blob: a70c582cf7237756ad881905073db244a9b24801 [file] [log] [blame] [edit]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <array>
#include "dawn/tests/unittests/validation/ValidationTest.h"
#include "dawn/utils/ComboRenderBundleEncoderDescriptor.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
class VertexBufferValidationTest : public ValidationTest {
protected:
void SetUp() override {
ValidationTest::SetUp();
// Placeholder vertex shader module
vsModule = utils::CreateShaderModule(device, R"(
@vertex fn main() -> @builtin(position) vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
})");
fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4<f32> {
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
})");
}
wgpu::Buffer MakeVertexBuffer() {
wgpu::BufferDescriptor descriptor;
descriptor.size = 256;
descriptor.usage = wgpu::BufferUsage::Vertex;
return device.CreateBuffer(&descriptor);
}
wgpu::ShaderModule MakeVertexShader(unsigned int bufferCount) {
std::ostringstream vs;
vs << "@vertex fn main(\n";
for (unsigned int i = 0; i < bufferCount; ++i) {
// TODO(cwallez@chromium.org): remove this special handling of 0 once Tint supports
// trailing commas in argument lists.
if (i != 0) {
vs << ", ";
}
vs << "@location(" << i << ") a_position" << i << " : vec3<f32>\n";
}
vs << ") -> @builtin(position) vec4<f32> {";
vs << "return vec4<f32>(";
for (unsigned int i = 0; i < bufferCount; ++i) {
vs << "a_position" << i;
if (i != bufferCount - 1) {
vs << " + ";
}
}
vs << ", 1.0);";
vs << "}\n";
return utils::CreateShaderModule(device, vs.str().c_str());
}
wgpu::RenderPipeline MakeRenderPipeline(const wgpu::ShaderModule& vsModule,
const utils::ComboVertexState& state) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.vertex.bufferCount = state.vertexBufferCount;
descriptor.vertex.buffers = &state.cVertexBuffers[0];
return device.CreateRenderPipeline(&descriptor);
}
wgpu::RenderPipeline MakeRenderPipeline(const wgpu::ShaderModule& vsModule,
unsigned int bufferCount) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
for (unsigned int i = 0; i < bufferCount; ++i) {
descriptor.cBuffers[i].attributeCount = 1;
descriptor.cBuffers[i].attributes = &descriptor.cAttributes[i];
descriptor.cAttributes[i].shaderLocation = i;
descriptor.cAttributes[i].format = wgpu::VertexFormat::Float32x3;
}
descriptor.vertex.bufferCount = bufferCount;
return device.CreateRenderPipeline(&descriptor);
}
wgpu::ShaderModule vsModule;
wgpu::ShaderModule fsModule;
};
// Check that vertex buffers still count as bound if we switch the pipeline.
TEST_F(VertexBufferValidationTest, VertexBuffersInheritedBetweenPipelines) {
PlaceholderRenderPass renderPass(device);
wgpu::ShaderModule vsModule2 = MakeVertexShader(2);
wgpu::ShaderModule vsModule1 = MakeVertexShader(1);
wgpu::RenderPipeline pipeline2 = MakeRenderPipeline(vsModule2, 2);
wgpu::RenderPipeline pipeline1 = MakeRenderPipeline(vsModule1, 1);
wgpu::Buffer vertexBuffer1 = MakeVertexBuffer();
wgpu::Buffer vertexBuffer2 = MakeVertexBuffer();
// Check failure when vertex buffer is not set
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.Draw(3);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
// Check success when vertex buffer is inherited from previous pipeline
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer1);
pass.SetVertexBuffer(1, vertexBuffer2);
pass.Draw(3);
pass.SetPipeline(pipeline1);
pass.Draw(3);
pass.End();
}
encoder.Finish();
}
// Check that vertex buffers that are set are reset between render passes.
TEST_F(VertexBufferValidationTest, VertexBuffersNotInheritedBetweenRenderPasses) {
PlaceholderRenderPass renderPass(device);
wgpu::ShaderModule vsModule2 = MakeVertexShader(2);
wgpu::ShaderModule vsModule1 = MakeVertexShader(1);
wgpu::RenderPipeline pipeline2 = MakeRenderPipeline(vsModule2, 2);
wgpu::RenderPipeline pipeline1 = MakeRenderPipeline(vsModule1, 1);
wgpu::Buffer vertexBuffer1 = MakeVertexBuffer();
wgpu::Buffer vertexBuffer2 = MakeVertexBuffer();
// Check success when vertex buffer is set for each render pass
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer1);
pass.SetVertexBuffer(1, vertexBuffer2);
pass.Draw(3);
pass.End();
}
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer1);
pass.Draw(3);
pass.End();
}
encoder.Finish();
// Check failure because vertex buffer is not inherited in second subpass
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer1);
pass.SetVertexBuffer(1, vertexBuffer2);
pass.Draw(3);
pass.End();
}
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.Draw(3);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Check validation of the vertex buffer slot for OOB.
TEST_F(VertexBufferValidationTest, VertexBufferSlotValidation) {
wgpu::Buffer buffer = MakeVertexBuffer();
PlaceholderRenderPass renderPass(device);
// Control case: using the last vertex buffer slot in render passes is ok.
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetVertexBuffer(kMaxVertexBuffers - 1, buffer, 0);
pass.End();
encoder.Finish();
}
// Error case: using past the last vertex buffer slot in render pass fails.
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetVertexBuffer(kMaxVertexBuffers, buffer, 0);
pass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
utils::ComboRenderBundleEncoderDescriptor renderBundleDesc = {};
renderBundleDesc.colorFormatsCount = 1;
renderBundleDesc.cColorFormats[0] = wgpu::TextureFormat::RGBA8Unorm;
// Control case: using the last vertex buffer slot in render bundles is ok.
{
wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc);
encoder.SetVertexBuffer(kMaxVertexBuffers - 1, buffer, 0);
encoder.Finish();
}
// Error case: using past the last vertex buffer slot in render bundle fails.
{
wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc);
encoder.SetVertexBuffer(kMaxVertexBuffers, buffer, 0);
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Test that for OOB validation of vertex buffer offset and size.
TEST_F(VertexBufferValidationTest, VertexBufferOffsetOOBValidation) {
wgpu::Buffer buffer = MakeVertexBuffer();
PlaceholderRenderPass renderPass(device);
// Control case, using the full buffer, with or without an explicit size is valid.
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
// Explicit size
pass.SetVertexBuffer(0, buffer, 0, 256);
// Implicit size
pass.SetVertexBuffer(0, buffer, 0, wgpu::kWholeSize);
pass.SetVertexBuffer(0, buffer, 256 - 4, wgpu::kWholeSize);
pass.SetVertexBuffer(0, buffer, 4, wgpu::kWholeSize);
// Implicit size of zero
pass.SetVertexBuffer(0, buffer, 256, wgpu::kWholeSize);
pass.End();
encoder.Finish();
}
// Bad case, offset + size is larger than the buffer
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetVertexBuffer(0, buffer, 4, 256);
pass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Bad case, size is 0 but the offset is larger than the buffer
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetVertexBuffer(0, buffer, 256 + 4, 0);
pass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
utils::ComboRenderBundleEncoderDescriptor renderBundleDesc = {};
renderBundleDesc.colorFormatsCount = 1;
renderBundleDesc.cColorFormats[0] = wgpu::TextureFormat::RGBA8Unorm;
// Control case, using the full buffer, with or without an explicit size is valid.
{
wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc);
// Explicit size
encoder.SetVertexBuffer(0, buffer, 0, 256);
// Implicit size
encoder.SetVertexBuffer(0, buffer, 0, wgpu::kWholeSize);
encoder.SetVertexBuffer(0, buffer, 256 - 4, wgpu::kWholeSize);
encoder.SetVertexBuffer(0, buffer, 4, wgpu::kWholeSize);
// Implicit size of zero
encoder.SetVertexBuffer(0, buffer, 256, wgpu::kWholeSize);
encoder.Finish();
}
// Bad case, offset + size is larger than the buffer
{
wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc);
encoder.SetVertexBuffer(0, buffer, 4, 256);
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Bad case, size is 0 but the offset is larger than the buffer
{
wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc);
encoder.SetVertexBuffer(0, buffer, 256 + 4, 0);
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Check that the vertex buffer must have the Vertex usage.
TEST_F(VertexBufferValidationTest, InvalidUsage) {
wgpu::Buffer vertexBuffer = MakeVertexBuffer();
wgpu::Buffer indexBuffer =
utils::CreateBufferFromData<uint32_t>(device, wgpu::BufferUsage::Index, {0, 0, 0});
PlaceholderRenderPass renderPass(device);
// Control case: using the vertex buffer is valid.
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetVertexBuffer(0, vertexBuffer);
pass.End();
encoder.Finish();
}
// Error case: using the index buffer is an error.
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetVertexBuffer(0, indexBuffer);
pass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
utils::ComboRenderBundleEncoderDescriptor renderBundleDesc = {};
renderBundleDesc.colorFormatsCount = 1;
renderBundleDesc.cColorFormats[0] = wgpu::TextureFormat::RGBA8Unorm;
// Control case: using the vertex buffer is valid.
{
wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc);
encoder.SetVertexBuffer(0, vertexBuffer);
encoder.Finish();
}
// Error case: using the index buffer is an error.
{
wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc);
encoder.SetVertexBuffer(0, indexBuffer);
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Check the alignment constraint on the index buffer offset.
TEST_F(VertexBufferValidationTest, OffsetAlignment) {
wgpu::Buffer vertexBuffer = MakeVertexBuffer();
PlaceholderRenderPass renderPass(device);
// Control cases: vertex buffer offset is a multiple of 4
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetVertexBuffer(0, vertexBuffer, 0);
pass.SetVertexBuffer(0, vertexBuffer, 4);
pass.SetVertexBuffer(0, vertexBuffer, 12);
pass.End();
encoder.Finish();
}
// Error case: vertex buffer offset isn't a multiple of 4
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetVertexBuffer(0, vertexBuffer, 2);
pass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Check vertex buffer stride requirements for draw command.
TEST_F(VertexBufferValidationTest, DrawStrideLimitsVertex) {
PlaceholderRenderPass renderPass(device);
// Create a buffer of size 28, containing 4 float32 elements, array stride size = 8
// The last element doesn't have the full stride size
wgpu::BufferDescriptor descriptor;
descriptor.size = 28;
descriptor.usage = wgpu::BufferUsage::Vertex;
wgpu::Buffer vertexBuffer = device.CreateBuffer(&descriptor);
// Vertex attribute offset is 0
wgpu::RenderPipeline pipeline1;
{
utils::ComboVertexState state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 8;
state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Vertex;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].offset = 0;
pipeline1 = MakeRenderPipeline(vsModule, state);
}
// Vertex attribute offset is 4
wgpu::RenderPipeline pipeline2;
{
utils::ComboVertexState state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 8;
state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Vertex;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].offset = 4;
pipeline2 = MakeRenderPipeline(vsModule, state);
}
// Control case: draw 3 elements, 3 * 8 = 24 <= 28, is valid anyway
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(3);
pass.End();
}
encoder.Finish();
// Valid: draw 3 elements with firstVertex == 1, (2 + 1) * 8 + 4 = 28 <= 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(3, 0, 1, 0);
pass.End();
}
encoder.Finish();
// Valid: draw 3 elements with offset == 4, 4 + 3 * 8 = 24 <= 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(3);
pass.End();
}
encoder.Finish();
// Valid: draw 4 elements, 4 * 8 = 32 > 28
// But the last element does not require to have the full stride size
// So 3 * 8 + 4 = 28 <= 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(4);
pass.End();
}
encoder.Finish();
// Invalid: draw 4 elements with firstVertex == 1
// It requires a buffer with size of (3 + 1) * 8 + 4 = 36 > 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(4, 0, 1, 0);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
// Invalid: draw 4 elements with offset == 4
// It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(4);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
// Valid: stride count == 0
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(0);
pass.End();
}
encoder.Finish();
// Invalid: stride count == 4
// It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(0, 0, 4);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Check instance buffer stride requirements with instanced attributes for draw command.
TEST_F(VertexBufferValidationTest, DrawStrideLimitsInstance) {
PlaceholderRenderPass renderPass(device);
// Create a buffer of size 28, containing 4 float32 elements, array stride size = 8
// The last element doesn't have the full stride size
wgpu::BufferDescriptor descriptor;
descriptor.size = 28;
descriptor.usage = wgpu::BufferUsage::Vertex;
wgpu::Buffer vertexBuffer = device.CreateBuffer(&descriptor);
// Vertex attribute offset is 0
wgpu::RenderPipeline pipeline1;
{
utils::ComboVertexState state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 8;
state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Instance;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].offset = 0;
pipeline1 = MakeRenderPipeline(vsModule, state);
}
// Vertex attribute offset is 4
wgpu::RenderPipeline pipeline2;
{
utils::ComboVertexState state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 8;
state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Instance;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].offset = 4;
pipeline2 = MakeRenderPipeline(vsModule, state);
}
// Control case: draw 3 instances, 3 * 8 = 24 <= 28, is valid anyway
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(1, 3);
pass.End();
}
encoder.Finish();
// Valid: draw 3 instances with firstInstance == 1, (2 + 1) * 8 + 4 = 28 <= 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(1, 3, 0, 1);
pass.End();
}
encoder.Finish();
// Valid: draw 3 instances with offset == 4, 4 + 3 * 8 = 24 <= 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(1, 3);
pass.End();
}
encoder.Finish();
// Valid: draw 4 instances, 4 * 8 = 32 > 28
// But the last element does not require to have the full stride size
// So 3 * 8 + 4 = 28 <= 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(1, 4);
pass.End();
}
encoder.Finish();
// Invalid: draw 4 instances with firstInstance == 1
// It requires a buffer with size of (3 + 1) * 8 + 4 = 36 > 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(1, 4, 0, 1);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
// Invalid: draw 4 instances with offset == 4
// It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(1, 4);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
// Valid: stride count == 0
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(1, 0);
pass.End();
}
encoder.Finish();
// Invalid, stride count == 4
// It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(1, 0, 0, 4);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Check vertex buffer stride requirements with instanced attributes for draw indexed command.
TEST_F(VertexBufferValidationTest, DrawIndexedStrideLimitsInstance) {
PlaceholderRenderPass renderPass(device);
// Create a buffer of size 28, containing 4 float32 elements, array stride size = 8
// The last element doesn't have the full stride size
wgpu::BufferDescriptor descriptor;
descriptor.size = 28;
descriptor.usage = wgpu::BufferUsage::Vertex;
wgpu::Buffer vertexBuffer = device.CreateBuffer(&descriptor);
wgpu::Buffer indexBuffer =
utils::CreateBufferFromData<uint32_t>(device, wgpu::BufferUsage::Index, {0, 1, 2});
// Vertex attribute offset is 0
wgpu::RenderPipeline pipeline1;
{
utils::ComboVertexState state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 8;
state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Instance;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].offset = 0;
pipeline1 = MakeRenderPipeline(vsModule, state);
}
// Vertex attribute offset is 4
wgpu::RenderPipeline pipeline2;
{
utils::ComboVertexState state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 8;
state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Instance;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].offset = 4;
pipeline2 = MakeRenderPipeline(vsModule, state);
}
// Control case: draw 3 instances, 3 * 8 = 24 <= 28, is valid anyway
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32);
pass.DrawIndexed(3, 3);
pass.End();
}
encoder.Finish();
// Valid: draw 3 instances with firstInstance == 1, (2 + 1) * 8 + 4 = 28 <= 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32);
pass.Draw(3, 3, 0, 1);
pass.End();
}
encoder.Finish();
// Valid: draw 3 instances with offset == 4, 4 + 3 * 8 = 24 <= 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32);
pass.Draw(3, 3);
pass.End();
}
encoder.Finish();
// Valid: draw 4 instances, 4 * 8 = 32 > 28
// But the last element does not require to have the full stride size
// So 3 * 8 + 4 = 28 <= 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32);
pass.Draw(3, 4);
pass.End();
}
encoder.Finish();
// Invalid: draw 4 instances with firstInstance == 1
// It requires a buffer with size of (3 + 1) * 8 + 4 = 36 > 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32);
pass.Draw(3, 4, 0, 1);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
// Invalid: draw 4 instances with offset == 4
// It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32);
pass.Draw(3, 4);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
// Valid: stride count == 0
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(3, 0);
pass.End();
}
encoder.Finish();
// Invalid, stride count == 4
// It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32);
pass.Draw(3, 0, 0, 4);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Check last stride is computed correctly for vertex buffer with multiple attributes.
TEST_F(VertexBufferValidationTest, DrawStrideLimitsVertexMultipleAttributes) {
PlaceholderRenderPass renderPass(device);
// Create a buffer of size 44, array stride size = 12
wgpu::BufferDescriptor descriptor;
descriptor.size = 44;
descriptor.usage = wgpu::BufferUsage::Vertex;
wgpu::Buffer vertexBuffer = device.CreateBuffer(&descriptor);
// lastStride = attribute[1].offset + sizeof(attribute[1].format) = 8
wgpu::RenderPipeline pipeline1;
{
utils::ComboVertexState state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 12;
state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Vertex;
state.cVertexBuffers[0].attributeCount = 2;
state.cAttributes[0].format = wgpu::VertexFormat::Float32;
state.cAttributes[0].offset = 0;
state.cAttributes[0].shaderLocation = 0;
state.cAttributes[1].format = wgpu::VertexFormat::Float32;
state.cAttributes[1].offset = 4;
state.cAttributes[1].shaderLocation = 1;
pipeline1 = MakeRenderPipeline(vsModule, state);
}
// lastStride = attribute[1].offset + sizeof(attribute[1].format) = 12
wgpu::RenderPipeline pipeline2;
{
utils::ComboVertexState state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 12;
state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Vertex;
state.cVertexBuffers[0].attributeCount = 2;
state.cAttributes[0].format = wgpu::VertexFormat::Float32;
state.cAttributes[0].offset = 0;
state.cAttributes[0].shaderLocation = 0;
state.cAttributes[1].format = wgpu::VertexFormat::Float32x2;
state.cAttributes[1].offset = 4;
state.cAttributes[1].shaderLocation = 1;
pipeline2 = MakeRenderPipeline(vsModule, state);
}
// Valid: draw 4 elements, last stride is 8, 3 * 12 + 8 = 44 <= 44
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline1);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(4);
pass.End();
}
encoder.Finish();
// Invalid: draw 4 elements, last stride is 12, 3 * 12 + 12 = 48 > 44
encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(pipeline2);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(4);
pass.End();
}
ASSERT_DEVICE_ERROR(encoder.Finish());
}