor (%s) is reading alpha "
"but it is missing from fragment output.",
descriptor->blend->color.srcFactor,
descriptor->blend->color.dstFactor);
}
}
} else {
DAWN_INVALID_IF(
descriptor->writeMask != wgpu::ColorWriteMask::None,
"Color target has no corresponding fragment stage output but writeMask (%s) is "
"not zero.",
descriptor->writeMask);
}
return {};
}
MaybeError ValidateFragmentState(DeviceBase* device,
const FragmentState* descriptor,
const PipelineLayoutBase* layout) {
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
DAWN_TRY_CONTEXT(ValidateProgrammableStage(device, descriptor->module, descriptor->entryPoint,
descriptor->constantCount, descriptor->constants,
layout, SingleShaderStage::Fragment),
"validating fragment stage (module: %s, entryPoint: %s).", descriptor->module,
descriptor->entryPoint);
DAWN_INVALID_IF(descriptor->targetCount > kMaxColorAttachments,
"Number of targets (%u) exceeds the maximum (%u).", descriptor->targetCount,
kMaxColorAttachments);
const EntryPointMetadata& fragmentMetadata =
descriptor->module->GetEntryPoint(descriptor->entryPoint);
for (ColorAttachmentIndex i(uint8_t(0));
i < ColorAttachmentIndex(static_cast<uint8_t>(descriptor->targetCount)); ++i) {
const ColorTargetState* target = &descriptor->targets[static_cast<uint8_t>(i)];
if (target->format != wgpu::TextureFormat::Undefined) {
DAWN_TRY_CONTEXT(
ValidateColorTargetState(device, target, fragmentMetadata.fragmentOutputsWritten[i],
fragmentMetadata.fragmentOutputVariables[i]),
"validating targets[%u].", static_cast<uint8_t>(i));
} else {
DAWN_INVALID_IF(target->blend,
"Color target[%u] blend state is set when the format is undefined.",
static_cast<uint8_t>(i));
}
}
return {};
}
MaybeError ValidateInterStageMatching(DeviceBase* device,
const VertexState& vertexState,
const FragmentState& fragmentState) {
const EntryPointMetadata& vertexMetadata =
vertexState.module->GetEntryPoint(vertexState.entryPoint);
const EntryPointMetadata& fragmentMetadata =
fragmentState.module->GetEntryPoint(fragmentState.entryPoint);
// TODO(dawn:563): Can this message give more details?
DAWN_INVALID_IF(
vertexMetadata.usedInterStageVariables != fragmentMetadata.usedInterStageVariables,
"One or more fragment inputs and vertex outputs are not one-to-one matching");
// TODO(dawn:802): Validate interpolation types and interpolition sampling types
for (size_t i : IterateBitSet(vertexMetadata.usedInterStageVariables)) {
const auto& vertexOutputInfo = vertexMetadata.interStageVariables[i];
const auto& fragmentInputInfo = fragmentMetadata.interStageVariables[i];
DAWN_INVALID_IF(
vertexOutputInfo.baseType != fragmentInputInfo.baseType,
"The base type (%s) of the vertex output at location %u is different from the "
"base type (%s) of the fragment input at location %u.",
vertexOutputInfo.baseType, i, fragmentInputInfo.baseType, i);
DAWN_INVALID_IF(vertexOutputInfo.componentCount != fragmentInputInfo.componentCount,
"The component count (%u) of the vertex output at location %u is different "
"from the component count (%u) of the fragment input at location %u.",
vertexOutputInfo.componentCount, i, fragmentInputInfo.componentCount, i);
DAWN_INVALID_IF(
vertexOutputInfo.interpolationType != fragmentInputInfo.interpolationType,
"The interpolation type (%s) of the vertex output at location %u is different "
"from the interpolation type (%s) of the fragment input at location %u.",
vertexOutputInfo.interpolationType, i, fragmentInputInfo.interpolationType, i);
DAWN_INVALID_IF(
vertexOutputInfo.interpolationSampling != fragmentInputInfo.interpolationSampling,
"The interpolation sampling (%s) of the vertex output at location %u is "
"different from the interpolation sampling (%s) of the fragment input at "
"location %u.",
vertexOutputInfo.interpolationSampling, i, fragmentInputInfo.interpolationSampling, i);
}
return {};
}
} // anonymous namespace
// Helper functions
size_t IndexFormatSize(wgpu::IndexFormat format) {
switch (format) {
case wgpu::IndexFormat::Uint16:
return sizeof(uint16_t);
case wgpu::IndexFormat::Uint32:
return sizeof(uint32_t);
case wgpu::IndexFormat::Undefined:
break;
}
UNREACHABLE();
}
bool IsStripPrimitiveTopology(wgpu::PrimitiveTopology primitiveTopology) {
return primitiveTopology == wgpu::PrimitiveTopology::LineStrip ||
primitiveTopology == wgpu::PrimitiveTopology::TriangleStrip;
}
MaybeError ValidateRenderPipelineDescriptor(DeviceBase* device,
const RenderPipelineDescriptor* descriptor) {
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
if (descriptor->layout != nullptr) {
DAWN_TRY(device->ValidateObject(descriptor->layout));
}
DAWN_TRY_CONTEXT(ValidateVertexState(device, &descriptor->vertex, descriptor->layout),
"validating vertex state.");
DAWN_TRY_CONTEXT(ValidatePrimitiveState(device, &descriptor->primitive),
"validating primitive state.");
if (descriptor->depthStencil) {
DAWN_TRY_CONTEXT(ValidateDepthStencilState(device, descriptor->depthStencil),
"validating depthStencil state.");
}
DAWN_TRY_CONTEXT(ValidateMultisampleState(&descriptor->multisample),
"validating multisample state.");
if (descriptor->fragment != nullptr) {
DAWN_TRY_CONTEXT(ValidateFragmentState(device, descriptor->fragment, descriptor->layout),
"validating fragment state.");
DAWN_INVALID_IF(descriptor->fragment->targetCount == 0 && !descriptor->depthStencil,
"Must have at least one color or depthStencil target.");
DAWN_TRY(ValidateInterStageMatching(device, descriptor->vertex, *(descriptor->fragment)));
}
return {};
}
std::vector<StageAndDescriptor> GetRenderStagesAndSetPlaceholderShader(
DeviceBase* device,
const RenderPipelineDescriptor* descriptor) {
std::vector<StageAndDescriptor> stages;
stages.push_back({SingleShaderStage::Vertex, descriptor->vertex.module,
descriptor->vertex.entryPoint, descriptor->vertex.constantCount,
descriptor->vertex.constants});
if (descriptor->fragment != nullptr) {
stages.push_back({SingleShaderStage::Fragment, descriptor->fragment->module,
descriptor->fragment->entryPoint, descriptor->fragment->constantCount,
descriptor->fragment->constants});
} else if (device->IsToggleEnabled(Toggle::UsePlaceholderFragmentInVertexOnlyPipeline)) {
InternalPipelineStore* store = device->GetInternalPipelineStore();
// The placeholder fragment shader module should already be initialized
DAWN_ASSERT(store->placeholderFragmentShader != nullptr);
ShaderModuleBase* placeholderFragmentShader = store->placeholderFragmentShader.Get();
stages.push_back(
{SingleShaderStage::Fragment, placeholderFragmentShader, "fs_empty_main", 0, nullptr});
}
return stages;
}
bool StencilTestEnabled(const DepthStencilState* depthStencil) {
return depthStencil->stencilBack.compare != wgpu::CompareFunction::Always ||
depthStencil->stencilBack.failOp != wgpu::StencilOperation::Keep ||
depthStencil->stencilBack.depthFailOp != wgpu::StencilOperation::Keep ||
depthStencil->stencilBack.passOp != wgpu::StencilOperation::Keep ||
depthStencil->stencilFront.compare != wgpu::CompareFunction::Always ||
depthStencil->stencilFront.failOp != wgpu::StencilOperation::Keep ||
depthStencil->stencilFront.depthFailOp != wgpu::StencilOperation::Keep ||
depthStencil->stencilFront.passOp != wgpu::StencilOperation::Keep;
}
// RenderPipelineBase
RenderPipelineBase::RenderPipelineBase(DeviceBase* device,
const RenderPipelineDescriptor* descriptor)
: PipelineBase(device,
descriptor->layout,
descriptor->label,
GetRenderStagesAndSetPlaceholderShader(device, descriptor)),
mAttachmentState(device->GetOrCreateAttachmentState(descriptor)) {
mVertexBufferCount = descriptor->vertex.bufferCount;
const VertexBufferLayout* buffers = descriptor->vertex.buffers;
for (uint8_t slot = 0; slot < mVertexBufferCount; ++slot) {
// Skip unused slots
if (buffers[slot].stepMode == wgpu::VertexStepMode::VertexBufferNotUsed) {
continue;
}
VertexBufferSlot typedSlot(slot);
mVertexBufferSlotsUsed.set(typedSlot);
mVertexBufferInfos[typedSlot].arrayStride = buffers[slot].arrayStride;
mVertexBufferInfos[typedSlot].stepMode = buffers[slot].stepMode;
mVertexBufferInfos[typedSlot].usedBytesInStride = 0;
mVertexBufferInfos[typedSlot].lastStride = 0;
switch (buffers[slot].stepMode) {
case wgpu::VertexStepMode::Vertex:
mVertexBufferSlotsUsedAsVertexBuffer.set(typedSlot);
break;
case wgpu::VertexStepMode::Instance:
mVertexBufferSlotsUsedAsInstanceBuffer.set(typedSlot);
break;
default:
DAWN_UNREACHABLE();
}
for (uint32_t i = 0; i < buffers[slot].attributeCount; ++i) {
VertexAttributeLocation location = VertexAttributeLocation(
static_cast<uint8_t>(buffers[slot].attributes[i].shaderLocation));
mAttributeLocationsUsed.set(location);
mAttributeInfos[location].shaderLocation = location;
mAttributeInfos[location].vertexBufferSlot = typedSlot;
mAttributeInfos[location].offset = buffers[slot].attributes[i].offset;
mAttributeInfos[location].format = buffers[slot].attributes[i].format;
// Compute the access boundary of this attribute by adding attribute format size to
// attribute offset. Although offset is in uint64_t, such sum must be no larger than
// maxVertexBufferArrayStride (2048), which is promised by the GPUVertexBufferLayout
// validation of creating render pipeline. Therefore, calculating in uint16_t will
// cause no overflow.
uint32_t formatByteSize =
GetVertexFormatInfo(buffers[slot].attributes[i].format).byteSize;
DAWN_ASSERT(buffers[slot].attributes[i].offset <= 2048);
uint16_t accessBoundary =
uint16_t(buffers[slot].attributes[i].offset) + uint16_t(formatByteSize);
mVertexBufferInfos[typedSlot].usedBytesInStride =
std::max(mVertexBufferInfos[typedSlot].usedBytesInStride, accessBoundary);
mVertexBufferInfos[typedSlot].lastStride =
std::max(mVertexBufferInfos[typedSlot].lastStride,
mAttributeInfos[location].offset + formatByteSize);
}
}
mPrimitive = descriptor->primitive;
const PrimitiveDepthClampingState* clampInfo = nullptr;
FindInChain(mPrimitive.nextInChain, &clampInfo);
if (clampInfo) {
mClampDepth = clampInfo->clampDepth;
}
mMultisample = descriptor->multisample;
if (mAttachmentState->HasDepthStencilAttachment()) {
mDepthStencil = *descriptor->depthStencil;
mWritesDepth = mDepthStencil.depthWriteEnabled;
if (mDepthStencil.stencilWriteMask) {
if ((mPrimitive.cullMode != wgpu::CullMode::Front &&
(mDepthStencil.stencilFront.failOp != wgpu::StencilOperation::Keep ||
mDepthStencil.stencilFront.depthFailOp != wgpu::StencilOperation::Keep ||
mDepthStencil.stencilFront.passOp != wgpu::StencilOperation::Keep)) ||
(mPrimitive.cullMode != wgpu::CullMode::Back &&
(mDepthStencil.stencilBack.failOp != wgpu::StencilOperation::Keep ||
mDepthStencil.stencilBack.depthFailOp != wgpu::StencilOperation::Keep ||
mDepthStencil.stencilBack.passOp != wgpu::StencilOperation::Keep))) {
mWritesStencil = true;
}
}
} else {
// These default values below are useful for backends to fill information.
// The values indicate that depth and stencil test are disabled when backends
// set their own depth stencil states/descriptors according to the values in
// mDepthStencil.
mDepthStencil.format = wgpu::TextureFormat::Undefined;
mDepthStencil.depthWriteEnabled = false;
mDepthStencil.depthCompare = wgpu::CompareFunction::Always;
mDepthStencil.stencilBack.compare = wgpu::CompareFunction::Always;
mDepthStencil.stencilBack.failOp = wgpu::StencilOperation::Keep;
mDepthStencil.stencilBack.depthFailOp = wgpu::StencilOperation::Keep;
mDepthStencil.stencilBack.passOp = wgpu::StencilOperation::Keep;
mDepthStencil.stencilFront.compare = wgpu::CompareFunction::Always;
mDepthStencil.stencilFront.failOp = wgpu::StencilOperation::Keep;
mDepthStencil.stencilFront.depthFailOp = wgpu::StencilOperation::Keep;
mDepthStencil.stencilFront.passOp = wgpu::StencilOperation::Keep;
mDepthStencil.stencilReadMask = 0xff;
mDepthStencil.stencilWriteMask = 0xff;
mDepthStencil.depthBias = 0;
mDepthStencil.depthBiasSlopeScale = 0.0f;
mDepthStencil.depthBiasClamp = 0.0f;
}
for (ColorAttachmentIndex i : IterateBitSet(mAttachmentState->GetColorAttachmentsMask())) {
// Vertex-only render pipeline have no color attachment. For a render pipeline with
// color attachments, there must be a valid FragmentState.
ASSERT(descriptor->fragment != nullptr);
const ColorTargetState* target = &descriptor->fragment->targets[static_cast<uint8_t>(i)];
mTargets[i] = *target;
if (target->blend != nullptr) {
mTargetBlend[i] = *target->blend;
mTargets[i].blend = &mTargetBlend[i];
}
}
SetContentHash(ComputeContentHash());
TrackInDevice();
// Initialize the cache key to include the cache type and device information.
mCacheKey.Record(CacheKey::Type::RenderPipeline, device->GetCacheKey());
}
RenderPipelineBase::RenderPipelineBase(DeviceBase* device) : PipelineBase(device) {
TrackInDevice();
}
RenderPipelineBase::RenderPipelineBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: PipelineBase(device, tag) {}
RenderPipelineBase::~RenderPipelineBase() = default;
void RenderPipelineBase::DestroyImpl() {
if (IsCachedReference()) {
// Do not uncache the actual cached object if we are a blueprint.
GetDevice()->UncacheRenderPipeline(this);
}
// Remove reference to the attachment state so that we don't have lingering references to
// it preventing it from being uncached in the device.
mAttachmentState = nullptr;
}
// static
RenderPipelineBase* RenderPipelineBase::MakeError(DeviceBase* device) {
class ErrorRenderPipeline final : public RenderPipelineBase {
public:
explicit ErrorRenderPipeline(DeviceBase* device)
: RenderPipelineBase(device, ObjectBase::kError) {}
MaybeError Initialize() override {
UNREACHABLE();
return {};
}
};
return new ErrorRenderPipeline(device);
}
ObjectType RenderPipelineBase::GetType() const {
return ObjectType::RenderPipeline;
}
const ityp::bitset<VertexAttributeLocation, kMaxVertexAttributes>&
RenderPipelineBase::GetAttributeLocationsUsed() const {
ASSERT(!IsError());
return mAttributeLocationsUsed;
}
const VertexAttributeInfo& RenderPipelineBase::GetAttribute(
VertexAttributeLocation location) const {
ASSERT(!IsError());
ASSERT(mAttributeLocationsUsed[location]);
return mAttributeInfos[location];
}
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>&
RenderPipelineBase::GetVertexBufferSlotsUsed() const {
ASSERT(!IsError());
return mVertexBufferSlotsUsed;
}
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>&
RenderPipelineBase::GetVertexBufferSlotsUsedAsVertexBuffer() const {
ASSERT(!IsError());
return mVertexBufferSlotsUsedAsVertexBuffer;
}
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>&
RenderPipelineBase::GetVertexBufferSlotsUsedAsInstanceBuffer() const {
ASSERT(!IsError());
return mVertexBufferSlotsUsedAsInstanceBuffer;
}
const VertexBufferInfo& RenderPipelineBase::GetVertexBuffer(VertexBufferSlot slot) const {
ASSERT(!IsError());
ASSERT(mVertexBufferSlotsUsed[slot]);
return mVertexBufferInfos[slot];
}
uint32_t RenderPipelineBase::GetVertexBufferCount() const {
ASSERT(!IsError());
return mVertexBufferCount;
}
const ColorTargetState* RenderPipelineBase::GetColorTargetState(
ColorAttachmentIndex attachmentSlot) const {
ASSERT(!IsError());
ASSERT(attachmentSlot < mTargets.size());
return &mTargets[attachmentSlot];
}
const DepthStencilState* RenderPipelineBase::GetDepthStencilState() const {
ASSERT(!IsError());
return &mDepthStencil;
}
wgpu::PrimitiveTopology RenderPipelineBase::GetPrimitiveTopology() const {
ASSERT(!IsError());
return mPrimitive.topology;
}
wgpu::IndexFormat RenderPipelineBase::GetStripIndexFormat() const {
ASSERT(!IsError());
return mPrimitive.stripIndexFormat;
}
wgpu::CullMode RenderPipelineBase::GetCullMode() const {
ASSERT(!IsError());
return mPrimitive.cullMode;
}
wgpu::FrontFace RenderPipelineBase::GetFrontFace() const {
ASSERT(!IsError());
return mPrimitive.frontFace;
}
bool RenderPipelineBase::IsDepthBiasEnabled() const {
ASSERT(!IsError());
return mDepthStencil.depthBias != 0 || mDepthStencil.depthBiasSlopeScale != 0;
}
int32_t RenderPipelineBase::GetDepthBias() const {
ASSERT(!IsError());
return mDepthStencil.depthBias;
}
float RenderPipelineBase::GetDepthBiasSlopeScale() const {
ASSERT(!IsError());
return mDepthStencil.depthBiasSlopeScale;
}
float RenderPipelineBase::GetDepthBiasClamp() const {
ASSERT(!IsError());
return mDepthStencil.depthBiasClamp;
}
bool RenderPipelineBase::ShouldClampDepth() const {
ASSERT(!IsError());
return mClampDepth;
}
ityp::bitset<ColorAttachmentIndex, kMaxColorAttachments>
RenderPipelineBase::GetColorAttachmentsMask() const {
ASSERT(!IsError());
return mAttachmentState->GetColorAttachmentsMask();
}
bool RenderPipelineBase::HasDepthStencilAttachment() const {
ASSERT(!IsError());
return mAttachmentState->HasDepthStencilAttachment();
}
wgpu::TextureFormat RenderPipelineBase::GetColorAttachmentFormat(
ColorAttachmentIndex attachment) const {
ASSERT(!IsError());
return mTargets[attachment].format;
}
wgpu::TextureFormat RenderPipelineBase::GetDepthStencilFormat() const {
ASSERT(!IsError());
ASSERT(mAttachmentState->HasDepthStencilAttachment());
return mDepthStencil.format;
}
uint32_t RenderPipelineBase::GetSampleCount() const {
ASSERT(!IsError());
return mAttachmentState->GetSampleCount();
}
uint32_t RenderPipelineBase::GetSampleMask() const {
ASSERT(!IsError());
return mMultisample.mask;
}
bool RenderPipelineBase::IsAlphaToCoverageEnabled() const {
ASSERT(!IsError());
return mMultisample.alphaToCoverageEnabled;
}
const AttachmentState* RenderPipelineBase::GetAttachmentState() const {
ASSERT(!IsError());
return mAttachmentState.Get();
}
bool RenderPipelineBase::WritesDepth() const {
ASSERT(!IsError());
return mWritesDepth;
}
bool RenderPipelineBase::WritesStencil() const {
ASSERT(!IsError());
return mWritesStencil;
}
size_t RenderPipelineBase::ComputeContentHash() {
ObjectContentHasher recorder;
// Record modules and layout
recorder.Record(PipelineBase::ComputeContentHash());
// Hierarchically record the attachment state.
// It contains the attachments set, texture formats, and sample count.
recorder.Record(mAttachmentState->GetContentHash());
// Record attachments
for (ColorAttachmentIndex i : IterateBitSet(mAttachmentState->GetColorAttachmentsMask())) {
const ColorTargetState& desc = *GetColorTargetState(i);
recorder.Record(desc.writeMask);
if (desc.blend != nullptr) {
recorder.Record(desc.blend->color.operation, desc.blend->color.srcFactor,
desc.blend->color.dstFactor);
recorder.Record(desc.blend->alpha.operation, desc.blend->alpha.srcFactor,
desc.blend->alpha.dstFactor);
}
}
if (mAttachmentState->HasDepthStencilAttachment()) {
const DepthStencilState& desc = mDepthStencil;
recorder.Record(desc.depthWriteEnabled, desc.depthCompare);
recorder.Record(desc.stencilReadMask, desc.stencilWriteMask);
recorder.Record(desc.stencilFront.compare, desc.stencilFront.failOp,
desc.stencilFront.depthFailOp, desc.stencilFront.passOp);
recorder.Record(desc.stencilBack.compare, desc.stencilBack.failOp,
desc.stencilBack.depthFailOp, desc.stencilBack.passOp);
recorder.Record(desc.depthBias, desc.depthBiasSlopeScale, desc.depthBiasClamp);
}
// Record vertex state
recorder.Record(mAttributeLocationsUsed);
for (VertexAttributeLocation location : IterateBitSet(mAttributeLocationsUsed)) {
const VertexAttributeInfo& desc = GetAttribute(location);
recorder.Record(desc.shaderLocation, desc.vertexBufferSlot, desc.offset, desc.format);
}
recorder.Record(mVertexBufferSlotsUsed);
for (VertexBufferSlot slot : IterateBitSet(mVertexBufferSlotsUsed)) {
const VertexBufferInfo& desc = GetVertexBuffer(slot);
recorder.Record(desc.arrayStride, desc.stepMode);
}
// Record primitive state
recorder.Record(mPrimitive.topology, mPrimitive.stripIndexFormat, mPrimitive.frontFace,
mPrimitive.cullMode, mClampDepth);
// Record multisample state
// Sample count hashed as part of the attachment state
recorder.Record(mMultisample.mask, mMultisample.alphaToCoverageEnabled);
return recorder.GetContentHash();
}
bool RenderPipelineBase::EqualityFunc::operator()(const RenderPipelineBase* a,
const RenderPipelineBase* b) const {
// Check the layout and shader stages.
if (!PipelineBase::EqualForCache(a, b)) {
return false;
}
// Check the attachment state.
// It contains the attachments set, texture formats, and sample count.
if (a->mAttachmentState.Get() != b->mAttachmentState.Get()) {
return false;
}
if (a->mAttachmentState.Get() != nullptr) {
for (ColorAttachmentIndex i :
IterateBitSet(a->mAttachmentState->GetColorAttachmentsMask())) {
const ColorTargetState& descA = *a->GetColorTargetState(i);
const ColorTargetState& descB = *b->GetColorTargetState(i);
if (descA.writeMask != descB.writeMask) {
return false;
}
if ((descA.blend == nullptr) != (descB.blend == nullptr)) {
return false;
}
if (descA.blend != nullptr) {
if (descA.blend->color.operation != descB.blend->color.operation ||
descA.blend->color.srcFactor != descB.blend->color.srcFactor ||
descA.blend->color.dstFactor != descB.blend->color.dstFactor) {
return false;
}
if (descA.blend->alpha.operation != descB.blend->alpha.operation ||
descA.blend->alpha.srcFactor != descB.blend->alpha.srcFactor ||
descA.blend->alpha.dstFactor != descB.blend->alpha.dstFactor) {
return false;
}
}
}
// Check depth/stencil state
if (a->mAttachmentState->HasDepthStencilAttachment()) {
const DepthStencilState& stateA = a->mDepthStencil;
const DepthStencilState& stateB = b->mDepthStencil;
ASSERT(!std::isnan(stateA.depthBiasSlopeScale));
ASSERT(!std::isnan(stateB.depthBiasSlopeScale));
ASSERT(!std::isnan(stateA.depthBiasClamp));
ASSERT(!std::isnan(stateB.depthBiasClamp));
if (stateA.depthWriteEnabled != stateB.depthWriteEnabled ||
stateA.depthCompare != stateB.depthCompare ||
stateA.depthBias != stateB.depthBias ||
stateA.depthBiasSlopeScale != stateB.depthBiasSlopeScale ||
stateA.depthBiasClamp != stateB.depthBiasClamp) {
return false;
}
if (stateA.stencilFront.compare != stateB.stencilFront.compare ||
stateA.stencilFront.failOp != stateB.stencilFront.failOp ||
stateA.stencilFront.depthFailOp != stateB.stencilFront.depthFailOp ||
stateA.stencilFront.passOp != stateB.stencilFront.passOp) {
return false;
}
if (stateA.stencilBack.compare != stateB.stencilBack.compare ||
stateA.stencilBack.failOp != stateB.stencilBack.failOp ||
stateA.stencilBack.depthFailOp != stateB.stencilBack.depthFailOp ||
stateA.stencilBack.passOp != stateB.stencilBack.passOp) {
return false;
}
if (stateA.stencilReadMask != stateB.stencilReadMask ||
stateA.stencilWriteMask != stateB.stencilWriteMask) {
return false;
}
}
}
// Check vertex state
if (a->mAttributeLocationsUsed != b->mAttributeLocationsUsed) {
return false;
}
for (VertexAttributeLocation loc : IterateBitSet(a->mAttributeLocationsUsed)) {
const VertexAttributeInfo& descA = a->GetAttribute(loc);
const VertexAttributeInfo& descB = b->GetAttribute(loc);
if (descA.shaderLocation != descB.shaderLocation ||
descA.vertexBufferSlot != descB.vertexBufferSlot || descA.offset != descB.offset ||
descA.format != descB.format) {
return false;
}
}
if (a->mVertexBufferSlotsUsed != b->mVertexBufferSlotsUsed) {
return false;
}
for (VertexBufferSlot slot : IterateBitSet(a->mVertexBufferSlotsUsed)) {
const VertexBufferInfo& descA = a->GetVertexBuffer(slot);
const VertexBufferInfo& descB = b->GetVertexBuffer(slot);
if (descA.arrayStride != descB.arrayStride || descA.stepMode != descB.stepMode) {
return false;
}
}
// Check primitive state
{
const PrimitiveState& stateA = a->mPrimitive;
const PrimitiveState& stateB = b->mPrimitive;
if (stateA.topology != stateB.topology ||
stateA.stripIndexFormat != stateB.stripIndexFormat ||
stateA.frontFace != stateB.frontFace || stateA.cullMode != stateB.cullMode ||
a->mClampDepth != b->mClampDepth) {
return false;
}
}
// Check multisample state
{
const MultisampleState& stateA = a->mMultisample;
const MultisampleState& stateB = b->mMultisample;
// Sample count already checked as part of the attachment state.
if (stateA.mask != stateB.mask ||
stateA.alphaToCoverageEnabled != stateB.alphaToCoverageEnabled) {
return false;
}
}
return true;
}
} // namespace dawn::native