blob: a2e779988793fbed526d928371f26ca487e1aaae [file] [log] [blame] [edit]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/resolver/validator.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "src/tint/ast/alias.h"
#include "src/tint/ast/array.h"
#include "src/tint/ast/assignment_statement.h"
#include "src/tint/ast/bitcast_expression.h"
#include "src/tint/ast/break_statement.h"
#include "src/tint/ast/call_statement.h"
#include "src/tint/ast/continue_statement.h"
#include "src/tint/ast/depth_texture.h"
#include "src/tint/ast/disable_validation_attribute.h"
#include "src/tint/ast/discard_statement.h"
#include "src/tint/ast/fallthrough_statement.h"
#include "src/tint/ast/for_loop_statement.h"
#include "src/tint/ast/id_attribute.h"
#include "src/tint/ast/if_statement.h"
#include "src/tint/ast/internal_attribute.h"
#include "src/tint/ast/interpolate_attribute.h"
#include "src/tint/ast/loop_statement.h"
#include "src/tint/ast/matrix.h"
#include "src/tint/ast/pointer.h"
#include "src/tint/ast/return_statement.h"
#include "src/tint/ast/sampled_texture.h"
#include "src/tint/ast/sampler.h"
#include "src/tint/ast/storage_texture.h"
#include "src/tint/ast/switch_statement.h"
#include "src/tint/ast/traverse_expressions.h"
#include "src/tint/ast/type_name.h"
#include "src/tint/ast/unary_op_expression.h"
#include "src/tint/ast/variable_decl_statement.h"
#include "src/tint/ast/vector.h"
#include "src/tint/ast/workgroup_attribute.h"
#include "src/tint/sem/abstract_numeric.h"
#include "src/tint/sem/array.h"
#include "src/tint/sem/atomic.h"
#include "src/tint/sem/call.h"
#include "src/tint/sem/depth_multisampled_texture.h"
#include "src/tint/sem/depth_texture.h"
#include "src/tint/sem/for_loop_statement.h"
#include "src/tint/sem/function.h"
#include "src/tint/sem/if_statement.h"
#include "src/tint/sem/loop_statement.h"
#include "src/tint/sem/materialize.h"
#include "src/tint/sem/member_accessor_expression.h"
#include "src/tint/sem/multisampled_texture.h"
#include "src/tint/sem/pointer.h"
#include "src/tint/sem/reference.h"
#include "src/tint/sem/sampled_texture.h"
#include "src/tint/sem/sampler.h"
#include "src/tint/sem/statement.h"
#include "src/tint/sem/storage_texture.h"
#include "src/tint/sem/struct.h"
#include "src/tint/sem/switch_statement.h"
#include "src/tint/sem/type_constructor.h"
#include "src/tint/sem/type_conversion.h"
#include "src/tint/sem/variable.h"
#include "src/tint/sem/while_statement.h"
#include "src/tint/utils/defer.h"
#include "src/tint/utils/map.h"
#include "src/tint/utils/math.h"
#include "src/tint/utils/reverse.h"
#include "src/tint/utils/scoped_assignment.h"
#include "src/tint/utils/transform.h"
namespace tint::resolver {
namespace {
bool IsValidStorageTextureDimension(ast::TextureDimension dim) {
switch (dim) {
case ast::TextureDimension::k1d:
case ast::TextureDimension::k2d:
case ast::TextureDimension::k2dArray:
case ast::TextureDimension::k3d:
return true;
default:
return false;
}
}
bool IsValidStorageTextureTexelFormat(ast::TexelFormat format) {
switch (format) {
case ast::TexelFormat::kR32Uint:
case ast::TexelFormat::kR32Sint:
case ast::TexelFormat::kR32Float:
case ast::TexelFormat::kRg32Uint:
case ast::TexelFormat::kRg32Sint:
case ast::TexelFormat::kRg32Float:
case ast::TexelFormat::kRgba8Unorm:
case ast::TexelFormat::kRgba8Snorm:
case ast::TexelFormat::kRgba8Uint:
case ast::TexelFormat::kRgba8Sint:
case ast::TexelFormat::kRgba16Uint:
case ast::TexelFormat::kRgba16Sint:
case ast::TexelFormat::kRgba16Float:
case ast::TexelFormat::kRgba32Uint:
case ast::TexelFormat::kRgba32Sint:
case ast::TexelFormat::kRgba32Float:
return true;
default:
return false;
}
}
// Helper to stringify a pipeline IO attribute.
std::string attr_to_str(const ast::Attribute* attr) {
std::stringstream str;
if (auto* builtin = attr->As<ast::BuiltinAttribute>()) {
str << "builtin(" << builtin->builtin << ")";
} else if (auto* location = attr->As<ast::LocationAttribute>()) {
str << "location(" << location->value << ")";
}
return str.str();
}
template <typename CALLBACK>
void TraverseCallChain(diag::List& diagnostics,
const sem::Function* from,
const sem::Function* to,
CALLBACK&& callback) {
for (auto* f : from->TransitivelyCalledFunctions()) {
if (f == to) {
callback(f);
return;
}
if (f->TransitivelyCalledFunctions().contains(to)) {
TraverseCallChain(diagnostics, f, to, callback);
callback(f);
return;
}
}
TINT_ICE(Resolver, diagnostics) << "TraverseCallChain() 'from' does not transitively call 'to'";
}
} // namespace
Validator::Validator(ProgramBuilder* builder, SemHelper& sem)
: symbols_(builder->Symbols()), diagnostics_(builder->Diagnostics()), sem_(sem) {}
Validator::~Validator() = default;
void Validator::AddError(const std::string& msg, const Source& source) const {
diagnostics_.add_error(diag::System::Resolver, msg, source);
}
void Validator::AddWarning(const std::string& msg, const Source& source) const {
diagnostics_.add_warning(diag::System::Resolver, msg, source);
}
void Validator::AddNote(const std::string& msg, const Source& source) const {
diagnostics_.add_note(diag::System::Resolver, msg, source);
}
// https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section
bool Validator::IsPlain(const sem::Type* type) const {
return type->is_scalar() ||
type->IsAnyOf<sem::Atomic, sem::Vector, sem::Matrix, sem::Array, sem::Struct>();
}
// https://gpuweb.github.io/gpuweb/wgsl/#fixed-footprint-types
bool Validator::IsFixedFootprint(const sem::Type* type) const {
return Switch(
type, //
[&](const sem::Vector*) { return true; }, //
[&](const sem::Matrix*) { return true; }, //
[&](const sem::Atomic*) { return true; },
[&](const sem::Array* arr) {
return !arr->IsRuntimeSized() && IsFixedFootprint(arr->ElemType());
},
[&](const sem::Struct* str) {
for (auto* member : str->Members()) {
if (!IsFixedFootprint(member->Type())) {
return false;
}
}
return true;
},
[&](Default) { return type->is_scalar(); });
}
// https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types
bool Validator::IsHostShareable(const sem::Type* type) const {
if (type->IsAnyOf<sem::I32, sem::U32, sem::F32, sem::F16>()) {
return true;
}
return Switch(
type, //
[&](const sem::Vector* vec) { return IsHostShareable(vec->type()); },
[&](const sem::Matrix* mat) { return IsHostShareable(mat->type()); },
[&](const sem::Array* arr) { return IsHostShareable(arr->ElemType()); },
[&](const sem::Struct* str) {
for (auto* member : str->Members()) {
if (!IsHostShareable(member->Type())) {
return false;
}
}
return true;
},
[&](const sem::Atomic* atomic) { return IsHostShareable(atomic->Type()); });
}
// https://gpuweb.github.io/gpuweb/wgsl.html#storable-types
bool Validator::IsStorable(const sem::Type* type) const {
return IsPlain(type) || type->IsAnyOf<sem::Texture, sem::Sampler>();
}
const ast::Statement* Validator::ClosestContinuing(bool stop_at_loop,
sem::Statement* current_statement) const {
for (const auto* s = current_statement; s != nullptr; s = s->Parent()) {
if (stop_at_loop && s->Is<sem::LoopStatement>()) {
break;
}
if (s->Is<sem::LoopContinuingBlockStatement>()) {
return s->Declaration();
}
if (auto* f = As<sem::ForLoopStatement>(s->Parent())) {
if (f->Declaration()->continuing == s->Declaration()) {
return s->Declaration();
}
if (stop_at_loop) {
break;
}
}
if (Is<sem::WhileStatement>(s->Parent())) {
if (stop_at_loop) {
break;
}
}
}
return nullptr;
}
bool Validator::Atomic(const ast::Atomic* a, const sem::Atomic* s) const {
// https://gpuweb.github.io/gpuweb/wgsl/#atomic-types
// T must be either u32 or i32.
if (!s->Type()->IsAnyOf<sem::U32, sem::I32>()) {
AddError("atomic only supports i32 or u32 types", a->type ? a->type->source : a->source);
return false;
}
return true;
}
bool Validator::StorageTexture(const ast::StorageTexture* t) const {
switch (t->access) {
case ast::Access::kWrite:
break;
case ast::Access::kUndefined:
AddError("storage texture missing access control", t->source);
return false;
default:
AddError("storage textures currently only support 'write' access control", t->source);
return false;
}
if (!IsValidStorageTextureDimension(t->dim)) {
AddError("cube dimensions for storage textures are not supported", t->source);
return false;
}
if (!IsValidStorageTextureTexelFormat(t->format)) {
AddError(
"image format must be one of the texel formats specified for storage "
"textues in https://gpuweb.github.io/gpuweb/wgsl/#texel-formats",
t->source);
return false;
}
return true;
}
bool Validator::SampledTexture(const sem::SampledTexture* t, const Source& source) const {
if (!t->type()->UnwrapRef()->is_numeric_scalar()) {
AddError("texture_2d<type>: type must be f32, i32 or u32", source);
return false;
}
return true;
}
bool Validator::MultisampledTexture(const sem::MultisampledTexture* t, const Source& source) const {
if (t->dim() != ast::TextureDimension::k2d) {
AddError("only 2d multisampled textures are supported", source);
return false;
}
if (!t->type()->UnwrapRef()->is_numeric_scalar()) {
AddError("texture_multisampled_2d<type>: type must be f32, i32 or u32", source);
return false;
}
return true;
}
bool Validator::Materialize(const sem::Type* to,
const sem::Type* from,
const Source& source) const {
if (sem::Type::ConversionRank(from, to) == sem::Type::kNoConversion) {
AddError("cannot convert value of type '" + sem_.TypeNameOf(from) + "' to type '" +
sem_.TypeNameOf(to) + "'",
source);
return false;
}
return true;
}
bool Validator::VariableInitializer(const ast::Variable* v,
ast::StorageClass storage_class,
const sem::Type* storage_ty,
const sem::Expression* initializer) const {
auto* initializer_ty = initializer->Type();
auto* value_type = initializer_ty->UnwrapRef(); // Implicit load of RHS
// Value type has to match storage type
if (storage_ty != value_type) {
std::stringstream s;
s << "cannot initialize " << v->Kind() << " of type '" << sem_.TypeNameOf(storage_ty)
<< "' with value of type '" << sem_.TypeNameOf(initializer_ty) << "'";
AddError(s.str(), v->source);
return false;
}
if (v->Is<ast::Var>()) {
switch (storage_class) {
case ast::StorageClass::kPrivate:
case ast::StorageClass::kFunction:
break; // Allowed an initializer
default:
// https://gpuweb.github.io/gpuweb/wgsl/#var-and-let
// Optionally has an initializer expression, if the variable is in the
// private or function storage classes.
AddError("var of storage class '" + std::string(ast::ToString(storage_class)) +
"' cannot have an initializer. var initializers are only "
"supported for the storage classes "
"'private' and 'function'",
v->source);
return false;
}
}
return true;
}
bool Validator::StorageClassLayout(const sem::Type* store_ty,
ast::StorageClass sc,
Source source,
ValidTypeStorageLayouts& layouts) const {
// https://gpuweb.github.io/gpuweb/wgsl/#storage-class-layout-constraints
auto is_uniform_struct_or_array = [sc](const sem::Type* ty) {
return sc == ast::StorageClass::kUniform && ty->IsAnyOf<sem::Array, sem::Struct>();
};
auto is_uniform_struct = [sc](const sem::Type* ty) {
return sc == ast::StorageClass::kUniform && ty->Is<sem::Struct>();
};
auto required_alignment_of = [&](const sem::Type* ty) {
uint32_t actual_align = ty->Align();
uint32_t required_align = actual_align;
if (is_uniform_struct_or_array(ty)) {
required_align = utils::RoundUp(16u, actual_align);
}
return required_align;
};
auto member_name_of = [this](const sem::StructMember* sm) {
return symbols_.NameFor(sm->Declaration()->symbol);
};
// Cache result of type + storage class pair.
if (!layouts.emplace(store_ty, sc).second) {
return true;
}
if (!ast::IsHostShareable(sc)) {
return true;
}
if (auto* str = store_ty->As<sem::Struct>()) {
for (size_t i = 0; i < str->Members().size(); ++i) {
auto* const m = str->Members()[i];
uint32_t required_align = required_alignment_of(m->Type());
// Recurse into the member type.
if (!StorageClassLayout(m->Type(), sc, m->Declaration()->type->source, layouts)) {
AddNote("see layout of struct:\n" + str->Layout(symbols_),
str->Declaration()->source);
return false;
}
// Validate that member is at a valid byte offset
if (m->Offset() % required_align != 0) {
AddError("the offset of a struct member of type '" +
m->Type()->UnwrapRef()->FriendlyName(symbols_) +
"' in storage class '" + ast::ToString(sc) +
"' must be a multiple of " + std::to_string(required_align) +
" bytes, but '" + member_name_of(m) + "' is currently at offset " +
std::to_string(m->Offset()) + ". Consider setting @align(" +
std::to_string(required_align) + ") on this member",
m->Declaration()->source);
AddNote("see layout of struct:\n" + str->Layout(symbols_),
str->Declaration()->source);
if (auto* member_str = m->Type()->As<sem::Struct>()) {
AddNote("and layout of struct member:\n" + member_str->Layout(symbols_),
member_str->Declaration()->source);
}
return false;
}
// For uniform buffers, validate that the number of bytes between the
// previous member of type struct and the current is a multiple of 16
// bytes.
auto* const prev_member = (i == 0) ? nullptr : str->Members()[i - 1];
if (prev_member && is_uniform_struct(prev_member->Type())) {
const uint32_t prev_to_curr_offset = m->Offset() - prev_member->Offset();
if (prev_to_curr_offset % 16 != 0) {
AddError(
"uniform storage requires that the number of bytes between the "
"start of the previous member of type struct and the current "
"member be a multiple of 16 bytes, but there are currently " +
std::to_string(prev_to_curr_offset) + " bytes between '" +
member_name_of(prev_member) + "' and '" + member_name_of(m) +
"'. Consider setting @align(16) on this member",
m->Declaration()->source);
AddNote("see layout of struct:\n" + str->Layout(symbols_),
str->Declaration()->source);
auto* prev_member_str = prev_member->Type()->As<sem::Struct>();
AddNote("and layout of previous member struct:\n" +
prev_member_str->Layout(symbols_),
prev_member_str->Declaration()->source);
return false;
}
}
}
}
// For uniform buffer array members, validate that array elements are
// aligned to 16 bytes
if (auto* arr = store_ty->As<sem::Array>()) {
// Recurse into the element type.
// TODO(crbug.com/tint/1388): Ideally we'd pass the source for nested
// element type here, but we can't easily get that from the semantic node.
// We should consider recursing through the AST type nodes instead.
if (!StorageClassLayout(arr->ElemType(), sc, source, layouts)) {
return false;
}
if (sc == ast::StorageClass::kUniform) {
// We already validated that this array member is itself aligned to 16
// bytes above, so we only need to validate that stride is a multiple
// of 16 bytes.
if (arr->Stride() % 16 != 0) {
// Since WGSL has no stride attribute, try to provide a useful hint
// for how the shader author can resolve the issue.
std::string hint;
if (arr->ElemType()->is_scalar()) {
hint =
"Consider using a vector or struct as the element type "
"instead.";
} else if (auto* vec = arr->ElemType()->As<sem::Vector>();
vec && vec->type()->Size() == 4) {
hint = "Consider using a vec4 instead.";
} else if (arr->ElemType()->Is<sem::Struct>()) {
hint =
"Consider using the @size attribute on the last struct "
"member.";
} else {
hint =
"Consider wrapping the element type in a struct and using "
"the "
"@size attribute.";
}
AddError(
"uniform storage requires that array elements be aligned to 16 "
"bytes, but array element alignment is currently " +
std::to_string(arr->Stride()) + ". " + hint,
source);
return false;
}
}
}
return true;
}
bool Validator::StorageClassLayout(const sem::Variable* var,
ValidTypeStorageLayouts& layouts) const {
if (auto* str = var->Type()->UnwrapRef()->As<sem::Struct>()) {
if (!StorageClassLayout(str, var->StorageClass(), str->Declaration()->source, layouts)) {
AddNote("see declaration of variable", var->Declaration()->source);
return false;
}
} else {
Source source = var->Declaration()->source;
if (var->Declaration()->type) {
source = var->Declaration()->type->source;
}
if (!StorageClassLayout(var->Type()->UnwrapRef(), var->StorageClass(), source, layouts)) {
return false;
}
}
return true;
}
bool Validator::GlobalVariable(
const sem::GlobalVariable* global,
std::unordered_map<uint32_t, const sem::Variable*> constant_ids,
std::unordered_map<const sem::Type*, const Source&> atomic_composite_info) const {
auto* decl = global->Declaration();
bool ok = Switch(
decl, //
[&](const ast::Var* var) {
if (global->StorageClass() == ast::StorageClass::kNone) {
AddError("module-scope 'var' declaration must have a storage class", decl->source);
return false;
}
for (auto* attr : decl->attributes) {
bool is_shader_io_attribute =
attr->IsAnyOf<ast::BuiltinAttribute, ast::InterpolateAttribute,
ast::InvariantAttribute, ast::LocationAttribute>();
bool has_io_storage_class = global->StorageClass() == ast::StorageClass::kInput ||
global->StorageClass() == ast::StorageClass::kOutput;
if (!attr->IsAnyOf<ast::BindingAttribute, ast::GroupAttribute,
ast::InternalAttribute>() &&
(!is_shader_io_attribute || !has_io_storage_class)) {
AddError("attribute is not valid for module-scope 'var'", attr->source);
return false;
}
}
// https://gpuweb.github.io/gpuweb/wgsl/#variable-declaration
// The access mode always has a default, and except for variables in the
// storage storage class, must not be written.
if (global->StorageClass() != ast::StorageClass::kStorage &&
var->declared_access != ast::Access::kUndefined) {
AddError("only variables in <storage> storage class may declare an access mode",
var->source);
return false;
}
if (!AtomicVariable(global, atomic_composite_info)) {
return false;
}
return Var(global);
},
[&](const ast::Let*) {
if (!decl->attributes.empty()) {
AddError("attribute is not valid for module-scope 'let' declaration",
decl->attributes[0]->source);
return false;
}
return Let(global);
},
[&](const ast::Override*) {
for (auto* attr : decl->attributes) {
if (auto* id_attr = attr->As<ast::IdAttribute>()) {
uint32_t id = id_attr->value;
auto it = constant_ids.find(id);
if (it != constant_ids.end() && it->second != global) {
AddError("pipeline constant IDs must be unique", attr->source);
AddNote("a pipeline constant with an ID of " + std::to_string(id) +
" was previously declared here:",
ast::GetAttribute<ast::IdAttribute>(
it->second->Declaration()->attributes)
->source);
return false;
}
if (id > 65535) {
AddError("pipeline constant IDs must be between 0 and 65535", attr->source);
return false;
}
} else {
AddError("attribute is not valid for 'override' declaration", attr->source);
return false;
}
}
return Override(global);
},
[&](const ast::Const*) {
if (!decl->attributes.empty()) {
AddError("attribute is not valid for module-scope 'const' declaration",
decl->attributes[0]->source);
return false;
}
return Const(global);
},
[&](Default) {
TINT_ICE(Resolver, diagnostics_)
<< "Validator::GlobalVariable() called with a unknown variable type: "
<< decl->TypeInfo().name;
return false;
});
if (!ok) {
return false;
}
if (global->StorageClass() == ast::StorageClass::kFunction) {
AddError("module-scope 'var' must not use storage class 'function'", decl->source);
return false;
}
auto binding_point = decl->BindingPoint();
switch (global->StorageClass()) {
case ast::StorageClass::kUniform:
case ast::StorageClass::kStorage:
case ast::StorageClass::kHandle: {
// https://gpuweb.github.io/gpuweb/wgsl/#resource-interface
// Each resource variable must be declared with both group and binding
// attributes.
if (!binding_point) {
AddError("resource variables require @group and @binding attributes", decl->source);
return false;
}
break;
}
default:
if (binding_point.binding || binding_point.group) {
// https://gpuweb.github.io/gpuweb/wgsl/#attribute-binding
// Must only be applied to a resource variable
AddError("non-resource variables must not have @group or @binding attributes",
decl->source);
return false;
}
}
return true;
}
// https://gpuweb.github.io/gpuweb/wgsl/#atomic-types
// Atomic types may only be instantiated by variables in the workgroup storage
// class or by storage buffer variables with a read_write access mode.
bool Validator::AtomicVariable(
const sem::Variable* var,
std::unordered_map<const sem::Type*, const Source&> atomic_composite_info) const {
auto sc = var->StorageClass();
auto* decl = var->Declaration();
auto access = var->Access();
auto* type = var->Type()->UnwrapRef();
auto source = decl->type ? decl->type->source : decl->source;
if (type->Is<sem::Atomic>()) {
if (sc != ast::StorageClass::kWorkgroup && sc != ast::StorageClass::kStorage) {
AddError("atomic variables must have <storage> or <workgroup> storage class", source);
return false;
}
} else if (type->IsAnyOf<sem::Struct, sem::Array>()) {
auto found = atomic_composite_info.find(type);
if (found != atomic_composite_info.end()) {
if (sc != ast::StorageClass::kStorage && sc != ast::StorageClass::kWorkgroup) {
AddError("atomic variables must have <storage> or <workgroup> storage class",
source);
AddNote("atomic sub-type of '" + sem_.TypeNameOf(type) + "' is declared here",
found->second);
return false;
} else if (sc == ast::StorageClass::kStorage && access != ast::Access::kReadWrite) {
AddError(
"atomic variables in <storage> storage class must have read_write "
"access mode",
source);
AddNote("atomic sub-type of '" + sem_.TypeNameOf(type) + "' is declared here",
found->second);
return false;
}
}
}
return true;
}
bool Validator::Variable(const sem::Variable* v) const {
auto* decl = v->Declaration();
return Switch(
decl, //
[&](const ast::Var*) { return Var(v); }, //
[&](const ast::Let*) { return Let(v); }, //
[&](const ast::Override*) { return Override(v); }, //
[&](const ast::Const*) { return true; }, //
[&](Default) {
TINT_ICE(Resolver, diagnostics_)
<< "Validator::Variable() called with a unknown variable type: "
<< decl->TypeInfo().name;
return false;
});
}
bool Validator::Var(const sem::Variable* v) const {
auto* var = v->Declaration()->As<ast::Var>();
auto* storage_ty = v->Type()->UnwrapRef();
if (v->Is<sem::GlobalVariable>()) {
auto name = symbols_.NameFor(var->symbol);
if (sem::ParseBuiltinType(name) != sem::BuiltinType::kNone) {
AddError("'" + name + "' is a builtin and cannot be redeclared as a module-scope 'var'",
var->source);
return false;
}
}
if (!IsStorable(storage_ty)) {
AddError(sem_.TypeNameOf(storage_ty) + " cannot be used as the type of a var", var->source);
return false;
}
if (v->Is<sem::LocalVariable>() &&
IsValidationEnabled(var->attributes, ast::DisabledValidation::kIgnoreStorageClass)) {
if (!v->Type()->UnwrapRef()->IsConstructible()) {
AddError("function-scope 'var' must have a constructible type",
var->type ? var->type->source : var->source);
return false;
}
}
if (storage_ty->is_handle() && var->declared_storage_class != ast::StorageClass::kNone) {
// https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables
// If the store type is a texture type or a sampler type, then the
// variable declaration must not have a storage class attribute. The
// storage class will always be handle.
AddError(
"variables of type '" + sem_.TypeNameOf(storage_ty) + "' must not have a storage class",
var->source);
return false;
}
if (IsValidationEnabled(var->attributes, ast::DisabledValidation::kIgnoreStorageClass) &&
(var->declared_storage_class == ast::StorageClass::kInput ||
var->declared_storage_class == ast::StorageClass::kOutput)) {
AddError("invalid use of input/output storage class", var->source);
return false;
}
return true;
}
bool Validator::Let(const sem::Variable* v) const {
auto* decl = v->Declaration();
auto* storage_ty = v->Type()->UnwrapRef();
if (v->Is<sem::GlobalVariable>()) {
auto name = symbols_.NameFor(decl->symbol);
if (sem::ParseBuiltinType(name) != sem::BuiltinType::kNone) {
AddError("'" + name + "' is a builtin and cannot be redeclared as a 'let'",
decl->source);
return false;
}
}
if (!(storage_ty->IsConstructible() || storage_ty->Is<sem::Pointer>())) {
AddError(sem_.TypeNameOf(storage_ty) + " cannot be used as the type of a 'let'",
decl->source);
return false;
}
return true;
}
bool Validator::Override(const sem::Variable* v) const {
auto* decl = v->Declaration();
auto* storage_ty = v->Type()->UnwrapRef();
auto name = symbols_.NameFor(decl->symbol);
if (sem::ParseBuiltinType(name) != sem::BuiltinType::kNone) {
AddError("'" + name + "' is a builtin and cannot be redeclared as a 'override'",
decl->source);
return false;
}
if (!storage_ty->is_scalar()) {
AddError(sem_.TypeNameOf(storage_ty) + " cannot be used as the type of a 'override'",
decl->source);
return false;
}
return true;
}
bool Validator::Const(const sem::Variable* v) const {
auto* decl = v->Declaration();
auto name = symbols_.NameFor(decl->symbol);
if (sem::ParseBuiltinType(name) != sem::BuiltinType::kNone) {
AddError("'" + name + "' is a builtin and cannot be redeclared as a 'const'", decl->source);
return false;
}
return true;
}
bool Validator::Parameter(const ast::Function* func, const sem::Variable* var) const {
auto* decl = var->Declaration();
if (IsValidationDisabled(decl->attributes, ast::DisabledValidation::kFunctionParameter)) {
return true;
}
for (auto* attr : decl->attributes) {
if (!func->IsEntryPoint() && !attr->Is<ast::InternalAttribute>()) {
AddError("attribute is not valid for non-entry point function parameters",
attr->source);
return false;
}
if (!attr->IsAnyOf<ast::BuiltinAttribute, ast::InvariantAttribute, ast::LocationAttribute,
ast::InterpolateAttribute, ast::InternalAttribute>() &&
(IsValidationEnabled(decl->attributes,
ast::DisabledValidation::kEntryPointParameter))) {
AddError("attribute is not valid for function parameters", attr->source);
return false;
}
}
if (auto* ref = var->Type()->As<sem::Pointer>()) {
auto sc = ref->StorageClass();
if (!(sc == ast::StorageClass::kFunction || sc == ast::StorageClass::kPrivate ||
sc == ast::StorageClass::kWorkgroup) &&
IsValidationEnabled(decl->attributes, ast::DisabledValidation::kIgnoreStorageClass)) {
std::stringstream ss;
ss << "function parameter of pointer type cannot be in '" << sc << "' storage class";
AddError(ss.str(), decl->source);
return false;
}
}
if (IsPlain(var->Type())) {
if (!var->Type()->IsConstructible()) {
AddError("type of function parameter must be constructible", decl->source);
return false;
}
} else if (!var->Type()->IsAnyOf<sem::Texture, sem::Sampler, sem::Pointer>()) {
AddError("type of function parameter cannot be " + sem_.TypeNameOf(var->Type()),
decl->source);
return false;
}
return true;
}
bool Validator::BuiltinAttribute(const ast::BuiltinAttribute* attr,
const sem::Type* storage_ty,
ast::PipelineStage stage,
const bool is_input) const {
auto* type = storage_ty->UnwrapRef();
std::stringstream stage_name;
stage_name << stage;
bool is_stage_mismatch = false;
bool is_output = !is_input;
switch (attr->builtin) {
case ast::Builtin::kPosition:
if (stage != ast::PipelineStage::kNone &&
!((is_input && stage == ast::PipelineStage::kFragment) ||
(is_output && stage == ast::PipelineStage::kVertex))) {
is_stage_mismatch = true;
}
if (!(type->is_float_vector() && type->As<sem::Vector>()->Width() == 4)) {
AddError("store type of " + attr_to_str(attr) + " must be 'vec4<f32>'",
attr->source);
return false;
}
break;
case ast::Builtin::kGlobalInvocationId:
case ast::Builtin::kLocalInvocationId:
case ast::Builtin::kNumWorkgroups:
case ast::Builtin::kWorkgroupId:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kCompute && is_input)) {
is_stage_mismatch = true;
}
if (!(type->is_unsigned_integer_vector() && type->As<sem::Vector>()->Width() == 3)) {
AddError("store type of " + attr_to_str(attr) + " must be 'vec3<u32>'",
attr->source);
return false;
}
break;
case ast::Builtin::kFragDepth:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kFragment && !is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::F32>()) {
AddError("store type of " + attr_to_str(attr) + " must be 'f32'", attr->source);
return false;
}
break;
case ast::Builtin::kFrontFacing:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kFragment && is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::Bool>()) {
AddError("store type of " + attr_to_str(attr) + " must be 'bool'", attr->source);
return false;
}
break;
case ast::Builtin::kLocalInvocationIndex:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kCompute && is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::U32>()) {
AddError("store type of " + attr_to_str(attr) + " must be 'u32'", attr->source);
return false;
}
break;
case ast::Builtin::kVertexIndex:
case ast::Builtin::kInstanceIndex:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kVertex && is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::U32>()) {
AddError("store type of " + attr_to_str(attr) + " must be 'u32'", attr->source);
return false;
}
break;
case ast::Builtin::kSampleMask:
if (stage != ast::PipelineStage::kNone && !(stage == ast::PipelineStage::kFragment)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::U32>()) {
AddError("store type of " + attr_to_str(attr) + " must be 'u32'", attr->source);
return false;
}
break;
case ast::Builtin::kSampleIndex:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kFragment && is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::U32>()) {
AddError("store type of " + attr_to_str(attr) + " must be 'u32'", attr->source);
return false;
}
break;
default:
break;
}
if (is_stage_mismatch) {
AddError(attr_to_str(attr) + " cannot be used in " +
(is_input ? "input of " : "output of ") + stage_name.str() + " pipeline stage",
attr->source);
return false;
}
return true;
}
bool Validator::InterpolateAttribute(const ast::InterpolateAttribute* attr,
const sem::Type* storage_ty) const {
auto* type = storage_ty->UnwrapRef();
if (type->is_integer_scalar_or_vector() && attr->type != ast::InterpolationType::kFlat) {
AddError("interpolation type must be 'flat' for integral user-defined IO types",
attr->source);
return false;
}
if (attr->type == ast::InterpolationType::kFlat &&
attr->sampling != ast::InterpolationSampling::kNone) {
AddError("flat interpolation attribute must not have a sampling parameter", attr->source);
return false;
}
return true;
}
bool Validator::Function(const sem::Function* func, ast::PipelineStage stage) const {
auto* decl = func->Declaration();
auto name = symbols_.NameFor(decl->symbol);
if (sem::ParseBuiltinType(name) != sem::BuiltinType::kNone) {
AddError("'" + name + "' is a builtin and cannot be redeclared as a function",
decl->source);
return false;
}
for (auto* attr : decl->attributes) {
if (attr->Is<ast::WorkgroupAttribute>()) {
if (decl->PipelineStage() != ast::PipelineStage::kCompute) {
AddError("the workgroup_size attribute is only valid for compute stages",
attr->source);
return false;
}
} else if (!attr->IsAnyOf<ast::StageAttribute, ast::InternalAttribute>()) {
AddError("attribute is not valid for functions", attr->source);
return false;
}
}
if (decl->params.size() > 255) {
AddError("functions may declare at most 255 parameters", decl->source);
return false;
}
if (!func->ReturnType()->Is<sem::Void>()) {
if (!func->ReturnType()->IsConstructible()) {
AddError("function return type must be a constructible type",
decl->return_type->source);
return false;
}
if (decl->body) {
sem::Behaviors behaviors{sem::Behavior::kNext};
if (auto* last = decl->body->Last()) {
behaviors = sem_.Get(last)->Behaviors();
}
if (behaviors.Contains(sem::Behavior::kNext)) {
AddError("missing return at end of function", decl->source);
return false;
}
} else if (IsValidationEnabled(decl->attributes,
ast::DisabledValidation::kFunctionHasNoBody)) {
TINT_ICE(Resolver, diagnostics_)
<< "Function " << symbols_.NameFor(decl->symbol) << " has no body";
}
for (auto* attr : decl->return_type_attributes) {
if (!decl->IsEntryPoint()) {
AddError("attribute is not valid for non-entry point function return types",
attr->source);
return false;
}
if (!attr->IsAnyOf<ast::BuiltinAttribute, ast::InternalAttribute,
ast::LocationAttribute, ast::InterpolateAttribute,
ast::InvariantAttribute>() &&
(IsValidationEnabled(decl->attributes,
ast::DisabledValidation::kEntryPointParameter) &&
IsValidationEnabled(decl->attributes,
ast::DisabledValidation::kFunctionParameter))) {
AddError("attribute is not valid for entry point return types", attr->source);
return false;
}
}
}
if (decl->IsEntryPoint()) {
if (!EntryPoint(func, stage)) {
return false;
}
}
// https://www.w3.org/TR/WGSL/#behaviors-rules
// a function behavior is always one of {}, {Next}, {Discard}, or
// {Next, Discard}.
if (func->Behaviors() != sem::Behaviors{} && // NOLINT: bad warning
func->Behaviors() != sem::Behavior::kNext && func->Behaviors() != sem::Behavior::kDiscard &&
func->Behaviors() != sem::Behaviors{sem::Behavior::kNext, //
sem::Behavior::kDiscard}) {
TINT_ICE(Resolver, diagnostics_)
<< "function '" << name << "' behaviors are: " << func->Behaviors();
}
return true;
}
bool Validator::EntryPoint(const sem::Function* func, ast::PipelineStage stage) const {
auto* decl = func->Declaration();
// Use a lambda to validate the entry point attributes for a type.
// Persistent state is used to track which builtins and locations have
// already been seen, in order to catch conflicts.
// TODO(jrprice): This state could be stored in sem::Function instead, and
// then passed to sem::Function since it would be useful there too.
std::unordered_set<ast::Builtin> builtins;
std::unordered_set<uint32_t> locations;
enum class ParamOrRetType {
kParameter,
kReturnType,
};
// Inner lambda that is applied to a type and all of its members.
auto validate_entry_point_attributes_inner = [&](const ast::AttributeList& attrs,
const sem::Type* ty, Source source,
ParamOrRetType param_or_ret,
bool is_struct_member) {
// Scan attributes for pipeline IO attributes.
// Check for overlap with attributes that have been seen previously.
const ast::Attribute* pipeline_io_attribute = nullptr;
const ast::InterpolateAttribute* interpolate_attribute = nullptr;
const ast::InvariantAttribute* invariant_attribute = nullptr;
for (auto* attr : attrs) {
auto is_invalid_compute_shader_attribute = false;
if (auto* builtin = attr->As<ast::BuiltinAttribute>()) {
if (pipeline_io_attribute) {
AddError("multiple entry point IO attributes", attr->source);
AddNote("previously consumed " + attr_to_str(pipeline_io_attribute),
pipeline_io_attribute->source);
return false;
}
pipeline_io_attribute = attr;
if (builtins.count(builtin->builtin)) {
AddError(attr_to_str(builtin) +
" attribute appears multiple times as pipeline " +
(param_or_ret == ParamOrRetType::kParameter ? "input" : "output"),
decl->source);
return false;
}
if (!BuiltinAttribute(builtin, ty, stage,
/* is_input */ param_or_ret == ParamOrRetType::kParameter)) {
return false;
}
builtins.emplace(builtin->builtin);
} else if (auto* location = attr->As<ast::LocationAttribute>()) {
if (pipeline_io_attribute) {
AddError("multiple entry point IO attributes", attr->source);
AddNote("previously consumed " + attr_to_str(pipeline_io_attribute),
pipeline_io_attribute->source);
return false;
}
pipeline_io_attribute = attr;
bool is_input = param_or_ret == ParamOrRetType::kParameter;
if (!LocationAttribute(location, ty, locations, stage, source, is_input)) {
return false;
}
} else if (auto* interpolate = attr->As<ast::InterpolateAttribute>()) {
if (decl->PipelineStage() == ast::PipelineStage::kCompute) {
is_invalid_compute_shader_attribute = true;
} else if (!InterpolateAttribute(interpolate, ty)) {
return false;
}
interpolate_attribute = interpolate;
} else if (auto* invariant = attr->As<ast::InvariantAttribute>()) {
if (decl->PipelineStage() == ast::PipelineStage::kCompute) {
is_invalid_compute_shader_attribute = true;
}
invariant_attribute = invariant;
}
if (is_invalid_compute_shader_attribute) {
std::string input_or_output =
param_or_ret == ParamOrRetType::kParameter ? "inputs" : "output";
AddError("attribute is not valid for compute shader " + input_or_output,
attr->source);
return false;
}
}
if (IsValidationEnabled(attrs, ast::DisabledValidation::kEntryPointParameter)) {
if (is_struct_member && ty->Is<sem::Struct>()) {
AddError("nested structures cannot be used for entry point IO", source);
return false;
}
if (!ty->Is<sem::Struct>() && !pipeline_io_attribute) {
std::string err = "missing entry point IO attribute";
if (!is_struct_member) {
err += (param_or_ret == ParamOrRetType::kParameter ? " on parameter"
: " on return type");
}
AddError(err, source);
return false;
}
if (pipeline_io_attribute && pipeline_io_attribute->Is<ast::LocationAttribute>()) {
if (ty->is_integer_scalar_or_vector() && !interpolate_attribute) {
if (decl->PipelineStage() == ast::PipelineStage::kVertex &&
param_or_ret == ParamOrRetType::kReturnType) {
AddError(
"integral user-defined vertex outputs must have a flat "
"interpolation attribute",
source);
return false;
}
if (decl->PipelineStage() == ast::PipelineStage::kFragment &&
param_or_ret == ParamOrRetType::kParameter) {
AddError(
"integral user-defined fragment inputs must have a flat "
"interpolation attribute",
source);
return false;
}
}
}
if (interpolate_attribute) {
if (!pipeline_io_attribute ||
!pipeline_io_attribute->Is<ast::LocationAttribute>()) {
AddError("interpolate attribute must only be used with @location",
interpolate_attribute->source);
return false;
}
}
if (invariant_attribute) {
bool has_position = false;
if (pipeline_io_attribute) {
if (auto* builtin = pipeline_io_attribute->As<ast::BuiltinAttribute>()) {
has_position = (builtin->builtin == ast::Builtin::kPosition);
}
}
if (!has_position) {
AddError(
"invariant attribute must only be applied to a position "
"builtin",
invariant_attribute->source);
return false;
}
}
}
return true;
};
// Outer lambda for validating the entry point attributes for a type.
auto validate_entry_point_attributes = [&](const ast::AttributeList& attrs, const sem::Type* ty,
Source source, ParamOrRetType param_or_ret) {
if (!validate_entry_point_attributes_inner(attrs, ty, source, param_or_ret,
/*is_struct_member*/ false)) {
return false;
}
if (auto* str = ty->As<sem::Struct>()) {
for (auto* member : str->Members()) {
if (!validate_entry_point_attributes_inner(
member->Declaration()->attributes, member->Type(),
member->Declaration()->source, param_or_ret,
/*is_struct_member*/ true)) {
AddNote("while analysing entry point '" + symbols_.NameFor(decl->symbol) + "'",
decl->source);
return false;
}
}
}
return true;
};
for (auto* param : func->Parameters()) {
auto* param_decl = param->Declaration();
if (!validate_entry_point_attributes(param_decl->attributes, param->Type(),
param_decl->source, ParamOrRetType::kParameter)) {
return false;
}
}
// Clear IO sets after parameter validation. Builtin and location attributes
// in return types should be validated independently from those used in
// parameters.
builtins.clear();
locations.clear();
if (!func->ReturnType()->Is<sem::Void>()) {
if (!validate_entry_point_attributes(decl->return_type_attributes, func->ReturnType(),
decl->source, ParamOrRetType::kReturnType)) {
return false;
}
}
if (decl->PipelineStage() == ast::PipelineStage::kVertex &&
builtins.count(ast::Builtin::kPosition) == 0) {
// Check module-scope variables, as the SPIR-V sanitizer generates these.
bool found = false;
for (auto* global : func->TransitivelyReferencedGlobals()) {
if (auto* builtin =
ast::GetAttribute<ast::BuiltinAttribute>(global->Declaration()->attributes)) {
if (builtin->builtin == ast::Builtin::kPosition) {
found = true;
break;
}
}
}
if (!found) {
AddError(
"a vertex shader must include the 'position' builtin in its return "
"type",
decl->source);
return false;
}
}
if (decl->PipelineStage() == ast::PipelineStage::kCompute) {
if (!ast::HasAttribute<ast::WorkgroupAttribute>(decl->attributes)) {
AddError(
"a compute shader must include 'workgroup_size' in its "
"attributes",
decl->source);
return false;
}
}
// Validate there are no resource variable binding collisions
std::unordered_map<sem::BindingPoint, const ast::Variable*> binding_points;
for (auto* global : func->TransitivelyReferencedGlobals()) {
auto* var_decl = global->Declaration()->As<ast::Var>();
if (!var_decl || !var_decl->BindingPoint()) {
continue;
}
auto bp = global->BindingPoint();
auto res = binding_points.emplace(bp, var_decl);
if (!res.second &&
IsValidationEnabled(decl->attributes,
ast::DisabledValidation::kBindingPointCollision) &&
IsValidationEnabled(res.first->second->attributes,
ast::DisabledValidation::kBindingPointCollision)) {
// https://gpuweb.github.io/gpuweb/wgsl/#resource-interface
// Bindings must not alias within a shader stage: two different
// variables in the resource interface of a given shader must not have
// the same group and binding values, when considered as a pair of
// values.
auto func_name = symbols_.NameFor(decl->symbol);
AddError("entry point '" + func_name +
"' references multiple variables that use the "
"same resource binding @group(" +
std::to_string(bp.group) + "), @binding(" + std::to_string(bp.binding) +
")",
var_decl->source);
AddNote("first resource binding usage declared here", res.first->second->source);
return false;
}
}
return true;
}
bool Validator::Statements(const ast::StatementList& stmts) const {
for (auto* stmt : stmts) {
if (!sem_.Get(stmt)->IsReachable()) {
/// TODO(https://github.com/gpuweb/gpuweb/issues/2378): This may need to
/// become an error.
AddWarning("code is unreachable", stmt->source);
break;
}
}
return true;
}
bool Validator::Bitcast(const ast::BitcastExpression* cast, const sem::Type* to) const {
auto* from = sem_.TypeOf(cast->expr)->UnwrapRef();
if (!from->is_numeric_scalar_or_vector()) {
AddError("'" + sem_.TypeNameOf(from) + "' cannot be bitcast", cast->expr->source);
return false;
}
if (!to->is_numeric_scalar_or_vector()) {
AddError("cannot bitcast to '" + sem_.TypeNameOf(to) + "'", cast->type->source);
return false;
}
auto width = [&](const sem::Type* ty) {
if (auto* vec = ty->As<sem::Vector>()) {
return vec->Width();
}
return 1u;
};
if (width(from) != width(to)) {
AddError(
"cannot bitcast from '" + sem_.TypeNameOf(from) + "' to '" + sem_.TypeNameOf(to) + "'",
cast->source);
return false;
}
return true;
}
bool Validator::BreakStatement(const sem::Statement* stmt,
sem::Statement* current_statement) const {
if (!stmt->FindFirstParent<sem::LoopBlockStatement, sem::CaseStatement>()) {
AddError("break statement must be in a loop or switch case", stmt->Declaration()->source);
return false;
}
if (auto* continuing = ClosestContinuing(/*stop_at_loop*/ true, current_statement)) {
auto fail = [&](const char* note_msg, const Source& note_src) {
constexpr const char* kErrorMsg =
"break statement in a continuing block must be the single statement "
"of an if statement's true or false block, and that if statement "
"must be the last statement of the continuing block";
AddError(kErrorMsg, stmt->Declaration()->source);
AddNote(note_msg, note_src);
return false;
};
if (auto* block = stmt->Parent()->As<sem::BlockStatement>()) {
auto* block_parent = block->Parent();
auto* if_stmt = block_parent->As<sem::IfStatement>();
if (!if_stmt) {
return fail("break statement is not directly in if statement block",
stmt->Declaration()->source);
}
if (block->Declaration()->statements.size() != 1) {
return fail("if statement block contains multiple statements",
block->Declaration()->source);
}
if (if_stmt->Parent()->Is<sem::IfStatement>()) {
return fail("else has condition", if_stmt->Declaration()->source);
}
bool el_contains_break = block->Declaration() == if_stmt->Declaration()->else_statement;
if (el_contains_break) {
if (auto* true_block = if_stmt->Declaration()->body; !true_block->Empty()) {
return fail("non-empty true block", true_block->source);
}
} else {
auto* else_stmt = if_stmt->Declaration()->else_statement;
if (else_stmt) {
return fail("non-empty false block", else_stmt->source);
}
}
if (if_stmt->Parent()->Declaration() != continuing) {
return fail(
"if statement containing break statement is not directly in "
"continuing block",
if_stmt->Declaration()->source);
}
if (auto* cont_block = continuing->As<ast::BlockStatement>()) {
if (if_stmt->Declaration() != cont_block->Last()) {
return fail(
"if statement containing break statement is not the last "
"statement of the continuing block",
if_stmt->Declaration()->source);
}
}
}
}
return true;
}
bool Validator::ContinueStatement(const sem::Statement* stmt,
sem::Statement* current_statement) const {
if (auto* continuing = ClosestContinuing(/*stop_at_loop*/ true, current_statement)) {
AddError("continuing blocks must not contain a continue statement",
stmt->Declaration()->source);
if (continuing != stmt->Declaration() && continuing != stmt->Parent()->Declaration()) {
AddNote("see continuing block here", continuing->source);
}
return false;
}
if (!stmt->FindFirstParent<sem::LoopBlockStatement>()) {
AddError("continue statement must be in a loop", stmt->Declaration()->source);
return false;
}
return true;
}
bool Validator::Call(const sem::Call* call, sem::Statement* current_statement) const {
auto* expr = call->Declaration();
bool is_call_stmt =
current_statement && Is<ast::CallStatement>(current_statement->Declaration(),
[&](auto* stmt) { return stmt->expr == expr; });
return Switch(
call->Target(), //
[&](const sem::TypeConversion*) {
if (is_call_stmt) {
AddError("type conversion evaluated but not used", call->Declaration()->source);
return false;
}
return true;
},
[&](const sem::TypeConstructor* ctor) {
if (is_call_stmt) {
AddError("type constructor evaluated but not used", call->Declaration()->source);
return false;
}
return Switch(
ctor->ReturnType(), //
[&](const sem::Array* arr) { return ArrayConstructor(expr, arr); },
[&](const sem::Struct* str) { return StructureConstructor(expr, str); },
[&](Default) { return true; });
},
[&](Default) { return true; });
}
bool Validator::DiscardStatement(const sem::Statement* stmt,
sem::Statement* current_statement) const {
if (auto* continuing = ClosestContinuing(/*stop_at_loop*/ false, current_statement)) {
AddError("continuing blocks must not contain a discard statement",
stmt->Declaration()->source);
if (continuing != stmt->Declaration() && continuing != stmt->Parent()->Declaration()) {
AddNote("see continuing block here", continuing->source);
}
return false;
}
return true;
}
bool Validator::FallthroughStatement(const sem::Statement* stmt) const {
if (auto* block = As<sem::BlockStatement>(stmt->Parent())) {
if (auto* c = As<sem::CaseStatement>(block->Parent())) {
if (block->Declaration()->Last() == stmt->Declaration()) {
if (auto* s = As<sem::SwitchStatement>(c->Parent())) {
if (c->Declaration() != s->Declaration()->body.back()) {
return true;
}
AddError(
"a fallthrough statement must not be used in the last switch "
"case",
stmt->Declaration()->source);
return false;
}
}
}
}
AddError("fallthrough must only be used as the last statement of a case block",
stmt->Declaration()->source);
return false;
}
bool Validator::LoopStatement(const sem::LoopStatement* stmt) const {
if (stmt->Behaviors().Empty()) {
AddError("loop does not exit", stmt->Declaration()->source.Begin());
return false;
}
return true;
}
bool Validator::ForLoopStatement(const sem::ForLoopStatement* stmt) const {
if (stmt->Behaviors().Empty()) {
AddError("for-loop does not exit", stmt->Declaration()->source.Begin());
return false;
}
if (auto* cond = stmt->Condition()) {
auto* cond_ty = cond->Type()->UnwrapRef();
if (!cond_ty->Is<sem::Bool>()) {
AddError("for-loop condition must be bool, got " + sem_.TypeNameOf(cond_ty),
stmt->Condition()->Declaration()->source);
return false;
}
}
return true;
}
bool Validator::WhileStatement(const sem::WhileStatement* stmt) const {
if (stmt->Behaviors().Empty()) {
AddError("while does not exit", stmt->Declaration()->source.Begin());
return false;
}
if (auto* cond = stmt->Condition()) {
auto* cond_ty = cond->Type()->UnwrapRef();
if (!cond_ty->Is<sem::Bool>()) {
AddError("while condition must be bool, got " + sem_.TypeNameOf(cond_ty),
stmt->Condition()->Declaration()->source);
return false;
}
}
return true;
}
bool Validator::IfStatement(const sem::IfStatement* stmt) const {
auto* cond_ty = stmt->Condition()->Type()->UnwrapRef();
if (!cond_ty->Is<sem::Bool>()) {
AddError("if statement condition must be bool, got " + sem_.TypeNameOf(cond_ty),
stmt->Condition()->Declaration()->source);
return false;
}
return true;
}
bool Validator::BuiltinCall(const sem::Call* call) const {
if (call->Type()->Is<sem::Void>()) {
bool is_call_statement = false;
if (auto* call_stmt = As<ast::CallStatement>(call->Stmt()->Declaration())) {
if (call_stmt->expr == call->Declaration()) {
is_call_statement = true;
}
}
if (!is_call_statement) {
// https://gpuweb.github.io/gpuweb/wgsl/#function-call-expr
// If the called function does not return a value, a function call
// statement should be used instead.
auto* ident = call->Declaration()->target.name;
auto name = symbols_.NameFor(ident->symbol);
AddError("builtin '" + name + "' does not return a value", call->Declaration()->source);
return false;
}
}
return true;
}
bool Validator::TextureBuiltinFunction(const sem::Call* call) const {
auto* builtin = call->Target()->As<sem::Builtin>();
if (!builtin) {
return false;
}
std::string func_name = builtin->str();
auto& signature = builtin->Signature();
auto check_arg_is_constexpr = [&](sem::ParameterUsage usage, int min, int max) {
auto signed_index = signature.IndexOf(usage);
if (signed_index < 0) {
return true;
}
auto index = static_cast<size_t>(signed_index);
std::string name = sem::str(usage);
auto* arg = call->Arguments()[index];
if (auto values = arg->ConstantValue()) {
// Assert that the constant values are of the expected type.
if (!values->Type()->is_integer_scalar_or_vector()) {
TINT_ICE(Resolver, diagnostics_)
<< "failed to resolve '" + func_name + "' " << name << " parameter type";
return false;
}
// Currently const_expr is restricted to literals and type constructors.
// Check that that's all we have for the parameter.
bool is_const_expr = true;
ast::TraverseExpressions(
arg->Declaration(), diagnostics_, [&](const ast::Expression* e) {
if (e->IsAnyOf<ast::LiteralExpression, ast::CallExpression>()) {
return ast::TraverseAction::Descend;
}
is_const_expr = false;
return ast::TraverseAction::Stop;
});
if (is_const_expr) {
if (auto* vector = builtin->Parameters()[index]->Type()->As<sem::Vector>()) {
for (size_t i = 0; i < vector->Width(); i++) {
auto value = values->Index(i)->As<AInt>();
if (value < min || value > max) {
AddError("each component of the " + name +
" argument must be at least " + std::to_string(min) +
" and at most " + std::to_string(max) + ". " + name +
" component " + std::to_string(i) + " is " +
std::to_string(value),
arg->Declaration()->source);
return false;
}
}
} else {
auto value = values->As<AInt>();
if (value < min || value > max) {
AddError("the " + name + " argument must be at least " +
std::to_string(min) + " and at most " + std::to_string(max) +
". " + name + " is " + std::to_string(value),
arg->Declaration()->source);
return false;
}
}
return true;
}
}
AddError("the " + name + " argument must be a const_expression",
arg->Declaration()->source);
return false;
};
return check_arg_is_constexpr(sem::ParameterUsage::kOffset, -8, 7) &&
check_arg_is_constexpr(sem::ParameterUsage::kComponent, 0, 3);
}
bool Validator::RequiredExtensionForBuiltinFunction(
const sem::Call* call,
const ast::Extensions& enabled_extensions) const {
const auto* builtin = call->Target()->As<sem::Builtin>();
if (!builtin) {
return true;
}
const auto extension = builtin->RequiredExtension();
if (extension == ast::Extension::kNone) {
return true;
}
if (!enabled_extensions.contains(extension)) {
AddError("cannot call built-in function '" + std::string(builtin->str()) +
"' without extension " + ast::str(extension),
call->Declaration()->source);
return false;
}
return true;
}
bool Validator::FunctionCall(const sem::Call* call, sem::Statement* current_statement) const {
auto* decl = call->Declaration();
auto* target = call->Target()->As<sem::Function>();
auto sym = decl->target.name->symbol;
auto name = symbols_.NameFor(sym);
if (!current_statement) { // Function call at module-scope.
AddError("functions cannot be called at module-scope", decl->source);
return false;
}
if (target->Declaration()->IsEntryPoint()) {
// https://www.w3.org/TR/WGSL/#function-restriction
// An entry point must never be the target of a function call.
AddError("entry point functions cannot be the target of a function call", decl->source);
return false;
}
if (decl->args.size() != target->Parameters().size()) {
bool more = decl->args.size() > target->Parameters().size();
AddError("too " + (more ? std::string("many") : std::string("few")) +
" arguments in call to '" + name + "', expected " +
std::to_string(target->Parameters().size()) + ", got " +
std::to_string(call->Arguments().size()),
decl->source);
return false;
}
for (size_t i = 0; i < call->Arguments().size(); ++i) {
const sem::Variable* param = target->Parameters()[i];
const ast::Expression* arg_expr = decl->args[i];
auto* param_type = param->Type();
auto* arg_type = sem_.TypeOf(arg_expr)->UnwrapRef();
if (param_type != arg_type) {
AddError("type mismatch for argument " + std::to_string(i + 1) + " in call to '" +
name + "', expected '" + sem_.TypeNameOf(param_type) + "', got '" +
sem_.TypeNameOf(arg_type) + "'",
arg_expr->source);
return false;
}
if (param_type->Is<sem::Pointer>()) {
auto is_valid = false;
if (auto* ident_expr = arg_expr->As<ast::IdentifierExpression>()) {
auto* var = sem_.ResolvedSymbol<sem::Variable>(ident_expr);
if (!var) {
TINT_ICE(Resolver, diagnostics_) << "failed to resolve identifier";
return false;
}
if (var->Is<sem::Parameter>()) {
is_valid = true;
}
} else if (auto* unary = arg_expr->As<ast::UnaryOpExpression>()) {
if (unary->op == ast::UnaryOp::kAddressOf) {
if (auto* ident_unary = unary->expr->As<ast::IdentifierExpression>()) {
auto* var = sem_.ResolvedSymbol<sem::Variable>(ident_unary);
if (!var) {
TINT_ICE(Resolver, diagnostics_) << "failed to resolve identifier";
return false;
}
is_valid = true;
}
}
}
if (!is_valid &&
IsValidationEnabled(param->Declaration()->attributes,
ast::DisabledValidation::kIgnoreInvalidPointerArgument)) {
AddError(
"expected an address-of expression of a variable identifier "
"expression or a function parameter",
arg_expr->source);
return false;
}
}
}
if (call->Type()->Is<sem::Void>()) {
bool is_call_statement = false;
if (auto* call_stmt = As<ast::CallStatement>(call->Stmt()->Declaration())) {
if (call_stmt->expr == call->Declaration()) {
is_call_statement = true;
}
}
if (!is_call_statement) {
// https://gpuweb.github.io/gpuweb/wgsl/#function-call-expr
// If the called function does not return a value, a function call
// statement should be used instead.
AddError("function '" + name + "' does not return a value", decl->source);
return false;
}
}
if (call->Behaviors().Contains(sem::Behavior::kDiscard)) {
if (auto* continuing = ClosestContinuing(/*stop_at_loop*/ false, current_statement)) {
AddError("cannot call a function that may discard inside a continuing block",
call->Declaration()->source);
if (continuing != call->Stmt()->Declaration() &&
continuing != call->Stmt()->Parent()->Declaration()) {
AddNote("see continuing block here", continuing->source);
}
return false;
}
}
return true;
}
bool Validator::StructureConstructor(const ast::CallExpression* ctor,
const sem::Struct* struct_type) const {
if (!struct_type->IsConstructible()) {
AddError("struct constructor has non-constructible type", ctor->source);
return false;
}
if (ctor->args.size() > 0) {
if (ctor->args.size() != struct_type->Members().size()) {
std::string fm = ctor->args.size() < struct_type->Members().size() ? "few" : "many";
AddError("struct constructor has too " + fm + " inputs: expected " +
std::to_string(struct_type->Members().size()) + ", found " +
std::to_string(ctor->args.size()),
ctor->source);
return false;
}
for (auto* member : struct_type->Members()) {
auto* value = ctor->args[member->Index()];
auto* value_ty = sem_.TypeOf(value);
if (member->Type() != value_ty->UnwrapRef()) {
AddError(
"type in struct constructor does not match struct member type: "
"expected '" +
sem_.TypeNameOf(member->Type()) + "', found '" + sem_.TypeNameOf(value_ty) +
"'",
value->source);
return false;
}
}
}
return true;
}
bool Validator::ArrayConstructor(const ast::CallExpression* ctor,
const sem::Array* array_type) const {
auto& values = ctor->args;
auto* elem_ty = array_type->ElemType();
for (auto* value : values) {
auto* value_ty = sem_.TypeOf(value)->UnwrapRef();
if (value_ty != elem_ty) {
AddError(
"type in array constructor does not match array type: "
"expected '" +
sem_.TypeNameOf(elem_ty) + "', found '" + sem_.TypeNameOf(value_ty) + "'",
value->source);
return false;
}
}
if (array_type->IsRuntimeSized()) {
AddError("cannot init a runtime-sized array", ctor->source);
return false;
} else if (!elem_ty->IsConstructible()) {
AddError("array constructor has non-constructible element type", ctor->source);
return false;
} else if (!values.empty() && (values.size() != array_type->Count())) {
std::string fm = values.size() < array_type->Count() ? "few" : "many";
AddError("array constructor has too " + fm + " elements: expected " +
std::to_string(array_type->Count()) + ", found " +
std::to_string(values.size()),
ctor->source);
return false;
} else if (values.size() > array_type->Count()) {
AddError("array constructor has too many elements: expected " +
std::to_string(array_type->Count()) + ", found " +
std::to_string(values.size()),
ctor->source);
return false;
}
return true;
}
bool Validator::Vector(const sem::Vector* ty, const Source& source) const {
if (!ty->type()->is_scalar()) {
AddError("vector element type must be 'bool', 'f32', 'f16', 'i32' or 'u32'", source);
return false;
}
return true;
}
bool Validator::Matrix(const sem::Matrix* ty, const Source& source) const {
if (!ty->is_float_matrix()) {
AddError("matrix element type must be 'f32' or 'f16'", source);
return false;
}
return true;
}
bool Validator::PipelineStages(const std::vector<sem::Function*>& entry_points) const {
auto check_workgroup_storage = [&](const sem::Function* func,
const sem::Function* entry_point) {
auto stage = entry_point->Declaration()->PipelineStage();
if (stage != ast::PipelineStage::kCompute) {
for (auto* var : func->DirectlyReferencedGlobals()) {
if (var->StorageClass() == ast::StorageClass::kWorkgroup) {
std::stringstream stage_name;
stage_name << stage;
for (auto* user : var->Users()) {
if (func == user->Stmt()->Function()) {
AddError("workgroup memory cannot be used by " + stage_name.str() +
" pipeline stage",
user->Declaration()->source);
break;
}
}
AddNote("variable is declared here", var->Declaration()->source);
if (func != entry_point) {
TraverseCallChain(
diagnostics_, entry_point, func, [&](const sem::Function* f) {
AddNote("called by function '" +
symbols_.NameFor(f->Declaration()->symbol) + "'",
f->Declaration()->source);
});
AddNote("called by entry point '" +
symbols_.NameFor(entry_point->Declaration()->symbol) + "'",
entry_point->Declaration()->source);
}
return false;
}
}
}
return true;
};
for (auto* entry_point : entry_points) {
if (!check_workgroup_storage(entry_point, entry_point)) {
return false;
}
for (auto* func : entry_point->TransitivelyCalledFunctions()) {
if (!check_workgroup_storage(func, entry_point)) {
return false;
}
}
}
auto check_builtin_calls = [&](const sem::Function* func, const sem::Function* entry_point) {
auto stage = entry_point->Declaration()->PipelineStage();
for (auto* builtin : func->DirectlyCalledBuiltins()) {
if (!builtin->SupportedStages().Contains(stage)) {
auto* call = func->FindDirectCallTo(builtin);
std::stringstream err;
err << "built-in cannot be used by " << stage << " pipeline stage";
AddError(err.str(),
call ? call->Declaration()->source : func->Declaration()->source);
if (func != entry_point) {
TraverseCallChain(diagnostics_, entry_point, func, [&](const sem::Function* f) {
AddNote("called by function '" +
symbols_.NameFor(f->Declaration()->symbol) + "'",
f->Declaration()->source);
});
AddNote("called by entry point '" +
symbols_.NameFor(entry_point->Declaration()->symbol) + "'",
entry_point->Declaration()->source);
}
return false;
}
}
return true;
};
for (auto* entry_point : entry_points) {
if (!check_builtin_calls(entry_point, entry_point)) {
return false;
}
for (auto* func : entry_point->TransitivelyCalledFunctions()) {
if (!check_builtin_calls(func, entry_point)) {
return false;
}
}
}
return true;
}
bool Validator::Array(const sem::Array* arr, const Source& source) const {
auto* el_ty = arr->ElemType();
if (!IsFixedFootprint(el_ty)) {
AddError("an array element type cannot contain a runtime-sized array", source);
return false;
}
return true;
}
bool Validator::ArrayStrideAttribute(const ast::StrideAttribute* attr,
uint32_t el_size,
uint32_t el_align,
const Source& source) const {
auto stride = attr->stride;
bool is_valid_stride = (stride >= el_size) && (stride >= el_align) && (stride % el_align == 0);
if (!is_valid_stride) {
// https://gpuweb.github.io/gpuweb/wgsl/#array-layout-rules
// Arrays decorated with the stride attribute must have a stride that is
// at least the size of the element type, and be a multiple of the
// element type's alignment value.
AddError(
"arrays decorated with the stride attribute must have a stride "
"that is at least the size of the element type, and be a multiple "
"of the element type's alignment value.",
source);
return false;
}
return true;
}
bool Validator::Alias(const ast::Alias* alias) const {
auto name = symbols_.NameFor(alias->name);
if (sem::ParseBuiltinType(name) != sem::BuiltinType::kNone) {
AddError("'" + name + "' is a builtin and cannot be redeclared as an alias", alias->source);
return false;
}
return true;
}
bool Validator::Structure(const sem::Struct* str, ast::PipelineStage stage) const {
auto name = symbols_.NameFor(str->Declaration()->name);
if (sem::ParseBuiltinType(name) != sem::BuiltinType::kNone) {
AddError("'" + name + "' is a builtin and cannot be redeclared as a struct",
str->Declaration()->source);
return false;
}
if (str->Members().empty()) {
AddError("structures must have at least one member", str->Declaration()->source);
return false;
}
std::unordered_set<uint32_t> locations;
for (auto* member : str->Members()) {
if (auto* r = member->Type()->As<sem::Array>()) {
if (r->IsRuntimeSized()) {
if (member != str->Members().back()) {
AddError("runtime arrays may only appear as the last member of a struct",
member->Declaration()->source);
return false;
}
}
} else if (!IsFixedFootprint(member->Type())) {
AddError(
"a struct that contains a runtime array cannot be nested inside "
"another struct",
member->Declaration()->source);
return false;
}
auto has_location = false;
auto has_position = false;
const ast::InvariantAttribute* invariant_attribute = nullptr;
const ast::InterpolateAttribute* interpolate_attribute = nullptr;
for (auto* attr : member->Declaration()->attributes) {
if (!attr->IsAnyOf<ast::BuiltinAttribute, //
ast::InternalAttribute, //
ast::InterpolateAttribute, //
ast::InvariantAttribute, //
ast::LocationAttribute, //
ast::StructMemberOffsetAttribute, //
ast::StructMemberSizeAttribute, //
ast::StructMemberAlignAttribute>()) {
if (attr->Is<ast::StrideAttribute>() &&
IsValidationDisabled(member->Declaration()->attributes,
ast::DisabledValidation::kIgnoreStrideAttribute)) {
continue;
}
AddError("attribute is not valid for structure members", attr->source);
return false;
}
if (auto* invariant = attr->As<ast::InvariantAttribute>()) {
invariant_attribute = invariant;
} else if (auto* location = attr->As<ast::LocationAttribute>()) {
has_location = true;
if (!LocationAttribute(location, member->Type(), locations, stage,
member->Declaration()->source)) {
return false;
}
} else if (auto* builtin = attr->As<ast::BuiltinAttribute>()) {
if (!BuiltinAttribute(builtin, member->Type(), stage,
/* is_input */ false)) {
return false;
}
if (builtin->builtin == ast::Builtin::kPosition) {
has_position = true;
}
} else if (auto* interpolate = attr->As<ast::InterpolateAttribute>()) {
interpolate_attribute = interpolate;
if (!InterpolateAttribute(interpolate, member->Type())) {
return false;
}
}
}
if (invariant_attribute && !has_position) {
AddError("invariant attribute must only be applied to a position builtin",
invariant_attribute->source);
return false;
}
if (interpolate_attribute && !has_location) {
AddError("interpolate attribute must only be used with @location",
interpolate_attribute->source);
return false;
}
}
for (auto* attr : str->Declaration()->attributes) {
if (!(attr->IsAnyOf<ast::InternalAttribute>())) {
AddError("attribute is not valid for struct declarations", attr->source);
return false;
}
}
return true;
}
bool Validator::LocationAttribute(const ast::LocationAttribute* location,
const sem::Type* type,
std::unordered_set<uint32_t>& locations,
ast::PipelineStage stage,
const Source& source,
const bool is_input) const {
std::string inputs_or_output = is_input ? "inputs" : "output";
if (stage == ast::PipelineStage::kCompute) {
AddError("attribute is not valid for compute shader " + inputs_or_output, location->source);
return false;
}
if (!type->is_numeric_scalar_or_vector()) {
std::string invalid_type = sem_.TypeNameOf(type);
AddError("cannot apply 'location' attribute to declaration of type '" + invalid_type + "'",
source);
AddNote(
"'location' attribute must only be applied to declarations of "
"numeric scalar or numeric vector type",
location->source);
return false;
}
if (locations.count(location->value)) {
AddError(attr_to_str(location) + " attribute appears multiple times", location->source);
return false;
}
locations.emplace(location->value);
return true;
}
bool Validator::Return(const ast::ReturnStatement* ret,
const sem::Type* func_type,
const sem::Type* ret_type,
sem::Statement* current_statement) const {
if (func_type->UnwrapRef() != ret_type) {
AddError(
"return statement type must match its function "
"return type, returned '" +
sem_.TypeNameOf(ret_type) + "', expected '" + sem_.TypeNameOf(func_type) + "'",
ret->source);
return false;
}
auto* sem = sem_.Get(ret);
if (auto* continuing = ClosestContinuing(/*stop_at_loop*/ false, current_statement)) {
AddError("continuing blocks must not contain a return statement", ret->source);
if (continuing != sem->Declaration() && continuing != sem->Parent()->Declaration()) {
AddNote("see continuing block here", continuing->source);
}
return false;
}
return true;
}
bool Validator::SwitchStatement(const ast::SwitchStatement* s) {
auto* cond_ty = sem_.TypeOf(s->condition)->UnwrapRef();
if (!cond_ty->is_integer_scalar()) {
AddError(
"switch statement selector expression must be of a "
"scalar integer type",
s->condition->source);
return false;
}
bool has_default = false;
std::unordered_map<int64_t, Source> selectors;
for (auto* case_stmt : s->body) {
if (case_stmt->IsDefault()) {
if (has_default) {
// More than one default clause
AddError("switch statement must have exactly one default clause",
case_stmt->source);
return false;
}
has_default = true;
}
for (auto* selector : case_stmt->selectors) {
if (cond_ty != sem_.TypeOf(selector)) {
AddError(
"the case selector values must have the same "
"type as the selector expression.",
case_stmt->source);
return false;
}
auto it = selectors.find(selector->value);
if (it != selectors.end()) {
auto val = std::to_string(selector->value);
AddError("duplicate switch case '" + val + "'", selector->source);
AddNote("previous case declared here", it->second);
return false;
}
selectors.emplace(selector->value, selector->source);
}
}
if (!has_default) {
// No default clause
AddError("switch statement must have a default clause", s->source);
return false;
}
return true;
}
bool Validator::Assignment(const ast::Statement* a, const sem::Type* rhs_ty) const {
const ast::Expression* lhs;
const ast::Expression* rhs;
if (auto* assign = a->As<ast::AssignmentStatement>()) {
lhs = assign->lhs;
rhs = assign->rhs;
} else if (auto* compound = a->As<ast::CompoundAssignmentStatement>()) {
lhs = compound->lhs;
rhs = compound->rhs;
} else {
TINT_ICE(Resolver, diagnostics_) << "invalid assignment statement";
return false;
}
if (lhs->Is<ast::PhonyExpression>()) {
// https://www.w3.org/TR/WGSL/#phony-assignment-section
auto* ty = rhs_ty->UnwrapRef();
if (!ty->IsConstructible() &&
!ty->IsAnyOf<sem::Pointer, sem::Texture, sem::Sampler, sem::AbstractNumeric>()) {
AddError("cannot assign '" + sem_.TypeNameOf(rhs_ty) +
"' to '_'. '_' can only be assigned a constructible, pointer, "
"texture or sampler type",
rhs->source);
return false;
}
return true; // RHS can be anything.
}
// https://gpuweb.github.io/gpuweb/wgsl/#assignment-statement
auto const* lhs_ty = sem_.TypeOf(lhs);
if (auto* variable = sem_.ResolvedSymbol<sem::Variable>(lhs)) {
auto* v = variable->Declaration();
const char* err = Switch(
v, //
[&](const ast::Parameter*) { return "cannot assign to function parameter"; },
[&](const ast::Let*) { return "cannot assign to 'let'"; },
[&](const ast::Override*) { return "cannot assign to 'override'"; });
if (err) {
AddError(err, lhs->source);
AddNote("'" + symbols_.NameFor(v->symbol) + "' is declared here:", v->source);
return false;
}
}
auto* lhs_ref = lhs_ty->As<sem::Reference>();
if (!lhs_ref) {
// LHS is not a reference, so it has no storage.
AddError("cannot assign to value of type '" + sem_.TypeNameOf(lhs_ty) + "'", lhs->source);
return false;
}
auto* storage_ty = lhs_ref->StoreType();
auto* value_type = rhs_ty->UnwrapRef(); // Implicit load of RHS
// Value type has to match storage type
if (storage_ty != value_type) {
AddError(
"cannot assign '" + sem_.TypeNameOf(rhs_ty) + "' to '" + sem_.TypeNameOf(lhs_ty) + "'",
a->source);
return false;
}
if (!storage_ty->IsConstructible()) {
AddError("storage type of assignment must be constructible", a->source);
return false;
}
if (lhs_ref->Access() == ast::Access::kRead) {
AddError("cannot store into a read-only type '" + sem_.RawTypeNameOf(lhs_ty) + "'",
a->source);
return false;
}
return true;
}
bool Validator::IncrementDecrementStatement(const ast::IncrementDecrementStatement* inc) const {
const ast::Expression* lhs = inc->lhs;
// https://gpuweb.github.io/gpuweb/wgsl/#increment-decrement
if (auto* variable = sem_.ResolvedSymbol<sem::Variable>(lhs)) {
auto* v = variable->Declaration();
const char* err = Switch(
v, //
[&](const ast::Parameter*) { return "cannot modify function parameter"; },
[&](const ast::Let*) { return "cannot modify 'let'"; },
[&](const ast::Override*) { return "cannot modify 'override'"; });
if (err) {
AddError(err, lhs->source);
AddNote("'" + symbols_.NameFor(v->symbol) + "' is declared here:", v->source);
return false;
}
}
auto const* lhs_ty = sem_.TypeOf(lhs);
auto* lhs_ref = lhs_ty->As<sem::Reference>();
if (!lhs_ref) {
// LHS is not a reference, so it has no storage.
AddError("cannot modify value of type '" + sem_.TypeNameOf(lhs_ty) + "'", lhs->source);
return false;
}
if (!lhs_ref->StoreType()->is_integer_scalar()) {
const std::string kind = inc->increment ? "increment" : "decrement";
AddError(kind + " statement can only be applied to an integer scalar", lhs->source);
return false;
}
if (lhs_ref->Access() == ast::Access::kRead) {
AddError("cannot modify read-only type '" + sem_.RawTypeNameOf(lhs_ty) + "'", inc->source);
return false;
}
return true;
}
bool Validator::NoDuplicateAttributes(const ast::AttributeList& attributes) const {
std::unordered_map<const TypeInfo*, Source> seen;
for (auto* d : attributes) {
auto res = seen.emplace(&d->TypeInfo(), d->source);
if (!res.second && !d->Is<ast::InternalAttribute>()) {
AddError("duplicate " + d->Name() + " attribute", d->source);
AddNote("first attribute declared here", res.first->second);
return false;
}
}
return true;
}
bool Validator::IsValidationDisabled(const ast::AttributeList& attributes,
ast::DisabledValidation validation) const {
for (auto* attribute : attributes) {
if (auto* dv = attribute->As<ast::DisableValidationAttribute>()) {
if (dv->validation == validation) {
return true;
}
}
}
return false;
}
bool Validator::IsValidationEnabled(const ast::AttributeList& attributes,
ast::DisabledValidation validation) const {
return !IsValidationDisabled(attributes, validation);
}
std::string Validator::VectorPretty(uint32_t size, const sem::Type* element_type) const {
sem::Vector vec_type(element_type, size);
return vec_type.FriendlyName(symbols_);
}
} // namespace tint::resolver