blob: 2729b0e14899cf141780ab1fc58d90c854d5f9fe [file] [log] [blame] [edit]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <array>
#include <limits>
#include <tuple>
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
constexpr static unsigned int kRTSize = 16;
class DrawQuad {
public:
DrawQuad() {}
DrawQuad(wgpu::Device device, const char* vsSource, const char* fsSource) : device(device) {
vsModule = utils::CreateShaderModule(device, vsSource);
fsModule = utils::CreateShaderModule(device, fsSource);
pipelineLayout = utils::MakeBasicPipelineLayout(device, nullptr);
}
void Draw(wgpu::RenderPassEncoder* pass) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.layout = pipelineLayout;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
auto renderPipeline = device.CreateRenderPipeline(&descriptor);
pass->SetPipeline(renderPipeline);
pass->Draw(6, 1, 0, 0);
}
private:
wgpu::Device device;
wgpu::ShaderModule vsModule = {};
wgpu::ShaderModule fsModule = {};
wgpu::PipelineLayout pipelineLayout = {};
};
class RenderPassLoadOpTests : public DawnTest {
protected:
void SetUp() override {
DawnTest::SetUp();
wgpu::TextureDescriptor descriptor;
descriptor.dimension = wgpu::TextureDimension::e2D;
descriptor.size.width = kRTSize;
descriptor.size.height = kRTSize;
descriptor.size.depthOrArrayLayers = 1;
descriptor.sampleCount = 1;
descriptor.format = wgpu::TextureFormat::RGBA8Unorm;
descriptor.mipLevelCount = 1;
descriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
renderTarget = device.CreateTexture(&descriptor);
renderTargetView = renderTarget.CreateView();
std::fill(expectZero.begin(), expectZero.end(), RGBA8::kZero);
std::fill(expectGreen.begin(), expectGreen.end(), RGBA8::kGreen);
std::fill(expectBlue.begin(), expectBlue.end(), RGBA8::kBlue);
// draws a blue quad on the right half of the screen
const char* vsSource = R"(
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4<f32> {
var pos = array<vec2<f32>, 6>(
vec2<f32>( 0.0, -1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>( 0.0, 1.0),
vec2<f32>( 0.0, 1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>( 1.0, 1.0));
return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
})";
const char* fsSource = R"(
@fragment fn main() -> @location(0) vec4<f32> {
return vec4<f32>(0.0, 0.0, 1.0, 1.0);
})";
blueQuad = DrawQuad(device, vsSource, fsSource);
}
template <class T>
void TestClearColor(wgpu::TextureFormat format,
const wgpu::Color& clearColor,
const std::array<T, 4>& expectedPixelValue) {
constexpr wgpu::Extent3D kTextureSize = {1, 1, 1};
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.dimension = wgpu::TextureDimension::e2D;
textureDescriptor.size = kTextureSize;
textureDescriptor.usage =
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
textureDescriptor.format = format;
wgpu::Texture texture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({texture.CreateView()});
renderPassDescriptor.cColorAttachments[0].clearValue = clearColor;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.End();
const uint64_t bufferSize = sizeof(T) * expectedPixelValue.size();
wgpu::BufferDescriptor bufferDescriptor;
bufferDescriptor.size = bufferSize;
bufferDescriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer buffer = device.CreateBuffer(&bufferDescriptor);
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(buffer, 0, kTextureBytesPerRowAlignment);
encoder.CopyTextureToBuffer(&imageCopyTexture, &imageCopyBuffer, &kTextureSize);
wgpu::CommandBuffer commandBuffer = encoder.Finish();
queue.Submit(1, &commandBuffer);
EXPECT_BUFFER_U8_RANGE_EQ(reinterpret_cast<const uint8_t*>(expectedPixelValue.data()),
buffer, 0, bufferSize / sizeof(uint8_t));
}
wgpu::Texture renderTarget;
wgpu::TextureView renderTargetView;
std::array<RGBA8, kRTSize * kRTSize> expectZero;
std::array<RGBA8, kRTSize * kRTSize> expectGreen;
std::array<RGBA8, kRTSize * kRTSize> expectBlue;
DrawQuad blueQuad = {};
};
// Tests clearing, loading, and drawing into color attachments
TEST_P(RenderPassLoadOpTests, ColorClearThenLoadAndDraw) {
// Part 1: clear once, check to make sure it's cleared
utils::ComboRenderPassDescriptor renderPassClearZero({renderTargetView});
auto commandsClearZeroEncoder = device.CreateCommandEncoder();
auto clearZeroPass = commandsClearZeroEncoder.BeginRenderPass(&renderPassClearZero);
clearZeroPass.End();
auto commandsClearZero = commandsClearZeroEncoder.Finish();
utils::ComboRenderPassDescriptor renderPassClearGreen({renderTargetView});
renderPassClearGreen.cColorAttachments[0].clearValue = {0.0f, 1.0f, 0.0f, 1.0f};
auto commandsClearGreenEncoder = device.CreateCommandEncoder();
auto clearGreenPass = commandsClearGreenEncoder.BeginRenderPass(&renderPassClearGreen);
clearGreenPass.End();
auto commandsClearGreen = commandsClearGreenEncoder.Finish();
queue.Submit(1, &commandsClearZero);
EXPECT_TEXTURE_EQ(expectZero.data(), renderTarget, {0, 0}, {kRTSize, kRTSize});
queue.Submit(1, &commandsClearGreen);
EXPECT_TEXTURE_EQ(expectGreen.data(), renderTarget, {0, 0}, {kRTSize, kRTSize});
// Part 2: draw a blue quad into the right half of the render target, and check result
utils::ComboRenderPassDescriptor renderPassLoad({renderTargetView});
renderPassLoad.cColorAttachments[0].loadOp = wgpu::LoadOp::Load;
wgpu::CommandBuffer commandsLoad;
{
auto encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassLoad);
blueQuad.Draw(&pass);
pass.End();
commandsLoad = encoder.Finish();
}
queue.Submit(1, &commandsLoad);
// Left half should still be green
EXPECT_TEXTURE_EQ(expectGreen.data(), renderTarget, {0, 0}, {kRTSize / 2, kRTSize});
// Right half should now be blue
EXPECT_TEXTURE_EQ(expectBlue.data(), renderTarget, {kRTSize / 2, 0}, {kRTSize / 2, kRTSize});
}
// Test clearing a color attachment with signed and unsigned integer formats.
TEST_P(RenderPassLoadOpTests, LoadOpClearOnIntegerFormats) {
// RGBA8Uint
{
constexpr wgpu::Color kClearColor = {2.f, 3.3f, 254.8f, 255.0f};
constexpr std::array<uint8_t, 4> kExpectedPixelValue = {2, 3, 254, 255};
TestClearColor<uint8_t>(wgpu::TextureFormat::RGBA8Uint, kClearColor, kExpectedPixelValue);
}
// RGBA8Sint
{
constexpr wgpu::Color kClearColor = {2.f, -3.3f, 126.8f, -128.0f};
constexpr std::array<int8_t, 4> kExpectedPixelValue = {2, -3, 126, -128};
TestClearColor<int8_t>(wgpu::TextureFormat::RGBA8Sint, kClearColor, kExpectedPixelValue);
}
// RGBA16Uint
{
constexpr wgpu::Color kClearColor = {2.f, 3.3f, 512.7f, 65535.f};
constexpr std::array<uint16_t, 4> kExpectedPixelValue = {2, 3, 512, 65535u};
TestClearColor<uint16_t>(wgpu::TextureFormat::RGBA16Uint, kClearColor, kExpectedPixelValue);
}
// RGBA16Sint
{
constexpr wgpu::Color kClearColor = {2.f, -3.3f, 32767.8f, -32768.0f};
constexpr std::array<int16_t, 4> kExpectedPixelValue = {2, -3, 32767, -32768};
TestClearColor<int16_t>(wgpu::TextureFormat::RGBA16Sint, kClearColor, kExpectedPixelValue);
}
// RGBA32Uint
{
constexpr wgpu::Color kClearColor = {2.f, 3.3f, 65534.8f, 65537.f};
constexpr std::array<uint32_t, 4> kExpectedPixelValue = {2, 3, 65534, 65537};
TestClearColor<uint32_t>(wgpu::TextureFormat::RGBA32Uint, kClearColor, kExpectedPixelValue);
}
// RGBA32Sint
{
constexpr wgpu::Color kClearColor = {2.f, -3.3f, 65534.8f, -65537.f};
constexpr std::array<int32_t, 4> kExpectedPixelValue = {2, -3, 65534, -65537};
TestClearColor<int32_t>(wgpu::TextureFormat::RGBA32Sint, kClearColor, kExpectedPixelValue);
}
}
// This test verifies that input double values are being rendered correctly when clearing.
TEST_P(RenderPassLoadOpTests, LoadOpClearIntegerFormatsToLargeValues) {
// TODO(http://crbug.com/dawn/537): Implemement a workaround to enable clearing integer formats
// to large values on D3D12.
DAWN_SUPPRESS_TEST_IF(IsD3D12());
// TODO(crbug.com/dawn/1109): Re-enable once fixed on Mac Mini 8,1s w/ 11.5.
DAWN_SUPPRESS_TEST_IF(IsMetal() && IsIntel() && IsMacOS(11, 5));
// TODO(crbug.com/dawn/1463): Re-enable, might be the same as above just on
// 12.4 instead of 11.5.
DAWN_SUPPRESS_TEST_IF(IsMetal() && IsIntel() && (IsMacOS(12, 4) || IsMacOS(12, 5)));
constexpr double kUint32MaxDouble = 4294967295.0;
constexpr uint32_t kUint32Max = static_cast<uint32_t>(kUint32MaxDouble);
// RGBA32Uint for UINT32_MAX
{
constexpr wgpu::Color kClearColor = {kUint32MaxDouble, kUint32MaxDouble, kUint32MaxDouble,
kUint32MaxDouble};
constexpr std::array<uint32_t, 4> kExpectedPixelValue = {kUint32Max, kUint32Max, kUint32Max,
kUint32Max};
TestClearColor<uint32_t>(wgpu::TextureFormat::RGBA32Uint, kClearColor, kExpectedPixelValue);
}
constexpr double kSint32MaxDouble = 2147483647.0;
constexpr int32_t kSint32Max = static_cast<int32_t>(kSint32MaxDouble);
constexpr double kSint32MinDouble = -2147483648.0;
constexpr int32_t kSint32Min = static_cast<int32_t>(kSint32MinDouble);
// RGBA32Sint for SINT32 upper bound.
{
constexpr wgpu::Color kClearColor = {kSint32MaxDouble, kSint32MaxDouble, kSint32MaxDouble,
kSint32MaxDouble};
constexpr std::array<int32_t, 4> kExpectedPixelValue = {kSint32Max, kSint32Max, kSint32Max,
kSint32Max};
TestClearColor<int32_t>(wgpu::TextureFormat::RGBA32Sint, kClearColor, kExpectedPixelValue);
}
// RGBA32Sint for SINT32 lower bound.
{
constexpr wgpu::Color kClearColor = {kSint32MinDouble, kSint32MinDouble, kSint32MinDouble,
kSint32MinDouble};
constexpr std::array<int32_t, 4> kExpectedPixelValue = {kSint32Min, kSint32Min, kSint32Min,
kSint32Min};
TestClearColor<int32_t>(wgpu::TextureFormat::RGBA32Sint, kClearColor, kExpectedPixelValue);
}
}
// Test clearing a color attachment on Uint8 formats (R8Uint, RG8Uint, RGBA8Uint) when the clear
// values are out of bound.
TEST_P(RenderPassLoadOpTests, LoadOpClearIntegerFormatsOutOfBound_Uint8) {
constexpr uint16_t kUint8Max = std::numeric_limits<uint8_t>::max();
using TestCase = std::tuple<wgpu::TextureFormat, wgpu::Color, std::array<uint8_t, 4>>;
constexpr std::array<TestCase, 7> kTestCases = {{
{wgpu::TextureFormat::R8Uint, {-1, 0, 0, 0}, {0, 0, 0, 0}},
{wgpu::TextureFormat::R8Uint, {0, 0, 0, 0}, {0, 0, 0, 0}},
{wgpu::TextureFormat::R8Uint, {kUint8Max, 0, 0, 0}, {kUint8Max, 0, 0, 0}},
{wgpu::TextureFormat::R8Uint, {kUint8Max + 1, 0, 0, 0}, {kUint8Max, 0, 0, 0}},
{wgpu::TextureFormat::RG8Uint, {0, kUint8Max, 0, 0}, {0, kUint8Max, 0, 0}},
{wgpu::TextureFormat::RG8Uint, {-1, kUint8Max + 1, 0, 0}, {0, kUint8Max, 0, 0}},
{wgpu::TextureFormat::RGBA8Uint,
{-1, 0, kUint8Max, kUint8Max + 1},
{0, 0, kUint8Max, kUint8Max}},
}};
for (const TestCase& testCase : kTestCases) {
auto [format, clearColor, expectedPixelValue] = testCase;
TestClearColor<uint8_t>(format, clearColor, expectedPixelValue);
}
}
// Test clearing a color attachment on Sint8 formats (R8Sint, RG8Sint, RGBA8Sint) when the clear
// values are out of bound.
TEST_P(RenderPassLoadOpTests, LoadOpClearIntegerFormatsOutOfBound_Sint8) {
constexpr int16_t kSint8Max = std::numeric_limits<int8_t>::max();
constexpr int16_t kSint8Min = std::numeric_limits<int8_t>::min();
using TestCase = std::tuple<wgpu::TextureFormat, wgpu::Color, std::array<int8_t, 4>>;
constexpr std::array<TestCase, 7> kTestCases = {{
{wgpu::TextureFormat::R8Sint, {kSint8Min - 1, 0, 0, 0}, {kSint8Min, 0, 0, 0}},
{wgpu::TextureFormat::R8Sint, {kSint8Min, 0, 0, 0}, {kSint8Min, 0, 0, 0}},
{wgpu::TextureFormat::R8Sint, {kSint8Max, 0, 0, 0}, {kSint8Max, 0, 0, 0}},
{wgpu::TextureFormat::R8Sint, {kSint8Max + 1, 0, 0, 0}, {kSint8Max, 0, 0, 0}},
{wgpu::TextureFormat::RG8Sint, {kSint8Min, kSint8Max, 0, 0}, {kSint8Min, kSint8Max, 0, 0}},
{wgpu::TextureFormat::RG8Sint,
{kSint8Min - 1, kSint8Max + 1, 0, 0},
{kSint8Min, kSint8Max, 0, 0}},
{wgpu::TextureFormat::RGBA8Sint,
{kSint8Min - 1, kSint8Min, kSint8Max, kSint8Max + 1},
{kSint8Min, kSint8Min, kSint8Max, kSint8Max}},
}};
for (const TestCase& testCase : kTestCases) {
auto [format, clearColor, expectedPixelValue] = testCase;
TestClearColor<int8_t>(format, clearColor, expectedPixelValue);
}
}
// Test clearing a color attachment on Uint16 formats (R16Uint, RG16Uint, RGBA16Uint) when the clear
// values are out of bound.
TEST_P(RenderPassLoadOpTests, LoadOpClearIntegerFormatsOutOfBound_Uint16) {
constexpr uint32_t kUint16Max = std::numeric_limits<uint16_t>::max();
using TestCase = std::tuple<wgpu::TextureFormat, wgpu::Color, std::array<uint16_t, 4>>;
constexpr std::array<TestCase, 7> kTestCases = {{
{wgpu::TextureFormat::R16Uint, {-1, 0, 0, 0}, {0, 0, 0, 0}},
{wgpu::TextureFormat::R16Uint, {0, 0, 0, 0}, {0, 0, 0, 0}},
{wgpu::TextureFormat::R16Uint, {kUint16Max, 0, 0, 0}, {kUint16Max, 0, 0, 0}},
{wgpu::TextureFormat::R16Uint, {kUint16Max + 1, 0, 0, 0}, {kUint16Max, 0, 0, 0}},
{wgpu::TextureFormat::RG16Uint, {0, kUint16Max, 0, 0}, {0, kUint16Max, 0, 0}},
{wgpu::TextureFormat::RG16Uint, {-1, kUint16Max + 1, 0, 0}, {0, kUint16Max, 0, 0}},
{wgpu::TextureFormat::RGBA16Uint,
{-1, 0, kUint16Max, kUint16Max + 1},
{0, 0, kUint16Max, kUint16Max}},
}};
for (const TestCase& testCase : kTestCases) {
auto [format, clearColor, expectedPixelValue] = testCase;
TestClearColor<uint16_t>(format, clearColor, expectedPixelValue);
}
}
// Test clearing a color attachment on Sint16 formats (R16Sint, RG16Sint, RGBA16Sint) when the clear
// values are out of bound.
TEST_P(RenderPassLoadOpTests, LoadOpClearIntegerFormatsOutOfBound_Sint16) {
constexpr int32_t kSint16Max = std::numeric_limits<int16_t>::max();
constexpr int32_t kSint16Min = std::numeric_limits<int16_t>::min();
using TestCase = std::tuple<wgpu::TextureFormat, wgpu::Color, std::array<int16_t, 4>>;
constexpr std::array<TestCase, 7> kTestCases = {{
{wgpu::TextureFormat::R16Sint, {kSint16Min - 1, 0, 0, 0}, {kSint16Min, 0, 0, 0}},
{wgpu::TextureFormat::R16Sint, {kSint16Min, 0, 0, 0}, {kSint16Min, 0, 0, 0}},
{wgpu::TextureFormat::R16Sint, {kSint16Max, 0, 0, 0}, {kSint16Max, 0, 0, 0}},
{wgpu::TextureFormat::R16Sint, {kSint16Max + 1, 0, 0, 0}, {kSint16Max, 0, 0, 0}},
{wgpu::TextureFormat::RG16Sint,
{kSint16Min, kSint16Max, 0, 0},
{kSint16Min, kSint16Max, 0, 0}},
{wgpu::TextureFormat::RG16Sint,
{kSint16Min - 1, kSint16Max + 1, 0, 0},
{kSint16Min, kSint16Max, 0, 0}},
{wgpu::TextureFormat::RGBA16Sint,
{kSint16Min - 1, kSint16Min, kSint16Max, kSint16Max + 1},
{kSint16Min, kSint16Min, kSint16Max, kSint16Max}},
}};
for (const TestCase& testCase : kTestCases) {
auto [format, clearColor, expectedPixelValue] = testCase;
TestClearColor<int16_t>(format, clearColor, expectedPixelValue);
}
}
// Test clearing a color attachment on Uint32 formats (R32Uint, RG32Uint, RGBA32Uint) when the clear
// values are out of bound.
TEST_P(RenderPassLoadOpTests, LoadOpClearIntegerFormatsOutOfBound_Uint32) {
// TODO(http://crbug.com/dawn/537): Implemement a workaround to enable clearing integer formats
// to large values on D3D12.
DAWN_SUPPRESS_TEST_IF(IsD3D12());
// TODO(crbug.com/dawn/1109): Re-enable once fixed on Mac Mini 8,1s w/ 11.5.
DAWN_SUPPRESS_TEST_IF(IsMetal() && IsIntel() && IsMacOS(11, 5));
// TODO(crbug.com/dawn/1463): Re-enable, might be the same as above just on
// 12.4 instead of 11.5.
DAWN_SUPPRESS_TEST_IF(IsMetal() && IsIntel() && (IsMacOS(12, 4) || IsMacOS(12, 5)));
constexpr uint64_t kUint32Max = std::numeric_limits<uint32_t>::max();
using TestCase = std::tuple<wgpu::TextureFormat, wgpu::Color, std::array<uint32_t, 4>>;
constexpr std::array<TestCase, 7> kTestCases = {{
{wgpu::TextureFormat::R32Uint, {-1, 0, 0, 0}, {0, 0, 0, 0}},
{wgpu::TextureFormat::R32Uint, {0, 0, 0, 0}, {0, 0, 0, 0}},
{wgpu::TextureFormat::R32Uint, {kUint32Max, 0, 0, 0}, {kUint32Max, 0, 0, 0}},
{wgpu::TextureFormat::R32Uint, {kUint32Max + 1, 0, 0, 0}, {kUint32Max, 0, 0, 0}},
{wgpu::TextureFormat::RG32Uint, {0, kUint32Max, 0, 0}, {0, kUint32Max, 0, 0}},
{wgpu::TextureFormat::RG32Uint, {-1, kUint32Max + 1, 0, 0}, {0, kUint32Max, 0, 0}},
{wgpu::TextureFormat::RGBA32Uint,
{-1, 0, kUint32Max, kUint32Max + 1},
{0, 0, kUint32Max, kUint32Max}},
}};
for (const TestCase& testCase : kTestCases) {
auto [format, clearColor, expectedPixelValue] = testCase;
TestClearColor<uint32_t>(format, clearColor, expectedPixelValue);
}
}
// Test clearing a color attachment on Sint32 formats (R32Sint, RG32Sint, RGBA32Sint) when the clear
// values are out of bound.
TEST_P(RenderPassLoadOpTests, LoadOpClearIntegerFormatsOutOfBound_Sint32) {
// TODO(http://crbug.com/dawn/537): Implemement a workaround to enable clearing integer formats
// to large values on D3D12.
DAWN_SUPPRESS_TEST_IF(IsD3D12());
// TODO(crbug.com/dawn/1109): Re-enable once fixed on Mac Mini 8,1s w/ 11.5.
DAWN_SUPPRESS_TEST_IF(IsMetal() && IsIntel() && IsMacOS(11, 5));
// TODO(crbug.com/dawn/1463): Re-enable, might be the same as above just on
// 12.4 instead of 11.5.
DAWN_SUPPRESS_TEST_IF(IsMetal() && IsIntel() && (IsMacOS(12, 4) || IsMacOS(12, 5)));
constexpr int64_t kSint32Max = std::numeric_limits<int32_t>::max();
constexpr int64_t kSint32Min = std::numeric_limits<int32_t>::min();
using TestCase = std::tuple<wgpu::TextureFormat, wgpu::Color, std::array<int32_t, 4>>;
constexpr std::array<TestCase, 7> kTestCases = {{
{wgpu::TextureFormat::R32Sint, {kSint32Min - 1, 0, 0, 0}, {kSint32Min, 0, 0, 0}},
{wgpu::TextureFormat::R32Sint, {kSint32Min, 0, 0, 0}, {kSint32Min, 0, 0, 0}},
{wgpu::TextureFormat::R32Sint, {kSint32Max, 0, 0, 0}, {kSint32Max, 0, 0, 0}},
{wgpu::TextureFormat::R32Sint, {kSint32Max + 1, 0, 0, 0}, {kSint32Max, 0, 0, 0}},
{wgpu::TextureFormat::RG32Sint,
{kSint32Min, kSint32Max, 0, 0},
{kSint32Min, kSint32Max, 0, 0}},
{wgpu::TextureFormat::RG32Sint,
{kSint32Min - 1, kSint32Max + 1, 0, 0},
{kSint32Min, kSint32Max, 0, 0}},
{wgpu::TextureFormat::RGBA32Sint,
{kSint32Min - 1, kSint32Min, kSint32Max, kSint32Max + 1},
{kSint32Min, kSint32Min, kSint32Max, kSint32Max}},
}};
for (const TestCase& testCase : kTestCases) {
auto [format, clearColor, expectedPixelValue] = testCase;
TestClearColor<int32_t>(format, clearColor, expectedPixelValue);
}
}
// Test clearing a color attachment on normalized formats when the clear values are out of bound.
// Note that we don't test RGBA8Snorm because it doesn't support being used as render attachments in
// current WebGPU SPEC.
TEST_P(RenderPassLoadOpTests, LoadOpClearNormalizedFormatsOutOfBound) {
// RGBA8Unorm
{
constexpr wgpu::Color kClearColor = {-0.1f, 0, 1, 1.1f};
constexpr std::array<uint8_t, 4> kExpectedPixelValue = {0, 0, 255u, 255u};
TestClearColor<uint8_t>(wgpu::TextureFormat::RGBA8Unorm, kClearColor, kExpectedPixelValue);
}
// RGB10A2Unorm - Test components RGB
{
constexpr wgpu::Color kClearColor = {-0.1f, 0, 1.1f, 1};
constexpr std::array<uint8_t, 4> kExpectedPixelValue = {0, 0, 0xF0u, 0xFFu};
TestClearColor<uint8_t>(wgpu::TextureFormat::RGB10A2Unorm, kClearColor,
kExpectedPixelValue);
}
// RGB10A2Unorm - Test component A < 0
{
constexpr wgpu::Color kClearColor = {0, 0, 0, -0.1f};
constexpr std::array<uint8_t, 4> kExpectedPixelValue = {0, 0, 0, 0};
TestClearColor<uint8_t>(wgpu::TextureFormat::RGB10A2Unorm, kClearColor,
kExpectedPixelValue);
}
// RGB10A2Unorm - Test component A > 1
{
constexpr wgpu::Color kClearColor = {0, 0, 0, 1.1f};
constexpr std::array<uint8_t, 4> kExpectedPixelValue = {0, 0, 0, 0xC0u};
TestClearColor<uint8_t>(wgpu::TextureFormat::RGB10A2Unorm, kClearColor,
kExpectedPixelValue);
}
}
DAWN_INSTANTIATE_TEST(RenderPassLoadOpTests,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());