blob: 8d6b8e77c3e2fde163390da959f5035f517d0821 [file] [log] [blame] [edit]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/resolver/resolver.h"
#include "src/tint/resolver/resolver_test_helper.h"
using namespace tint::number_suffixes; // NOLINT
namespace tint::resolver {
namespace {
class ResolverOverrideTest : public ResolverTest {
protected:
/// Verify that the AST node `var` was resolved to an overridable constant
/// with an ID equal to `id`.
/// @param var the overridable constant AST node
/// @param id the expected constant ID
void ExpectOverrideId(const ast::Variable* var, uint16_t id) {
auto* sem = Sem().Get<sem::GlobalVariable>(var);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Declaration(), var);
EXPECT_TRUE(sem->Declaration()->Is<ast::Override>());
EXPECT_EQ(sem->OverrideId().value, id);
EXPECT_FALSE(sem->ConstantValue());
}
};
TEST_F(ResolverOverrideTest, NonOverridable) {
auto* a = GlobalConst("a", ty.f32(), Expr(1_f));
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem_a = Sem().Get<sem::GlobalVariable>(a);
ASSERT_NE(sem_a, nullptr);
EXPECT_EQ(sem_a->Declaration(), a);
EXPECT_FALSE(sem_a->Declaration()->Is<ast::Override>());
EXPECT_TRUE(sem_a->ConstantValue());
}
TEST_F(ResolverOverrideTest, WithId) {
auto* a = Override("a", ty.f32(), Expr(1_f), Id(7_u));
EXPECT_TRUE(r()->Resolve()) << r()->error();
ExpectOverrideId(a, 7u);
}
TEST_F(ResolverOverrideTest, WithoutId) {
auto* a = Override("a", ty.f32(), Expr(1_f));
EXPECT_TRUE(r()->Resolve()) << r()->error();
ExpectOverrideId(a, 0u);
}
TEST_F(ResolverOverrideTest, WithAndWithoutIds) {
auto* a = Override("a", ty.f32(), Expr(1_f));
auto* b = Override("b", ty.f32(), Expr(1_f));
auto* c = Override("c", ty.f32(), Expr(1_f), Id(2_u));
auto* d = Override("d", ty.f32(), Expr(1_f), Id(4_u));
auto* e = Override("e", ty.f32(), Expr(1_f));
auto* f = Override("f", ty.f32(), Expr(1_f), Id(1_u));
EXPECT_TRUE(r()->Resolve()) << r()->error();
// Verify that constant id allocation order is deterministic.
ExpectOverrideId(a, 0u);
ExpectOverrideId(b, 3u);
ExpectOverrideId(c, 2u);
ExpectOverrideId(d, 4u);
ExpectOverrideId(e, 5u);
ExpectOverrideId(f, 1u);
}
TEST_F(ResolverOverrideTest, DuplicateIds) {
Override("a", ty.f32(), Expr(1_f), Id(Source{{12, 34}}, 7_u));
Override("b", ty.f32(), Expr(1_f), Id(Source{{56, 78}}, 7_u));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), R"(56:78 error: @id values must be unique
12:34 note: a override with an ID of 7 was previously declared here:)");
}
TEST_F(ResolverOverrideTest, IdTooLarge) {
Override("a", ty.f32(), Expr(1_f), Id(Source{{12, 34}}, 65536_u));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: @id value must be between 0 and 65535");
}
TEST_F(ResolverOverrideTest, F16_TemporallyBan) {
Enable(ast::Extension::kF16);
Override(Source{{12, 34}}, "a", ty.f16(), Expr(1_h), Id(1_u));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: 'override' of type f16 is not implemented yet");
}
TEST_F(ResolverOverrideTest, TransitiveReferences_DirectUse) {
auto* a = Override("a", ty.f32());
auto* b = Override("b", ty.f32(), Expr(1_f));
Override("unused", ty.f32(), Expr(1_f));
auto* func = Func("foo", utils::Empty, ty.void_(),
utils::Vector{
Assign(Phony(), "a"),
Assign(Phony(), "b"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto& refs = Sem().Get(func)->TransitivelyReferencedGlobals();
ASSERT_EQ(refs.Length(), 2u);
EXPECT_EQ(refs[0], Sem().Get(a));
EXPECT_EQ(refs[1], Sem().Get(b));
}
TEST_F(ResolverOverrideTest, TransitiveReferences_ViaOverrideInit) {
auto* a = Override("a", ty.f32());
auto* b = Override("b", ty.f32(), Mul(2_a, "a"));
Override("unused", ty.f32(), Expr(1_f));
auto* func = Func("foo", utils::Empty, ty.void_(),
utils::Vector{
Assign(Phony(), "b"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
{
auto* r = Sem().TransitivelyReferencedOverrides(Sem().Get(b));
ASSERT_NE(r, nullptr);
auto& refs = *r;
ASSERT_EQ(refs.Length(), 1u);
EXPECT_EQ(refs[0], Sem().Get(a));
}
{
auto& refs = Sem().Get(func)->TransitivelyReferencedGlobals();
ASSERT_EQ(refs.Length(), 2u);
EXPECT_EQ(refs[0], Sem().Get(b));
EXPECT_EQ(refs[1], Sem().Get(a));
}
}
TEST_F(ResolverOverrideTest, TransitiveReferences_ViaPrivateInit) {
auto* a = Override("a", ty.f32());
auto* b = GlobalVar("b", ast::AddressSpace::kPrivate, ty.f32(), Mul(2_a, "a"));
Override("unused", ty.f32(), Expr(1_f));
auto* func = Func("foo", utils::Empty, ty.void_(),
utils::Vector{
Assign(Phony(), "b"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
{
auto* r = Sem().TransitivelyReferencedOverrides(Sem().Get<sem::GlobalVariable>(b));
ASSERT_NE(r, nullptr);
auto& refs = *r;
ASSERT_EQ(refs.Length(), 1u);
EXPECT_EQ(refs[0], Sem().Get(a));
}
{
auto& refs = Sem().Get(func)->TransitivelyReferencedGlobals();
ASSERT_EQ(refs.Length(), 2u);
EXPECT_EQ(refs[0], Sem().Get(b));
EXPECT_EQ(refs[1], Sem().Get(a));
}
}
TEST_F(ResolverOverrideTest, TransitiveReferences_ViaAttribute) {
auto* a = Override("a", ty.i32());
auto* b = Override("b", ty.i32(), Mul(2_a, "a"));
Override("unused", ty.i32(), Expr(1_a));
auto* func = Func("foo", utils::Empty, ty.void_(),
utils::Vector{
Assign(Phony(), "b"),
},
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Mul(2_a, "b")),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto& refs = Sem().Get(func)->TransitivelyReferencedGlobals();
ASSERT_EQ(refs.Length(), 2u);
EXPECT_EQ(refs[0], Sem().Get(b));
EXPECT_EQ(refs[1], Sem().Get(a));
}
TEST_F(ResolverOverrideTest, TransitiveReferences_ViaArraySize) {
auto* a = Override("a", ty.i32());
auto* b = Override("b", ty.i32(), Mul(2_a, "a"));
auto* arr_ty = ty.array(ty.i32(), Mul(2_a, "b"));
auto* arr = GlobalVar("arr", ast::AddressSpace::kWorkgroup, arr_ty);
Override("unused", ty.i32(), Expr(1_a));
auto* func = Func("foo", utils::Empty, ty.void_(),
utils::Vector{
Assign(IndexAccessor("arr", 0_a), 42_a),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
{
auto* r = Sem().TransitivelyReferencedOverrides(Sem().Get(arr_ty));
ASSERT_NE(r, nullptr);
auto& refs = *r;
ASSERT_EQ(refs.Length(), 2u);
EXPECT_EQ(refs[0], Sem().Get(b));
EXPECT_EQ(refs[1], Sem().Get(a));
}
{
auto* r = Sem().TransitivelyReferencedOverrides(Sem().Get<sem::GlobalVariable>(arr));
ASSERT_NE(r, nullptr);
auto& refs = *r;
ASSERT_EQ(refs.Length(), 2u);
EXPECT_EQ(refs[0], Sem().Get(b));
EXPECT_EQ(refs[1], Sem().Get(a));
}
{
auto& refs = Sem().Get(func)->TransitivelyReferencedGlobals();
ASSERT_EQ(refs.Length(), 3u);
EXPECT_EQ(refs[0], Sem().Get(arr));
EXPECT_EQ(refs[1], Sem().Get(b));
EXPECT_EQ(refs[2], Sem().Get(a));
}
}
TEST_F(ResolverOverrideTest, TransitiveReferences_ViaArraySize_Alias) {
auto* a = Override("a", ty.i32());
auto* b = Override("b", ty.i32(), Mul(2_a, "a"));
auto* arr_ty = Alias("arr_ty", ty.array(ty.i32(), Mul(2_a, "b")));
auto* arr = GlobalVar("arr", ast::AddressSpace::kWorkgroup, ty.type_name("arr_ty"));
Override("unused", ty.i32(), Expr(1_a));
auto* func = Func("foo", utils::Empty, ty.void_(),
utils::Vector{
Assign(IndexAccessor("arr", 0_a), 42_a),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
{
auto* r = Sem().TransitivelyReferencedOverrides(Sem().Get<type::Array>(arr_ty->type));
ASSERT_NE(r, nullptr);
auto& refs = *r;
ASSERT_EQ(refs.Length(), 2u);
EXPECT_EQ(refs[0], Sem().Get(b));
EXPECT_EQ(refs[1], Sem().Get(a));
}
{
auto* r = Sem().TransitivelyReferencedOverrides(Sem().Get<sem::GlobalVariable>(arr));
ASSERT_NE(r, nullptr);
auto& refs = *r;
ASSERT_EQ(refs.Length(), 2u);
EXPECT_EQ(refs[0], Sem().Get(b));
EXPECT_EQ(refs[1], Sem().Get(a));
}
{
auto& refs = Sem().Get(func)->TransitivelyReferencedGlobals();
ASSERT_EQ(refs.Length(), 3u);
EXPECT_EQ(refs[0], Sem().Get(arr));
EXPECT_EQ(refs[1], Sem().Get(b));
EXPECT_EQ(refs[2], Sem().Get(a));
}
}
TEST_F(ResolverOverrideTest, TransitiveReferences_MultipleEntryPoints) {
auto* a = Override("a", ty.i32());
auto* b1 = Override("b1", ty.i32(), Mul(2_a, "a"));
auto* b2 = Override("b2", ty.i32(), Mul(2_a, "a"));
auto* c1 = Override("c1", ty.i32());
auto* c2 = Override("c2", ty.i32());
auto* d = Override("d", ty.i32());
Alias("arr_ty1", ty.array(ty.i32(), Mul("b1", "c1")));
Alias("arr_ty2", ty.array(ty.i32(), Mul("b2", "c2")));
auto* arr1 = GlobalVar("arr1", ast::AddressSpace::kWorkgroup, ty.type_name("arr_ty1"));
auto* arr2 = GlobalVar("arr2", ast::AddressSpace::kWorkgroup, ty.type_name("arr_ty2"));
Override("unused", ty.i32(), Expr(1_a));
auto* func1 = Func("foo1", utils::Empty, ty.void_(),
utils::Vector{
Assign(IndexAccessor("arr1", 0_a), 42_a),
},
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Mul(2_a, "d")),
});
auto* func2 = Func("foo2", utils::Empty, ty.void_(),
utils::Vector{
Assign(IndexAccessor("arr2", 0_a), 42_a),
},
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(64_a),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
{
auto& refs = Sem().Get(func1)->TransitivelyReferencedGlobals();
ASSERT_EQ(refs.Length(), 5u);
EXPECT_EQ(refs[0], Sem().Get(d));
EXPECT_EQ(refs[1], Sem().Get(arr1));
EXPECT_EQ(refs[2], Sem().Get(b1));
EXPECT_EQ(refs[3], Sem().Get(a));
EXPECT_EQ(refs[4], Sem().Get(c1));
}
{
auto& refs = Sem().Get(func2)->TransitivelyReferencedGlobals();
ASSERT_EQ(refs.Length(), 4u);
EXPECT_EQ(refs[0], Sem().Get(arr2));
EXPECT_EQ(refs[1], Sem().Get(b2));
EXPECT_EQ(refs[2], Sem().Get(a));
EXPECT_EQ(refs[3], Sem().Get(c2));
}
}
} // namespace
} // namespace tint::resolver