blob: c2046861d1d44859e69c98c90304e887fccbed05 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/ast/id_attribute.h"
#include "src/tint/writer/msl/test_helper.h"
using namespace tint::number_suffixes; // NOLINT
namespace tint::writer::msl {
namespace {
using MslGeneratorImplTest = TestHelper;
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_AInt) {
auto* var = GlobalConst("G", nullptr, Expr(1_a));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
int const l = 1;
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_AFloat) {
auto* var = GlobalConst("G", nullptr, Expr(1._a));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
float const l = 1.0f;
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_i32) {
auto* var = GlobalConst("G", nullptr, Expr(1_i));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
int const l = 1;
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_u32) {
auto* var = GlobalConst("G", nullptr, Expr(1_u));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
uint const l = 1u;
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_f32) {
auto* var = GlobalConst("G", nullptr, Expr(1_f));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
float const l = 1.0f;
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_vec3_AInt) {
auto* var = GlobalConst("G", nullptr, Construct(ty.vec3(nullptr), 1_a, 2_a, 3_a));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
int3 const l = int3(1, 2, 3);
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_vec3_AFloat) {
auto* var = GlobalConst("G", nullptr, Construct(ty.vec3(nullptr), 1._a, 2._a, 3._a));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
float3 const l = float3(1.0f, 2.0f, 3.0f);
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_vec3_f32) {
auto* var = GlobalConst("G", nullptr, vec3<f32>(1_f, 2_f, 3_f));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
float3 const l = float3(1.0f, 2.0f, 3.0f);
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_mat2x3_AFloat) {
auto* var = GlobalConst("G", nullptr,
Construct(ty.mat(nullptr, 2, 3), 1._a, 2._a, 3._a, 4._a, 5._a, 6._a));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
float2x3 const l = float2x3(float3(1.0f, 2.0f, 3.0f), float3(4.0f, 5.0f, 6.0f));
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_mat2x3_f32) {
auto* var = GlobalConst("G", nullptr, mat2x3<f32>(1_f, 2_f, 3_f, 4_f, 5_f, 6_f));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
void f() {
float2x3 const l = float2x3(float3(1.0f, 2.0f, 3.0f), float3(4.0f, 5.0f, 6.0f));
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_arr_f32) {
auto* var = GlobalConst("G", nullptr, Construct(ty.array<f32, 3>(), 1_f, 2_f, 3_f));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
template<typename T, size_t N>
struct tint_array {
const constant T& operator[](size_t i) const constant { return elements[i]; }
device T& operator[](size_t i) device { return elements[i]; }
const device T& operator[](size_t i) const device { return elements[i]; }
thread T& operator[](size_t i) thread { return elements[i]; }
const thread T& operator[](size_t i) const thread { return elements[i]; }
threadgroup T& operator[](size_t i) threadgroup { return elements[i]; }
const threadgroup T& operator[](size_t i) const threadgroup { return elements[i]; }
T elements[N];
};
void f() {
tint_array<float, 3> const l = tint_array<float, 3>{1.0f, 2.0f, 3.0f};
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_GlobalConst_arr_vec2_bool) {
auto* var = GlobalConst("G", nullptr,
Construct(ty.array(ty.vec2<bool>(), 3_u), //
vec2<bool>(true, false), //
vec2<bool>(false, true), //
vec2<bool>(true, true)));
Func("f", {}, ty.void_(), {Decl(Let("l", nullptr, Expr(var)))});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
template<typename T, size_t N>
struct tint_array {
const constant T& operator[](size_t i) const constant { return elements[i]; }
device T& operator[](size_t i) device { return elements[i]; }
const device T& operator[](size_t i) const device { return elements[i]; }
thread T& operator[](size_t i) thread { return elements[i]; }
const thread T& operator[](size_t i) const thread { return elements[i]; }
threadgroup T& operator[](size_t i) threadgroup { return elements[i]; }
const threadgroup T& operator[](size_t i) const threadgroup { return elements[i]; }
T elements[N];
};
void f() {
tint_array<bool2, 3> const l = tint_array<bool2, 3>{bool2(true, false), bool2(false, true), bool2(true)};
}
)");
}
TEST_F(MslGeneratorImplTest, Emit_Override) {
auto* var = Override("pos", ty.f32(), Expr(3_f),
ast::AttributeList{
Id(23),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.EmitOverride(var)) << gen.error();
EXPECT_EQ(gen.result(), "constant float pos [[function_constant(23)]];\n");
}
TEST_F(MslGeneratorImplTest, Emit_Override_NoId) {
auto* var_a = Override("a", ty.f32(), nullptr,
ast::AttributeList{
Id(0),
});
auto* var_b = Override("b", ty.f32(), nullptr);
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.EmitOverride(var_a)) << gen.error();
ASSERT_TRUE(gen.EmitOverride(var_b)) << gen.error();
EXPECT_EQ(gen.result(), R"(constant float a [[function_constant(0)]];
constant float b [[function_constant(1)]];
)");
}
} // namespace
} // namespace tint::writer::msl