| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/tint/resolver/resolver.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <iomanip> |
| #include <limits> |
| #include <utility> |
| |
| #include "src/tint/ast/alias.h" |
| #include "src/tint/ast/assignment_statement.h" |
| #include "src/tint/ast/attribute.h" |
| #include "src/tint/ast/bitcast_expression.h" |
| #include "src/tint/ast/break_statement.h" |
| #include "src/tint/ast/call_statement.h" |
| #include "src/tint/ast/continue_statement.h" |
| #include "src/tint/ast/disable_validation_attribute.h" |
| #include "src/tint/ast/discard_statement.h" |
| #include "src/tint/ast/for_loop_statement.h" |
| #include "src/tint/ast/id_attribute.h" |
| #include "src/tint/ast/if_statement.h" |
| #include "src/tint/ast/internal_attribute.h" |
| #include "src/tint/ast/interpolate_attribute.h" |
| #include "src/tint/ast/loop_statement.h" |
| #include "src/tint/ast/return_statement.h" |
| #include "src/tint/ast/switch_statement.h" |
| #include "src/tint/ast/traverse_expressions.h" |
| #include "src/tint/ast/unary_op_expression.h" |
| #include "src/tint/ast/variable_decl_statement.h" |
| #include "src/tint/ast/while_statement.h" |
| #include "src/tint/ast/workgroup_attribute.h" |
| #include "src/tint/builtin/builtin.h" |
| #include "src/tint/resolver/builtin_structs.h" |
| #include "src/tint/resolver/uniformity.h" |
| #include "src/tint/sem/break_if_statement.h" |
| #include "src/tint/sem/builtin_enum_expression.h" |
| #include "src/tint/sem/call.h" |
| #include "src/tint/sem/for_loop_statement.h" |
| #include "src/tint/sem/function.h" |
| #include "src/tint/sem/function_expression.h" |
| #include "src/tint/sem/if_statement.h" |
| #include "src/tint/sem/index_accessor_expression.h" |
| #include "src/tint/sem/load.h" |
| #include "src/tint/sem/loop_statement.h" |
| #include "src/tint/sem/materialize.h" |
| #include "src/tint/sem/member_accessor_expression.h" |
| #include "src/tint/sem/module.h" |
| #include "src/tint/sem/statement.h" |
| #include "src/tint/sem/struct.h" |
| #include "src/tint/sem/switch_statement.h" |
| #include "src/tint/sem/type_expression.h" |
| #include "src/tint/sem/value_constructor.h" |
| #include "src/tint/sem/value_conversion.h" |
| #include "src/tint/sem/variable.h" |
| #include "src/tint/sem/while_statement.h" |
| #include "src/tint/type/abstract_float.h" |
| #include "src/tint/type/abstract_int.h" |
| #include "src/tint/type/array.h" |
| #include "src/tint/type/atomic.h" |
| #include "src/tint/type/depth_multisampled_texture.h" |
| #include "src/tint/type/depth_texture.h" |
| #include "src/tint/type/external_texture.h" |
| #include "src/tint/type/multisampled_texture.h" |
| #include "src/tint/type/pointer.h" |
| #include "src/tint/type/reference.h" |
| #include "src/tint/type/sampled_texture.h" |
| #include "src/tint/type/sampler.h" |
| #include "src/tint/type/storage_texture.h" |
| #include "src/tint/utils/compiler_macros.h" |
| #include "src/tint/utils/defer.h" |
| #include "src/tint/utils/math.h" |
| #include "src/tint/utils/reverse.h" |
| #include "src/tint/utils/scoped_assignment.h" |
| #include "src/tint/utils/string.h" |
| #include "src/tint/utils/string_stream.h" |
| #include "src/tint/utils/transform.h" |
| #include "src/tint/utils/vector.h" |
| |
| TINT_INSTANTIATE_TYPEINFO(tint::sem::BuiltinEnumExpression<tint::builtin::Access>); |
| TINT_INSTANTIATE_TYPEINFO(tint::sem::BuiltinEnumExpression<tint::builtin::AddressSpace>); |
| TINT_INSTANTIATE_TYPEINFO(tint::sem::BuiltinEnumExpression<tint::builtin::BuiltinValue>); |
| TINT_INSTANTIATE_TYPEINFO(tint::sem::BuiltinEnumExpression<tint::builtin::InterpolationSampling>); |
| TINT_INSTANTIATE_TYPEINFO(tint::sem::BuiltinEnumExpression<tint::builtin::InterpolationType>); |
| TINT_INSTANTIATE_TYPEINFO(tint::sem::BuiltinEnumExpression<tint::builtin::TexelFormat>); |
| |
| namespace tint::resolver { |
| namespace { |
| |
| constexpr int64_t kMaxArrayElementCount = 65536; |
| constexpr uint32_t kMaxStatementDepth = 127; |
| constexpr size_t kMaxNestDepthOfCompositeType = 255; |
| |
| } // namespace |
| |
| Resolver::Resolver(ProgramBuilder* builder) |
| : builder_(builder), |
| diagnostics_(builder->Diagnostics()), |
| const_eval_(*builder), |
| intrinsic_table_(IntrinsicTable::Create(*builder)), |
| sem_(builder), |
| validator_(builder, |
| sem_, |
| enabled_extensions_, |
| atomic_composite_info_, |
| valid_type_storage_layouts_) {} |
| |
| Resolver::~Resolver() = default; |
| |
| bool Resolver::Resolve() { |
| if (diagnostics_.contains_errors()) { |
| return false; |
| } |
| |
| builder_->Sem().Reserve(builder_->LastAllocatedNodeID()); |
| |
| // Pre-allocate the marked bitset with the total number of AST nodes. |
| marked_.Resize(builder_->ASTNodes().Count()); |
| |
| if (!DependencyGraph::Build(builder_->AST(), diagnostics_, dependencies_)) { |
| return false; |
| } |
| |
| bool result = ResolveInternal(); |
| |
| if (TINT_UNLIKELY(!result && !diagnostics_.contains_errors())) { |
| TINT_ICE(Resolver, diagnostics_) << "resolving failed, but no error was raised"; |
| return false; |
| } |
| |
| // Check before std::move()'ing enabled_extensions_ |
| const bool disable_uniformity_analysis = |
| enabled_extensions_.Contains(builtin::Extension::kChromiumDisableUniformityAnalysis); |
| |
| // Create the semantic module. |
| auto* mod = builder_->create<sem::Module>(std::move(dependencies_.ordered_globals), |
| std::move(enabled_extensions_)); |
| ApplyDiagnosticSeverities(mod); |
| builder_->Sem().SetModule(mod); |
| |
| if (result && !disable_uniformity_analysis) { |
| // Run the uniformity analysis, which requires a complete semantic module. |
| if (!AnalyzeUniformity(builder_, dependencies_)) { |
| return false; |
| } |
| } |
| |
| return result; |
| } |
| |
| bool Resolver::ResolveInternal() { |
| Mark(&builder_->AST()); |
| |
| // Process all module-scope declarations in dependency order. |
| utils::Vector<const ast::DiagnosticControl*, 4> diagnostic_controls; |
| for (auto* decl : dependencies_.ordered_globals) { |
| Mark(decl); |
| if (!Switch<bool>( |
| decl, // |
| [&](const ast::DiagnosticDirective* d) { |
| diagnostic_controls.Push(&d->control); |
| return DiagnosticControl(d->control); |
| }, |
| [&](const ast::Enable* e) { return Enable(e); }, |
| [&](const ast::TypeDecl* td) { return TypeDecl(td); }, |
| [&](const ast::Function* func) { return Function(func); }, |
| [&](const ast::Variable* var) { return GlobalVariable(var); }, |
| [&](const ast::ConstAssert* ca) { return ConstAssert(ca); }, |
| [&](Default) { |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "unhandled global declaration: " << decl->TypeInfo().name; |
| return false; |
| })) { |
| return false; |
| } |
| } |
| |
| if (!AllocateOverridableConstantIds()) { |
| return false; |
| } |
| |
| SetShadows(); |
| |
| if (!validator_.DiagnosticControls(diagnostic_controls, "directive")) { |
| return false; |
| } |
| |
| if (!validator_.PipelineStages(entry_points_)) { |
| return false; |
| } |
| |
| if (!validator_.PushConstants(entry_points_)) { |
| return false; |
| } |
| |
| bool result = true; |
| for (auto* node : builder_->ASTNodes().Objects()) { |
| if (TINT_UNLIKELY(!marked_[node->node_id.value])) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n" |
| << "At: " << node->source << "\n" |
| << "Pointer: " << node; |
| result = false; |
| } |
| } |
| |
| return result; |
| } |
| |
| sem::Variable* Resolver::Variable(const ast::Variable* v, bool is_global) { |
| Mark(v->name); |
| |
| return Switch( |
| v, // |
| [&](const ast::Var* var) { return Var(var, is_global); }, |
| [&](const ast::Let* let) { return Let(let, is_global); }, |
| [&](const ast::Override* override) { return Override(override); }, |
| [&](const ast::Const* const_) { return Const(const_, is_global); }, |
| [&](Default) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Resolver::GlobalVariable() called with a unknown variable type: " |
| << v->TypeInfo().name; |
| return nullptr; |
| }); |
| } |
| |
| sem::Variable* Resolver::Let(const ast::Let* v, bool is_global) { |
| const type::Type* ty = nullptr; |
| |
| // If the variable has a declared type, resolve it. |
| if (v->type) { |
| ty = Type(v->type); |
| if (!ty) { |
| return nullptr; |
| } |
| } |
| |
| for (auto* attribute : v->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::InternalAttribute* attr) -> bool { return InternalAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "'let' declaration"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| |
| if (!v->initializer) { |
| AddError("'let' declaration must have an initializer", v->source); |
| return nullptr; |
| } |
| |
| auto* rhs = Load(Materialize(ValueExpression(v->initializer), ty)); |
| if (!rhs) { |
| return nullptr; |
| } |
| |
| // If the variable has no declared type, infer it from the RHS |
| if (!ty) { |
| ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS |
| } |
| |
| if (rhs && !validator_.VariableInitializer(v, ty, rhs)) { |
| return nullptr; |
| } |
| |
| if (!ApplyAddressSpaceUsageToType(builtin::AddressSpace::kUndefined, |
| const_cast<type::Type*>(ty), v->source)) { |
| AddNote("while instantiating 'let' " + v->name->symbol.Name(), v->source); |
| return nullptr; |
| } |
| |
| sem::Variable* sem = nullptr; |
| if (is_global) { |
| sem = builder_->create<sem::GlobalVariable>( |
| v, ty, sem::EvaluationStage::kRuntime, builtin::AddressSpace::kUndefined, |
| builtin::Access::kUndefined, |
| /* constant_value */ nullptr, std::nullopt, std::nullopt); |
| } else { |
| sem = builder_->create<sem::LocalVariable>(v, ty, sem::EvaluationStage::kRuntime, |
| builtin::AddressSpace::kUndefined, |
| builtin::Access::kUndefined, current_statement_, |
| /* constant_value */ nullptr); |
| } |
| |
| sem->SetInitializer(rhs); |
| builder_->Sem().Add(v, sem); |
| return sem; |
| } |
| |
| sem::Variable* Resolver::Override(const ast::Override* v) { |
| const type::Type* ty = nullptr; |
| |
| // If the variable has a declared type, resolve it. |
| if (v->type) { |
| ty = Type(v->type); |
| if (!ty) { |
| return nullptr; |
| } |
| } |
| |
| const sem::ValueExpression* rhs = nullptr; |
| |
| // Does the variable have an initializer? |
| if (v->initializer) { |
| // Note: RHS must be a const or override expression, which excludes references. |
| // So there's no need to load or unwrap references here. |
| |
| ExprEvalStageConstraint constraint{sem::EvaluationStage::kOverride, "override initializer"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| rhs = Materialize(ValueExpression(v->initializer), ty); |
| if (!rhs) { |
| return nullptr; |
| } |
| |
| // If the variable has no declared type, infer it from the RHS |
| if (!ty) { |
| ty = rhs->Type(); |
| } |
| } else if (!ty) { |
| AddError("override declaration requires a type or initializer", v->source); |
| return nullptr; |
| } |
| |
| if (rhs && !validator_.VariableInitializer(v, ty, rhs)) { |
| return nullptr; |
| } |
| |
| if (!ApplyAddressSpaceUsageToType(builtin::AddressSpace::kUndefined, |
| const_cast<type::Type*>(ty), v->source)) { |
| AddNote("while instantiating 'override' " + v->name->symbol.Name(), v->source); |
| return nullptr; |
| } |
| |
| auto* sem = builder_->create<sem::GlobalVariable>( |
| v, ty, sem::EvaluationStage::kOverride, builtin::AddressSpace::kUndefined, |
| builtin::Access::kUndefined, |
| /* constant_value */ nullptr, std::nullopt, std::nullopt); |
| sem->SetInitializer(rhs); |
| |
| for (auto* attribute : v->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::IdAttribute* attr) { |
| ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@id"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return false; |
| } |
| if (!materialized->Type()->IsAnyOf<type::I32, type::U32>()) { |
| AddError("@id must be an i32 or u32 value", attr->source); |
| return false; |
| } |
| |
| auto const_value = materialized->ConstantValue(); |
| auto value = const_value->ValueAs<AInt>(); |
| if (value < 0) { |
| AddError("@id value must be non-negative", attr->source); |
| return false; |
| } |
| if (value > std::numeric_limits<decltype(OverrideId::value)>::max()) { |
| AddError( |
| "@id value must be between 0 and " + |
| std::to_string(std::numeric_limits<decltype(OverrideId::value)>::max()), |
| attr->source); |
| return false; |
| } |
| |
| auto o = OverrideId{static_cast<decltype(OverrideId::value)>(value)}; |
| sem->SetOverrideId(o); |
| |
| // Track the constant IDs that are specified in the shader. |
| override_ids_.Add(o, sem); |
| return true; |
| }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "'override' declaration"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| |
| builder_->Sem().Add(v, sem); |
| return sem; |
| } |
| |
| sem::Variable* Resolver::Const(const ast::Const* c, bool is_global) { |
| const type::Type* ty = nullptr; |
| |
| // If the variable has a declared type, resolve it. |
| if (c->type) { |
| ty = Type(c->type); |
| if (!ty) { |
| return nullptr; |
| } |
| } |
| |
| if (!c->initializer) { |
| AddError("'const' declaration must have an initializer", c->source); |
| return nullptr; |
| } |
| |
| for (auto* attribute : c->attributes) { |
| Mark(attribute); |
| bool ok = Switch(attribute, // |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "'const' declaration"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| |
| const sem::ValueExpression* rhs = nullptr; |
| { |
| ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "const initializer"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| rhs = ValueExpression(c->initializer); |
| if (!rhs) { |
| return nullptr; |
| } |
| } |
| |
| // Note: RHS must be a const expression, which excludes references. |
| // So there's no need to load or unwrap references here. |
| |
| if (ty) { |
| // If an explicit type was specified, materialize to that type |
| rhs = Materialize(rhs, ty); |
| if (!rhs) { |
| return nullptr; |
| } |
| } else { |
| // If no type was specified, infer it from the RHS |
| ty = rhs->Type(); |
| } |
| |
| if (!validator_.VariableInitializer(c, ty, rhs)) { |
| return nullptr; |
| } |
| |
| if (!ApplyAddressSpaceUsageToType(builtin::AddressSpace::kUndefined, |
| const_cast<type::Type*>(ty), c->source)) { |
| AddNote("while instantiating 'const' " + c->name->symbol.Name(), c->source); |
| return nullptr; |
| } |
| |
| const auto value = rhs->ConstantValue(); |
| auto* sem = is_global |
| ? static_cast<sem::Variable*>(builder_->create<sem::GlobalVariable>( |
| c, ty, sem::EvaluationStage::kConstant, builtin::AddressSpace::kUndefined, |
| builtin::Access::kUndefined, value, std::nullopt, std::nullopt)) |
| : static_cast<sem::Variable*>(builder_->create<sem::LocalVariable>( |
| c, ty, sem::EvaluationStage::kConstant, builtin::AddressSpace::kUndefined, |
| builtin::Access::kUndefined, current_statement_, value)); |
| |
| sem->SetInitializer(rhs); |
| builder_->Sem().Add(c, sem); |
| return sem; |
| } |
| |
| sem::Variable* Resolver::Var(const ast::Var* var, bool is_global) { |
| const type::Type* storage_ty = nullptr; |
| |
| // If the variable has a declared type, resolve it. |
| if (auto ty = var->type) { |
| storage_ty = Type(ty); |
| if (!storage_ty) { |
| return nullptr; |
| } |
| } |
| |
| const sem::ValueExpression* rhs = nullptr; |
| |
| // Does the variable have a initializer? |
| if (var->initializer) { |
| ExprEvalStageConstraint constraint{ |
| is_global ? sem::EvaluationStage::kOverride : sem::EvaluationStage::kRuntime, |
| "var initializer", |
| }; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| rhs = Load(Materialize(ValueExpression(var->initializer), storage_ty)); |
| if (!rhs) { |
| return nullptr; |
| } |
| // If the variable has no declared type, infer it from the RHS |
| if (!storage_ty) { |
| storage_ty = rhs->Type(); |
| } |
| } |
| |
| if (!storage_ty) { |
| AddError("var declaration requires a type or initializer", var->source); |
| return nullptr; |
| } |
| |
| auto address_space = builtin::AddressSpace::kUndefined; |
| if (var->declared_address_space) { |
| auto expr = AddressSpaceExpression(var->declared_address_space); |
| if (!expr) { |
| return nullptr; |
| } |
| address_space = expr->Value(); |
| } else { |
| // No declared address space. Infer from usage / type. |
| if (!is_global) { |
| address_space = builtin::AddressSpace::kFunction; |
| } else if (storage_ty->UnwrapRef()->is_handle()) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables |
| // If the store type is a texture type or a sampler type, then the |
| // variable declaration must not have a address space attribute. The |
| // address space will always be handle. |
| address_space = builtin::AddressSpace::kHandle; |
| } |
| } |
| |
| if (!is_global && address_space != builtin::AddressSpace::kFunction && |
| validator_.IsValidationEnabled(var->attributes, |
| ast::DisabledValidation::kIgnoreAddressSpace)) { |
| AddError("function-scope 'var' declaration must use 'function' address space", var->source); |
| return nullptr; |
| } |
| |
| auto access = builtin::Access::kUndefined; |
| if (var->declared_access) { |
| auto expr = AccessExpression(var->declared_access); |
| if (!expr) { |
| return nullptr; |
| } |
| access = expr->Value(); |
| } else { |
| access = DefaultAccessForAddressSpace(address_space); |
| } |
| |
| if (rhs && !validator_.VariableInitializer(var, storage_ty, rhs)) { |
| return nullptr; |
| } |
| |
| auto* var_ty = builder_->create<type::Reference>(storage_ty, address_space, access); |
| |
| if (!ApplyAddressSpaceUsageToType(address_space, var_ty, |
| var->type ? var->type->source : var->source)) { |
| AddNote("while instantiating 'var' " + var->name->symbol.Name(), var->source); |
| return nullptr; |
| } |
| |
| sem::Variable* sem = nullptr; |
| if (is_global) { |
| bool has_io_address_space = address_space == builtin::AddressSpace::kIn || |
| address_space == builtin::AddressSpace::kOut; |
| |
| std::optional<uint32_t> group, binding, location; |
| for (auto* attribute : var->attributes) { |
| Mark(attribute); |
| enum Status { kSuccess, kErrored, kInvalid }; |
| auto res = Switch( |
| attribute, // |
| [&](const ast::BindingAttribute* attr) { |
| auto value = BindingAttribute(attr); |
| if (!value) { |
| return kErrored; |
| } |
| binding = value.Get(); |
| return kSuccess; |
| }, |
| [&](const ast::GroupAttribute* attr) { |
| auto value = GroupAttribute(attr); |
| if (!value) { |
| return kErrored; |
| } |
| group = value.Get(); |
| return kSuccess; |
| }, |
| [&](const ast::LocationAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| auto value = LocationAttribute(attr); |
| if (!value) { |
| return kErrored; |
| } |
| location = value.Get(); |
| return kSuccess; |
| }, |
| [&](const ast::BuiltinAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| return BuiltinAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::InterpolateAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| return InterpolateAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::InvariantAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| return InvariantAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::InternalAttribute* attr) { |
| return InternalAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](Default) { return kInvalid; }); |
| |
| switch (res) { |
| case kSuccess: |
| break; |
| case kErrored: |
| return nullptr; |
| case kInvalid: |
| ErrorInvalidAttribute(attribute, "module-scope 'var'"); |
| return nullptr; |
| } |
| } |
| |
| std::optional<sem::BindingPoint> binding_point; |
| if (group && binding) { |
| binding_point = sem::BindingPoint{group.value(), binding.value()}; |
| } |
| sem = builder_->create<sem::GlobalVariable>( |
| var, var_ty, sem::EvaluationStage::kRuntime, address_space, access, |
| /* constant_value */ nullptr, binding_point, location); |
| |
| } else { |
| for (auto* attribute : var->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, |
| [&](const ast::InternalAttribute* attr) { return InternalAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "function-scope 'var'"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| sem = builder_->create<sem::LocalVariable>(var, var_ty, sem::EvaluationStage::kRuntime, |
| address_space, access, current_statement_, |
| /* constant_value */ nullptr); |
| } |
| |
| sem->SetInitializer(rhs); |
| builder_->Sem().Add(var, sem); |
| return sem; |
| } |
| |
| sem::Parameter* Resolver::Parameter(const ast::Parameter* param, |
| const ast::Function* func, |
| uint32_t index) { |
| Mark(param->name); |
| |
| auto add_note = [&] { |
| AddNote("while instantiating parameter " + param->name->symbol.Name(), param->source); |
| }; |
| |
| std::optional<uint32_t> location, group, binding; |
| |
| if (func->IsEntryPoint()) { |
| for (auto* attribute : param->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::LocationAttribute* attr) { |
| auto value = LocationAttribute(attr); |
| if (!value) { |
| return false; |
| } |
| location = value.Get(); |
| return true; |
| }, |
| [&](const ast::BuiltinAttribute* attr) -> bool { return BuiltinAttribute(attr); }, |
| [&](const ast::InvariantAttribute* attr) -> bool { |
| return InvariantAttribute(attr); |
| }, |
| [&](const ast::InterpolateAttribute* attr) -> bool { |
| return InterpolateAttribute(attr); |
| }, |
| [&](const ast::InternalAttribute* attr) -> bool { return InternalAttribute(attr); }, |
| [&](const ast::GroupAttribute* attr) -> bool { |
| if (validator_.IsValidationEnabled( |
| param->attributes, ast::DisabledValidation::kEntryPointParameter)) { |
| ErrorInvalidAttribute(attribute, "function parameters"); |
| return false; |
| } |
| auto value = GroupAttribute(attr); |
| if (!value) { |
| return false; |
| } |
| group = value.Get(); |
| return true; |
| }, |
| [&](const ast::BindingAttribute* attr) -> bool { |
| if (validator_.IsValidationEnabled( |
| param->attributes, ast::DisabledValidation::kEntryPointParameter)) { |
| ErrorInvalidAttribute(attribute, "function parameters"); |
| return false; |
| } |
| auto value = BindingAttribute(attr); |
| if (!value) { |
| return false; |
| } |
| binding = value.Get(); |
| return true; |
| }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "function parameters"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| } else { |
| for (auto* attribute : param->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::InternalAttribute* attr) -> bool { return InternalAttribute(attr); }, |
| [&](Default) { |
| if (attribute->IsAnyOf<ast::LocationAttribute, ast::BuiltinAttribute, |
| ast::InvariantAttribute, ast::InterpolateAttribute>()) { |
| ErrorInvalidAttribute(attribute, "non-entry point function parameters"); |
| } else { |
| ErrorInvalidAttribute(attribute, "function parameters"); |
| } |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| } |
| |
| if (!validator_.NoDuplicateAttributes(param->attributes)) { |
| return nullptr; |
| } |
| |
| type::Type* ty = Type(param->type); |
| if (!ty) { |
| return nullptr; |
| } |
| |
| if (!ApplyAddressSpaceUsageToType(builtin::AddressSpace::kUndefined, ty, param->type->source)) { |
| add_note(); |
| return nullptr; |
| } |
| |
| if (auto* ptr = ty->As<type::Pointer>()) { |
| // For MSL, we push module-scope variables into the entry point as pointer |
| // parameters, so we also need to handle their store type. |
| if (!ApplyAddressSpaceUsageToType( |
| ptr->AddressSpace(), const_cast<type::Type*>(ptr->StoreType()), param->source)) { |
| add_note(); |
| return nullptr; |
| } |
| } |
| |
| std::optional<sem::BindingPoint> binding_point; |
| if (group && binding) { |
| binding_point = sem::BindingPoint{group.value(), binding.value()}; |
| } |
| |
| auto* sem = builder_->create<sem::Parameter>( |
| param, index, ty, builtin::AddressSpace::kUndefined, builtin::Access::kUndefined, |
| sem::ParameterUsage::kNone, binding_point, location); |
| builder_->Sem().Add(param, sem); |
| |
| if (!validator_.Parameter(sem)) { |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| builtin::Access Resolver::DefaultAccessForAddressSpace(builtin::AddressSpace address_space) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#storage-class |
| switch (address_space) { |
| case builtin::AddressSpace::kStorage: |
| case builtin::AddressSpace::kUniform: |
| case builtin::AddressSpace::kHandle: |
| return builtin::Access::kRead; |
| default: |
| break; |
| } |
| return builtin::Access::kReadWrite; |
| } |
| |
| bool Resolver::AllocateOverridableConstantIds() { |
| constexpr size_t kLimit = std::numeric_limits<decltype(OverrideId::value)>::max(); |
| // The next pipeline constant ID to try to allocate. |
| OverrideId next_id; |
| bool ids_exhausted = false; |
| |
| auto increment_next_id = [&] { |
| if (next_id.value == kLimit) { |
| ids_exhausted = true; |
| } else { |
| next_id.value = next_id.value + 1; |
| } |
| }; |
| |
| // Allocate constant IDs in global declaration order, so that they are |
| // deterministic. |
| // TODO(crbug.com/tint/1192): If a transform changes the order or removes an |
| // unused constant, the allocation may change on the next Resolver pass. |
| for (auto* decl : builder_->AST().GlobalDeclarations()) { |
| auto* override = decl->As<ast::Override>(); |
| if (!override) { |
| continue; |
| } |
| |
| auto* sem = sem_.Get(override); |
| |
| OverrideId id; |
| if (ast::HasAttribute<ast::IdAttribute>(override->attributes)) { |
| id = sem->OverrideId(); |
| } else { |
| // No ID was specified, so allocate the next available ID. |
| while (!ids_exhausted && override_ids_.Contains(next_id)) { |
| increment_next_id(); |
| } |
| if (ids_exhausted) { |
| AddError( |
| "number of 'override' variables exceeded limit of " + std::to_string(kLimit), |
| decl->source); |
| return false; |
| } |
| id = next_id; |
| increment_next_id(); |
| } |
| |
| const_cast<sem::GlobalVariable*>(sem)->SetOverrideId(id); |
| } |
| return true; |
| } |
| |
| void Resolver::SetShadows() { |
| for (auto it : dependencies_.shadows) { |
| utils::CastableBase* b = sem_.Get(it.value); |
| if (TINT_UNLIKELY(!b)) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "AST node '" << it.value->TypeInfo().name << "' had no semantic info\n" |
| << "At: " << it.value->source << "\n" |
| << "Pointer: " << it.value; |
| } |
| |
| Switch( |
| sem_.Get(it.key), // |
| [&](sem::LocalVariable* local) { local->SetShadows(b); }, |
| [&](sem::Parameter* param) { param->SetShadows(b); }); |
| } |
| } |
| |
| sem::GlobalVariable* Resolver::GlobalVariable(const ast::Variable* v) { |
| utils::UniqueVector<const sem::GlobalVariable*, 4> transitively_referenced_overrides; |
| TINT_SCOPED_ASSIGNMENT(resolved_overrides_, &transitively_referenced_overrides); |
| |
| auto* sem = As<sem::GlobalVariable>(Variable(v, /* is_global */ true)); |
| if (!sem) { |
| return nullptr; |
| } |
| |
| if (!validator_.NoDuplicateAttributes(v->attributes)) { |
| return nullptr; |
| } |
| |
| if (!validator_.GlobalVariable(sem, override_ids_)) { |
| return nullptr; |
| } |
| |
| // Track the pipeline-overridable constants that are transitively referenced by this |
| // variable. |
| for (auto* var : transitively_referenced_overrides) { |
| builder_->Sem().AddTransitivelyReferencedOverride(sem, var); |
| } |
| if (auto* arr = sem->Type()->UnwrapRef()->As<type::Array>()) { |
| auto* refs = builder_->Sem().TransitivelyReferencedOverrides(arr); |
| if (refs) { |
| for (auto* var : *refs) { |
| builder_->Sem().AddTransitivelyReferencedOverride(sem, var); |
| } |
| } |
| } |
| |
| return sem; |
| } |
| |
| sem::Statement* Resolver::ConstAssert(const ast::ConstAssert* assertion) { |
| ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "const assertion"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| auto* expr = ValueExpression(assertion->condition); |
| if (!expr) { |
| return nullptr; |
| } |
| auto* cond = expr->ConstantValue(); |
| if (auto* ty = cond->Type(); !ty->Is<type::Bool>()) { |
| AddError("const assertion condition must be a bool, got '" + ty->FriendlyName() + "'", |
| assertion->condition->source); |
| return nullptr; |
| } |
| if (!cond->ValueAs<bool>()) { |
| AddError("const assertion failed", assertion->source); |
| return nullptr; |
| } |
| auto* sem = |
| builder_->create<sem::Statement>(assertion, current_compound_statement_, current_function_); |
| builder_->Sem().Add(assertion, sem); |
| return sem; |
| } |
| |
| sem::Function* Resolver::Function(const ast::Function* decl) { |
| Mark(decl->name); |
| |
| auto* func = builder_->create<sem::Function>(decl); |
| builder_->Sem().Add(decl, func); |
| TINT_SCOPED_ASSIGNMENT(current_function_, func); |
| |
| validator_.DiagnosticFilters().Push(); |
| TINT_DEFER(validator_.DiagnosticFilters().Pop()); |
| |
| for (auto* attribute : decl->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, |
| [&](const ast::DiagnosticAttribute* attr) { return DiagnosticAttribute(attr); }, |
| [&](const ast::StageAttribute* attr) { return StageAttribute(attr); }, |
| [&](const ast::MustUseAttribute* attr) { return MustUseAttribute(attr); }, |
| [&](const ast::WorkgroupAttribute* attr) { |
| auto value = WorkgroupAttribute(attr); |
| if (!value) { |
| return false; |
| } |
| func->SetWorkgroupSize(value.Get()); |
| return true; |
| }, |
| [&](const ast::InternalAttribute* attr) { return InternalAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "functions"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| if (!validator_.NoDuplicateAttributes(decl->attributes)) { |
| return nullptr; |
| } |
| |
| // Resolve all the parameters |
| uint32_t parameter_index = 0; |
| utils::Hashmap<Symbol, Source, 8> parameter_names; |
| for (auto* param : decl->params) { |
| Mark(param); |
| |
| { // Check the parameter name is unique for the function |
| if (auto added = parameter_names.Add(param->name->symbol, param->source); !added) { |
| auto name = param->name->symbol.Name(); |
| AddError("redefinition of parameter '" + name + "'", param->source); |
| AddNote("previous definition is here", *added.value); |
| return nullptr; |
| } |
| } |
| |
| auto* p = Parameter(param, decl, parameter_index++); |
| if (!p) { |
| return nullptr; |
| } |
| |
| func->AddParameter(p); |
| |
| auto* p_ty = const_cast<type::Type*>(p->Type()); |
| if (auto* str = p_ty->As<type::Struct>()) { |
| switch (decl->PipelineStage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(type::PipelineStageUsage::kVertexInput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(type::PipelineStageUsage::kFragmentInput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(type::PipelineStageUsage::kComputeInput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| } |
| |
| // Resolve the return type |
| type::Type* return_type = nullptr; |
| if (auto ty = decl->return_type) { |
| return_type = Type(ty); |
| if (!return_type) { |
| return nullptr; |
| } |
| } else { |
| return_type = builder_->create<type::Void>(); |
| } |
| func->SetReturnType(return_type); |
| |
| if (decl->IsEntryPoint()) { |
| // Determine if the return type has a location |
| bool permissive = validator_.IsValidationDisabled( |
| decl->attributes, ast::DisabledValidation::kEntryPointParameter) || |
| validator_.IsValidationDisabled( |
| decl->attributes, ast::DisabledValidation::kFunctionParameter); |
| for (auto* attribute : decl->return_type_attributes) { |
| Mark(attribute); |
| enum Status { kSuccess, kErrored, kInvalid }; |
| auto res = Switch( |
| attribute, // |
| [&](const ast::LocationAttribute* attr) { |
| auto value = LocationAttribute(attr); |
| if (!value) { |
| return kErrored; |
| } |
| func->SetReturnLocation(value.Get()); |
| return kSuccess; |
| }, |
| [&](const ast::BuiltinAttribute* attr) { |
| return BuiltinAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::InternalAttribute* attr) { |
| return InternalAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::InterpolateAttribute* attr) { |
| return InterpolateAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::InvariantAttribute* attr) { |
| return InvariantAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::BindingAttribute* attr) { |
| if (!permissive) { |
| return kInvalid; |
| } |
| return BindingAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::GroupAttribute* attr) { |
| if (!permissive) { |
| return kInvalid; |
| } |
| return GroupAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](Default) { return kInvalid; }); |
| |
| switch (res) { |
| case kSuccess: |
| break; |
| case kErrored: |
| return nullptr; |
| case kInvalid: |
| ErrorInvalidAttribute(attribute, "entry point return types"); |
| return nullptr; |
| } |
| } |
| } else { |
| for (auto* attribute : decl->return_type_attributes) { |
| Mark(attribute); |
| bool ok = Switch(attribute, // |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, |
| "non-entry point function return types"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| } |
| |
| if (auto* str = return_type->As<type::Struct>()) { |
| if (!ApplyAddressSpaceUsageToType(builtin::AddressSpace::kUndefined, str, decl->source)) { |
| AddNote("while instantiating return type for " + decl->name->symbol.Name(), |
| decl->source); |
| return nullptr; |
| } |
| |
| switch (decl->PipelineStage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(type::PipelineStageUsage::kVertexOutput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(type::PipelineStageUsage::kFragmentOutput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(type::PipelineStageUsage::kComputeOutput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| |
| ApplyDiagnosticSeverities(func); |
| |
| if (decl->IsEntryPoint()) { |
| entry_points_.Push(func); |
| } |
| |
| if (decl->body) { |
| Mark(decl->body); |
| if (TINT_UNLIKELY(current_compound_statement_)) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Resolver::Function() called with a current compound statement"; |
| return nullptr; |
| } |
| auto* body = StatementScope(decl->body, builder_->create<sem::FunctionBlockStatement>(func), |
| [&] { return Statements(decl->body->statements); }); |
| if (!body) { |
| return nullptr; |
| } |
| func->Behaviors() = body->Behaviors(); |
| if (func->Behaviors().Contains(sem::Behavior::kReturn)) { |
| // https://www.w3.org/TR/WGSL/#behaviors-rules |
| // We assign a behavior to each function: it is its body’s behavior |
| // (treating the body as a regular statement), with any "Return" replaced |
| // by "Next". |
| func->Behaviors().Remove(sem::Behavior::kReturn); |
| func->Behaviors().Add(sem::Behavior::kNext); |
| } |
| } |
| |
| if (!validator_.NoDuplicateAttributes(decl->return_type_attributes)) { |
| return nullptr; |
| } |
| |
| auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() |
| : ast::PipelineStage::kNone; |
| if (!validator_.Function(func, stage)) { |
| return nullptr; |
| } |
| |
| // If this is an entry point, mark all transitively called functions as being |
| // used by this entry point. |
| if (decl->IsEntryPoint()) { |
| for (auto* f : func->TransitivelyCalledFunctions()) { |
| const_cast<sem::Function*>(f)->AddAncestorEntryPoint(func); |
| } |
| } |
| |
| return func; |
| } |
| |
| bool Resolver::Statements(utils::VectorRef<const ast::Statement*> stmts) { |
| sem::Behaviors behaviors{sem::Behavior::kNext}; |
| |
| bool reachable = true; |
| for (auto* stmt : stmts) { |
| Mark(stmt); |
| auto* sem = Statement(stmt); |
| if (!sem) { |
| return false; |
| } |
| // s1 s2:(B1∖{Next}) ∪ B2 |
| sem->SetIsReachable(reachable); |
| if (reachable) { |
| behaviors = (behaviors - sem::Behavior::kNext) + sem->Behaviors(); |
| } |
| reachable = reachable && sem->Behaviors().Contains(sem::Behavior::kNext); |
| } |
| |
| current_statement_->Behaviors() = behaviors; |
| |
| if (!validator_.Statements(stmts)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sem::Statement* Resolver::Statement(const ast::Statement* stmt) { |
| return Switch( |
| stmt, |
| // Compound statements. These create their own sem::CompoundStatement |
| // bindings. |
| [&](const ast::BlockStatement* b) { return BlockStatement(b); }, |
| [&](const ast::ForLoopStatement* l) { return ForLoopStatement(l); }, |
| [&](const ast::LoopStatement* l) { return LoopStatement(l); }, |
| [&](const ast::WhileStatement* w) { return WhileStatement(w); }, |
| [&](const ast::IfStatement* i) { return IfStatement(i); }, |
| [&](const ast::SwitchStatement* s) { return SwitchStatement(s); }, |
| |
| // Non-Compound statements |
| [&](const ast::AssignmentStatement* a) { return AssignmentStatement(a); }, |
| [&](const ast::BreakStatement* b) { return BreakStatement(b); }, |
| [&](const ast::BreakIfStatement* b) { return BreakIfStatement(b); }, |
| [&](const ast::CallStatement* c) { return CallStatement(c); }, |
| [&](const ast::CompoundAssignmentStatement* c) { return CompoundAssignmentStatement(c); }, |
| [&](const ast::ContinueStatement* c) { return ContinueStatement(c); }, |
| [&](const ast::DiscardStatement* d) { return DiscardStatement(d); }, |
| [&](const ast::IncrementDecrementStatement* i) { return IncrementDecrementStatement(i); }, |
| [&](const ast::ReturnStatement* r) { return ReturnStatement(r); }, |
| [&](const ast::VariableDeclStatement* v) { return VariableDeclStatement(v); }, |
| [&](const ast::ConstAssert* sa) { return ConstAssert(sa); }, |
| |
| // Error cases |
| [&](const ast::CaseStatement*) { |
| AddError("case statement can only be used inside a switch statement", stmt->source); |
| return nullptr; |
| }, |
| [&](Default) { |
| AddError("unknown statement type: " + std::string(stmt->TypeInfo().name), stmt->source); |
| return nullptr; |
| }); |
| } |
| |
| sem::CaseStatement* Resolver::CaseStatement(const ast::CaseStatement* stmt, const type::Type* ty) { |
| auto* sem = |
| builder_->create<sem::CaseStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Selectors().reserve(stmt->selectors.Length()); |
| for (auto* sel : stmt->selectors) { |
| Mark(sel); |
| |
| ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "case selector"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| const constant::Value* const_value = nullptr; |
| if (!sel->IsDefault()) { |
| // The sem statement was created in the switch when attempting to determine the |
| // common type. |
| auto* materialized = Materialize(sem_.GetVal(sel->expr), ty); |
| if (!materialized) { |
| return false; |
| } |
| if (!materialized->Type()->IsAnyOf<type::I32, type::U32>()) { |
| AddError("case selector must be an i32 or u32 value", sel->source); |
| return false; |
| } |
| const_value = materialized->ConstantValue(); |
| if (!const_value) { |
| AddError("case selector must be a constant expression", sel->source); |
| return false; |
| } |
| } |
| |
| sem->Selectors().emplace_back(builder_->create<sem::CaseSelector>(sel, const_value)); |
| } |
| |
| Mark(stmt->body); |
| auto* body = BlockStatement(stmt->body); |
| if (!body) { |
| return false; |
| } |
| sem->SetBlock(body); |
| sem->Behaviors() = body->Behaviors(); |
| return true; |
| }); |
| } |
| |
| sem::IfStatement* Resolver::IfStatement(const ast::IfStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::IfStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* cond = Load(ValueExpression(stmt->condition)); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| sem->Behaviors() = cond->Behaviors(); |
| sem->Behaviors().Remove(sem::Behavior::kNext); |
| |
| Mark(stmt->body); |
| auto* body = builder_->create<sem::BlockStatement>(stmt->body, current_compound_statement_, |
| current_function_); |
| if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| sem->Behaviors().Add(body->Behaviors()); |
| |
| if (stmt->else_statement) { |
| Mark(stmt->else_statement); |
| auto* else_sem = Statement(stmt->else_statement); |
| if (!else_sem) { |
| return false; |
| } |
| sem->Behaviors().Add(else_sem->Behaviors()); |
| } else { |
| // https://www.w3.org/TR/WGSL/#behaviors-rules |
| // if statements without an else branch are treated as if they had an |
| // empty else branch (which adds Next to their behavior) |
| sem->Behaviors().Add(sem::Behavior::kNext); |
| } |
| |
| return validator_.IfStatement(sem); |
| }); |
| } |
| |
| sem::BlockStatement* Resolver::BlockStatement(const ast::BlockStatement* stmt) { |
| auto* sem = builder_->create<sem::BlockStatement>( |
| stmt->As<ast::BlockStatement>(), current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { return Statements(stmt->statements); }); |
| } |
| |
| sem::LoopStatement* Resolver::LoopStatement(const ast::LoopStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::LoopStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| Mark(stmt->body); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| return StatementScope(stmt->body, body, [&] { |
| if (!Statements(stmt->body->statements)) { |
| return false; |
| } |
| auto& behaviors = sem->Behaviors(); |
| behaviors = body->Behaviors(); |
| |
| if (stmt->continuing) { |
| Mark(stmt->continuing); |
| auto* continuing = StatementScope( |
| stmt->continuing, |
| builder_->create<sem::LoopContinuingBlockStatement>( |
| stmt->continuing, current_compound_statement_, current_function_), |
| [&] { return Statements(stmt->continuing->statements); }); |
| if (!continuing) { |
| return false; |
| } |
| behaviors.Add(continuing->Behaviors()); |
| } |
| |
| if (behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? |
| behaviors.Add(sem::Behavior::kNext); |
| } else { |
| behaviors.Remove(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return validator_.LoopStatement(sem); |
| }); |
| }); |
| } |
| |
| sem::ForLoopStatement* Resolver::ForLoopStatement(const ast::ForLoopStatement* stmt) { |
| auto* sem = builder_->create<sem::ForLoopStatement>(stmt, current_compound_statement_, |
| current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| if (auto* initializer = stmt->initializer) { |
| Mark(initializer); |
| auto* init = Statement(initializer); |
| if (!init) { |
| return false; |
| } |
| behaviors.Add(init->Behaviors()); |
| } |
| |
| if (auto* cond_expr = stmt->condition) { |
| auto* cond = Load(ValueExpression(cond_expr)); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| behaviors.Add(cond->Behaviors()); |
| } |
| |
| if (auto* continuing = stmt->continuing) { |
| Mark(continuing); |
| auto* cont = Statement(continuing); |
| if (!cont) { |
| return false; |
| } |
| behaviors.Add(cont->Behaviors()); |
| } |
| |
| Mark(stmt->body); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| |
| behaviors.Add(body->Behaviors()); |
| if (stmt->condition || behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? |
| behaviors.Add(sem::Behavior::kNext); |
| } else { |
| behaviors.Remove(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return validator_.ForLoopStatement(sem); |
| }); |
| } |
| |
| sem::WhileStatement* Resolver::WhileStatement(const ast::WhileStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::WhileStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| |
| auto* cond = Load(ValueExpression(stmt->condition)); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| behaviors.Add(cond->Behaviors()); |
| |
| Mark(stmt->body); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| |
| behaviors.Add(body->Behaviors()); |
| // Always consider the while as having a 'next' behaviour because it has |
| // a condition. We don't check if the condition will terminate but it isn't |
| // valid to have an infinite loop in a WGSL program, so a non-terminating |
| // condition is already an invalid program. |
| behaviors.Add(sem::Behavior::kNext); |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return validator_.WhileStatement(sem); |
| }); |
| } |
| |
| sem::Expression* Resolver::Expression(const ast::Expression* root) { |
| utils::Vector<const ast::Expression*, 64> sorted; |
| constexpr size_t kMaxExpressionDepth = 512U; |
| bool failed = false; |
| if (!ast::TraverseExpressions<ast::TraverseOrder::RightToLeft>( |
| root, diagnostics_, [&](const ast::Expression* expr, size_t depth) { |
| if (depth > kMaxExpressionDepth) { |
| AddError( |
| "reached max expression depth of " + std::to_string(kMaxExpressionDepth), |
| expr->source); |
| failed = true; |
| return ast::TraverseAction::Stop; |
| } |
| if (!Mark(expr)) { |
| failed = true; |
| return ast::TraverseAction::Stop; |
| } |
| if (auto* binary = expr->As<ast::BinaryExpression>(); |
| binary && binary->IsLogical()) { |
| // Store potential const-eval short-circuit pair |
| logical_binary_lhs_to_parent_.Add(binary->lhs, binary); |
| } |
| sorted.Push(expr); |
| return ast::TraverseAction::Descend; |
| })) { |
| return nullptr; |
| } |
| |
| if (failed) { |
| return nullptr; |
| } |
| |
| for (auto* expr : utils::Reverse(sorted)) { |
| auto* sem_expr = Switch( |
| expr, // |
| [&](const ast::IndexAccessorExpression* array) { return IndexAccessor(array); }, |
| [&](const ast::BinaryExpression* bin_op) { return Binary(bin_op); }, |
| [&](const ast::BitcastExpression* bitcast) { return Bitcast(bitcast); }, |
| [&](const ast::CallExpression* call) { return Call(call); }, |
| [&](const ast::IdentifierExpression* ident) { return Identifier(ident); }, |
| [&](const ast::LiteralExpression* literal) { return Literal(literal); }, |
| [&](const ast::MemberAccessorExpression* member) { return MemberAccessor(member); }, |
| [&](const ast::UnaryOpExpression* unary) { return UnaryOp(unary); }, |
| [&](const ast::PhonyExpression*) { |
| return builder_->create<sem::ValueExpression>(expr, builder_->create<type::Void>(), |
| sem::EvaluationStage::kRuntime, |
| current_statement_, |
| /* constant_value */ nullptr, |
| /* has_side_effects */ false); |
| }, |
| [&](Default) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "unhandled expression type: " << expr->TypeInfo().name; |
| return nullptr; |
| }); |
| if (!sem_expr) { |
| return nullptr; |
| } |
| |
| auto* val = sem_expr->As<sem::ValueExpression>(); |
| |
| if (val) { |
| if (auto* constraint = expr_eval_stage_constraint_.constraint) { |
| if (!validator_.EvaluationStage(val, expr_eval_stage_constraint_.stage, |
| constraint)) { |
| return nullptr; |
| } |
| } |
| } |
| |
| builder_->Sem().Add(expr, sem_expr); |
| if (expr == root) { |
| return sem_expr; |
| } |
| |
| // If we just processed the lhs of a constexpr logical binary expression, mark the rhs for |
| // short-circuiting. |
| if (val && val->ConstantValue()) { |
| if (auto binary = logical_binary_lhs_to_parent_.Find(expr)) { |
| const bool lhs_is_true = val->ConstantValue()->ValueAs<bool>(); |
| if (((*binary)->IsLogicalAnd() && !lhs_is_true) || |
| ((*binary)->IsLogicalOr() && lhs_is_true)) { |
| // Mark entire expression tree to not const-evaluate |
| auto r = ast::TraverseExpressions( // |
| (*binary)->rhs, diagnostics_, [&](const ast::Expression* e) { |
| skip_const_eval_.Add(e); |
| return ast::TraverseAction::Descend; |
| }); |
| if (!r) { |
| return nullptr; |
| } |
| } |
| } |
| } |
| } |
| |
| TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node"; |
| return nullptr; |
| } |
| |
| sem::ValueExpression* Resolver::ValueExpression(const ast::Expression* expr) { |
| return sem_.AsValueExpression(Expression(expr)); |
| } |
| |
| sem::TypeExpression* Resolver::TypeExpression(const ast::Expression* expr) { |
| identifier_resolve_hint_ = {expr, "type"}; |
| return sem_.AsTypeExpression(Expression(expr)); |
| } |
| |
| sem::FunctionExpression* Resolver::FunctionExpression(const ast::Expression* expr) { |
| identifier_resolve_hint_ = {expr, "call target"}; |
| return sem_.AsFunctionExpression(Expression(expr)); |
| } |
| |
| type::Type* Resolver::Type(const ast::Expression* ast) { |
| auto* type_expr = TypeExpression(ast); |
| if (!type_expr) { |
| return nullptr; |
| } |
| return const_cast<type::Type*>(type_expr->Type()); |
| } |
| |
| sem::BuiltinEnumExpression<builtin::AddressSpace>* Resolver::AddressSpaceExpression( |
| const ast::Expression* expr) { |
| identifier_resolve_hint_ = {expr, "address space", builtin::kAddressSpaceStrings}; |
| return sem_.AsAddressSpace(Expression(expr)); |
| } |
| |
| sem::BuiltinEnumExpression<builtin::BuiltinValue>* Resolver::BuiltinValueExpression( |
| const ast::Expression* expr) { |
| identifier_resolve_hint_ = {expr, "builtin value", builtin::kBuiltinValueStrings}; |
| return sem_.AsBuiltinValue(Expression(expr)); |
| } |
| |
| sem::BuiltinEnumExpression<builtin::TexelFormat>* Resolver::TexelFormatExpression( |
| const ast::Expression* expr) { |
| identifier_resolve_hint_ = {expr, "texel format", builtin::kTexelFormatStrings}; |
| return sem_.AsTexelFormat(Expression(expr)); |
| } |
| |
| sem::BuiltinEnumExpression<builtin::Access>* Resolver::AccessExpression( |
| const ast::Expression* expr) { |
| identifier_resolve_hint_ = {expr, "access", builtin::kAccessStrings}; |
| return sem_.AsAccess(Expression(expr)); |
| } |
| |
| sem::BuiltinEnumExpression<builtin::InterpolationSampling>* Resolver::InterpolationSampling( |
| const ast::Expression* expr) { |
| identifier_resolve_hint_ = {expr, "interpolation sampling", |
| builtin::kInterpolationSamplingStrings}; |
| return sem_.AsInterpolationSampling(Expression(expr)); |
| } |
| |
| sem::BuiltinEnumExpression<builtin::InterpolationType>* Resolver::InterpolationType( |
| const ast::Expression* expr) { |
| identifier_resolve_hint_ = {expr, "interpolation type", builtin::kInterpolationTypeStrings}; |
| return sem_.AsInterpolationType(Expression(expr)); |
| } |
| |
| void Resolver::RegisterStore(const sem::ValueExpression* expr) { |
| auto& info = alias_analysis_infos_[current_function_]; |
| Switch( |
| expr->RootIdentifier(), |
| [&](const sem::GlobalVariable* global) { |
| info.module_scope_writes.insert({global, expr}); |
| }, |
| [&](const sem::Parameter* param) { info.parameter_writes.insert(param); }); |
| } |
| |
| bool Resolver::AliasAnalysis(const sem::Call* call) { |
| auto* target = call->Target()->As<sem::Function>(); |
| if (!target) { |
| return true; |
| } |
| if (validator_.IsValidationDisabled(target->Declaration()->attributes, |
| ast::DisabledValidation::kIgnorePointerAliasing)) { |
| return true; |
| } |
| |
| // Helper to generate an aliasing error diagnostic. |
| struct Alias { |
| const sem::ValueExpression* expr; // the "other expression" |
| enum { Argument, ModuleScope } type; // the type of the "other" expression |
| std::string access; // the access performed for the "other" expression |
| }; |
| auto make_error = [&](const sem::ValueExpression* arg, Alias&& var) { |
| AddError("invalid aliased pointer argument", arg->Declaration()->source); |
| switch (var.type) { |
| case Alias::Argument: |
| AddNote("aliases with another argument passed here", |
| var.expr->Declaration()->source); |
| break; |
| case Alias::ModuleScope: { |
| auto* func = var.expr->Stmt()->Function(); |
| auto func_name = func->Declaration()->name->symbol.Name(); |
| AddNote( |
| "aliases with module-scope variable " + var.access + " in '" + func_name + "'", |
| var.expr->Declaration()->source); |
| break; |
| } |
| } |
| return false; |
| }; |
| |
| auto& args = call->Arguments(); |
| auto& target_info = alias_analysis_infos_[target]; |
| auto& caller_info = alias_analysis_infos_[current_function_]; |
| |
| // Track the set of root identifiers that are read and written by arguments passed in this |
| // call. |
| std::unordered_map<const sem::Variable*, const sem::ValueExpression*> arg_reads; |
| std::unordered_map<const sem::Variable*, const sem::ValueExpression*> arg_writes; |
| for (size_t i = 0; i < args.Length(); i++) { |
| auto* arg = args[i]; |
| if (!arg->Type()->Is<type::Pointer>()) { |
| continue; |
| } |
| |
| auto* root = arg->RootIdentifier(); |
| if (target_info.parameter_writes.count(target->Parameters()[i])) { |
| // Arguments that are written to can alias with any other argument or module-scope |
| // variable access. |
| if (arg_writes.count(root)) { |
| return make_error(arg, {arg_writes.at(root), Alias::Argument, "write"}); |
| } |
| if (arg_reads.count(root)) { |
| return make_error(arg, {arg_reads.at(root), Alias::Argument, "read"}); |
| } |
| if (target_info.module_scope_reads.count(root)) { |
| return make_error( |
| arg, {target_info.module_scope_reads.at(root), Alias::ModuleScope, "read"}); |
| } |
| if (target_info.module_scope_writes.count(root)) { |
| return make_error( |
| arg, {target_info.module_scope_writes.at(root), Alias::ModuleScope, "write"}); |
| } |
| arg_writes.insert({root, arg}); |
| |
| // Propagate the write access to the caller. |
| Switch( |
| root, |
| [&](const sem::GlobalVariable* global) { |
| caller_info.module_scope_writes.insert({global, arg}); |
| }, |
| [&](const sem::Parameter* param) { caller_info.parameter_writes.insert(param); }); |
| } else if (target_info.parameter_reads.count(target->Parameters()[i])) { |
| // Arguments that are read from can alias with arguments or module-scope variables |
| // that are written to. |
| if (arg_writes.count(root)) { |
| return make_error(arg, {arg_writes.at(root), Alias::Argument, "write"}); |
| } |
| if (target_info.module_scope_writes.count(root)) { |
| return make_error( |
| arg, {target_info.module_scope_writes.at(root), Alias::ModuleScope, "write"}); |
| } |
| arg_reads.insert({root, arg}); |
| |
| // Propagate the read access to the caller. |
| Switch( |
| root, |
| [&](const sem::GlobalVariable* global) { |
| caller_info.module_scope_reads.insert({global, arg}); |
| }, |
| [&](const sem::Parameter* param) { caller_info.parameter_reads.insert(param); }); |
| } |
| } |
| |
| // Propagate module-scope variable uses to the caller. |
| for (auto read : target_info.module_scope_reads) { |
| caller_info.module_scope_reads.insert({read.first, read.second}); |
| } |
| for (auto write : target_info.module_scope_writes) { |
| caller_info.module_scope_writes.insert({write.first, write.second}); |
| } |
| |
| return true; |
| } |
| |
| const type::Type* Resolver::ConcreteType(const type::Type* ty, |
| const type::Type* target_ty, |
| const Source& source) { |
| auto i32 = [&] { return builder_->create<type::I32>(); }; |
| auto f32 = [&] { return builder_->create<type::F32>(); }; |
| auto i32v = [&](uint32_t width) { return builder_->create<type::Vector>(i32(), width); }; |
| auto f32v = [&](uint32_t width) { return builder_->create<type::Vector>(f32(), width); }; |
| auto f32m = [&](uint32_t columns, uint32_t rows) { |
| return builder_->create<type::Matrix>(f32v(rows), columns); |
| }; |
| |
| return Switch( |
| ty, // |
| [&](const type::AbstractInt*) { return target_ty ? target_ty : i32(); }, |
| [&](const type::AbstractFloat*) { return target_ty ? target_ty : f32(); }, |
| [&](const type::Vector* v) { |
| return Switch( |
| v->type(), // |
| [&](const type::AbstractInt*) { return target_ty ? target_ty : i32v(v->Width()); }, |
| [&](const type::AbstractFloat*) { |
| return target_ty ? target_ty : f32v(v->Width()); |
| }); |
| }, |
| [&](const type::Matrix* m) { |
| return Switch(m->type(), // |
| [&](const type::AbstractFloat*) { |
| return target_ty ? target_ty : f32m(m->columns(), m->rows()); |
| }); |
| }, |
| [&](const type::Array* a) -> const type::Type* { |
| const type::Type* target_el_ty = nullptr; |
| if (auto* target_arr_ty = As<type::Array>(target_ty)) { |
| target_el_ty = target_arr_ty->ElemType(); |
| } |
| if (auto* el_ty = ConcreteType(a->ElemType(), target_el_ty, source)) { |
| return Array(source, source, source, el_ty, a->Count(), /* explicit_stride */ 0); |
| } |
| return nullptr; |
| }, |
| [&](const type::Struct* s) -> const type::Type* { |
| if (auto tys = s->ConcreteTypes(); !tys.IsEmpty()) { |
| return target_ty ? target_ty : tys[0]; |
| } |
| return nullptr; |
| }); |
| } |
| |
| const sem::ValueExpression* Resolver::Load(const sem::ValueExpression* expr) { |
| if (!expr) { |
| // Allow for Load(ValueExpression(blah)), where failures pass through Load() |
| return nullptr; |
| } |
| |
| if (!expr->Type()->Is<type::Reference>()) { |
| // Expression is not a reference type, so cannot be loaded. Just return expr. |
| return expr; |
| } |
| |
| auto* load = builder_->create<sem::Load>(expr, current_statement_); |
| load->Behaviors() = expr->Behaviors(); |
| builder_->Sem().Replace(expr->Declaration(), load); |
| |
| // Track the load for the alias analysis. |
| auto& alias_info = alias_analysis_infos_[current_function_]; |
| Switch( |
| expr->RootIdentifier(), |
| [&](const sem::GlobalVariable* global) { |
| alias_info.module_scope_reads.insert({global, expr}); |
| }, |
| [&](const sem::Parameter* param) { alias_info.parameter_reads.insert(param); }); |
| |
| return load; |
| } |
| |
| const sem::ValueExpression* Resolver::Materialize(const sem::ValueExpression* expr, |
| const type::Type* target_type /* = nullptr */) { |
| if (!expr) { |
| // Allow for Materialize(ValueExpression(blah)), where failures pass through Materialize() |
| return nullptr; |
| } |
| |
| auto* decl = expr->Declaration(); |
| |
| auto* concrete_ty = ConcreteType(expr->Type(), target_type, decl->source); |
| if (!concrete_ty) { |
| return expr; // Does not require materialization |
| } |
| |
| auto* src_ty = expr->Type(); |
| if (!validator_.Materialize(concrete_ty, src_ty, decl->source)) { |
| return nullptr; |
| } |
| |
| const constant::Value* materialized_val = nullptr; |
| if (!skip_const_eval_.Contains(decl)) { |
| auto expr_val = expr->ConstantValue(); |
| if (TINT_UNLIKELY(!expr_val)) { |
| TINT_ICE(Resolver, diagnostics_) |
| << decl->source << "Materialize(" << decl->TypeInfo().name |
| << ") called on expression with no constant value"; |
| return nullptr; |
| } |
| |
| auto val = const_eval_.Convert(concrete_ty, expr_val, decl->source); |
| if (!val) { |
| // Convert() has already failed and raised an diagnostic error. |
| return nullptr; |
| } |
| materialized_val = val.Get(); |
| if (TINT_UNLIKELY(!materialized_val)) { |
| TINT_ICE(Resolver, diagnostics_) |
| << decl->source << "ConvertValue(" << expr_val->Type()->FriendlyName() << " -> " |
| << concrete_ty->FriendlyName() << ") returned invalid value"; |
| return nullptr; |
| } |
| } |
| |
| auto* m = |
| builder_->create<sem::Materialize>(expr, current_statement_, concrete_ty, materialized_val); |
| m->Behaviors() = expr->Behaviors(); |
| builder_->Sem().Replace(decl, m); |
| return m; |
| } |
| |
| template <size_t N> |
| bool Resolver::MaybeMaterializeAndLoadArguments(utils::Vector<const sem::ValueExpression*, N>& args, |
| const sem::CallTarget* target) { |
| for (size_t i = 0, n = std::min(args.Length(), target->Parameters().Length()); i < n; i++) { |
| const auto* param_ty = target->Parameters()[i]->Type(); |
| if (ShouldMaterializeArgument(param_ty)) { |
| auto* materialized = Materialize(args[i], param_ty); |
| if (!materialized) { |
| return false; |
| } |
| args[i] = materialized; |
| } |
| if (!param_ty->Is<type::Reference>()) { |
| auto* load = Load(args[i]); |
| if (!load) { |
| return false; |
| } |
| args[i] = load; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::ShouldMaterializeArgument(const type::Type* parameter_ty) const { |
| const auto* param_el_ty = type::Type::DeepestElementOf(parameter_ty); |
| return param_el_ty && !param_el_ty->Is<type::AbstractNumeric>(); |
| } |
| |
| bool Resolver::Convert(const constant::Value*& c, |
| const type::Type* target_ty, |
| const Source& source) { |
| auto r = const_eval_.Convert(target_ty, c, source); |
| if (!r) { |
| return false; |
| } |
| c = r.Get(); |
| return true; |
| } |
| |
| template <size_t N> |
| utils::Result<utils::Vector<const constant::Value*, N>> Resolver::ConvertArguments( |
| const utils::Vector<const sem::ValueExpression*, N>& args, |
| const sem::CallTarget* target) { |
| auto const_args = utils::Transform(args, [](auto* arg) { return arg->ConstantValue(); }); |
| for (size_t i = 0, n = std::min(args.Length(), target->Parameters().Length()); i < n; i++) { |
| if (!Convert(const_args[i], target->Parameters()[i]->Type(), |
| args[i]->Declaration()->source)) { |
| return utils::Failure; |
| } |
| } |
| return const_args; |
| } |
| |
| sem::ValueExpression* Resolver::IndexAccessor(const ast::IndexAccessorExpression* expr) { |
| auto* idx = Load(Materialize(sem_.GetVal(expr->index))); |
| if (!idx) { |
| return nullptr; |
| } |
| const auto* obj = sem_.GetVal(expr->object); |
| if (idx->Stage() != sem::EvaluationStage::kConstant) { |
| // If the index is non-constant, then the resulting expression is non-constant, so we'll |
| // have to materialize the object. For example, consider: |
| // vec2(1, 2)[runtime-index] |
| obj = Materialize(obj); |
| } |
| if (!obj) { |
| return nullptr; |
| } |
| auto* obj_raw_ty = obj->Type(); |
| auto* obj_ty = obj_raw_ty->UnwrapRef(); |
| auto* ty = Switch( |
| obj_ty, // |
| [&](const type::Array* arr) { return arr->ElemType(); }, |
| [&](const type::Vector* vec) { return vec->type(); }, |
| [&](const type::Matrix* mat) { |
| return builder_->create<type::Vector>(mat->type(), mat->rows()); |
| }, |
| [&](Default) { |
| AddError("cannot index type '" + sem_.TypeNameOf(obj_ty) + "'", expr->source); |
| return nullptr; |
| }); |
| if (ty == nullptr) { |
| return nullptr; |
| } |
| |
| auto* idx_ty = idx->Type()->UnwrapRef(); |
| if (!idx_ty->IsAnyOf<type::I32, type::U32>()) { |
| AddError("index must be of type 'i32' or 'u32', found: '" + sem_.TypeNameOf(idx_ty) + "'", |
| idx->Declaration()->source); |
| return nullptr; |
| } |
| |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = obj_raw_ty->As<type::Reference>()) { |
| ty = builder_->create<type::Reference>(ty, ref->AddressSpace(), ref->Access()); |
| } |
| |
| const constant::Value* val = nullptr; |
| auto stage = sem::EarliestStage(obj->Stage(), idx->Stage()); |
| if (stage == sem::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = sem::EvaluationStage::kNotEvaluated; |
| } else { |
| if (auto r = const_eval_.Index(ty, obj, idx)) { |
| val = r.Get(); |
| } else { |
| return nullptr; |
| } |
| } |
| bool has_side_effects = idx->HasSideEffects() || obj->HasSideEffects(); |
| auto* sem = builder_->create<sem::IndexAccessorExpression>( |
| expr, ty, stage, obj, idx, current_statement_, std::move(val), has_side_effects, |
| obj->RootIdentifier()); |
| sem->Behaviors() = idx->Behaviors() + obj->Behaviors(); |
| return sem; |
| } |
| |
| sem::ValueExpression* Resolver::Bitcast(const ast::BitcastExpression* expr) { |
| auto* inner = Load(Materialize(sem_.GetVal(expr->expr))); |
| if (!inner) { |
| return nullptr; |
| } |
| auto* ty = Type(expr->type); |
| if (!ty) { |
| return nullptr; |
| } |
| if (!validator_.Bitcast(expr, ty)) { |
| return nullptr; |
| } |
| |
| auto stage = inner->Stage(); |
| if (stage == sem::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = sem::EvaluationStage::kNotEvaluated; |
| } |
| |
| const constant::Value* value = nullptr; |
| if (stage == sem::EvaluationStage::kConstant) { |
| if (auto r = const_eval_.Bitcast(ty, inner->ConstantValue(), expr->source)) { |
| value = r.Get(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| auto* sem = builder_->create<sem::ValueExpression>(expr, ty, stage, current_statement_, |
| std::move(value), inner->HasSideEffects()); |
| sem->Behaviors() = inner->Behaviors(); |
| return sem; |
| } |
| |
| sem::Call* Resolver::Call(const ast::CallExpression* expr) { |
| // A CallExpression can resolve to one of: |
| // * A function call. |
| // * A builtin call. |
| // * A value constructor. |
| // * A value conversion. |
| auto* target = expr->target; |
| Mark(target); |
| |
| auto* ident = target->identifier; |
| Mark(ident); |
| |
| // Resolve all of the arguments, their types and the set of behaviors. |
| utils::Vector<const sem::ValueExpression*, 8> args; |
| args.Reserve(expr->args.Length()); |
| auto args_stage = sem::EvaluationStage::kConstant; |
| sem::Behaviors arg_behaviors; |
| for (size_t i = 0; i < expr->args.Length(); i++) { |
| auto* arg = sem_.GetVal(expr->args[i]); |
| if (!arg) { |
| return nullptr; |
| } |
| args.Push(arg); |
| args_stage = sem::EarliestStage(args_stage, arg->Stage()); |
| arg_behaviors.Add(arg->Behaviors()); |
| } |
| arg_behaviors.Remove(sem::Behavior::kNext); |
| |
| // Did any arguments have side effects? |
| bool has_side_effects = |
| std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); |
| |
| // ctor_or_conv is a helper for building either a sem::ValueConstructor or |
| // sem::ValueConversion call for a CtorConvIntrinsic with an optional template argument type. |
| auto ctor_or_conv = [&](CtorConvIntrinsic ty, const type::Type* template_arg) -> sem::Call* { |
| auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); }); |
| auto entry = intrinsic_table_->Lookup(ty, template_arg, arg_tys, args_stage, expr->source); |
| if (!entry.target) { |
| return nullptr; |
| } |
| if (!MaybeMaterializeAndLoadArguments(args, entry.target)) { |
| return nullptr; |
| } |
| |
| const constant::Value* value = nullptr; |
| auto stage = sem::EarliestStage(entry.target->Stage(), args_stage); |
| if (stage == sem::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = sem::EvaluationStage::kNotEvaluated; |
| } |
| if (stage == sem::EvaluationStage::kConstant) { |
| auto const_args = ConvertArguments(args, entry.target); |
| if (!const_args) { |
| return nullptr; |
| } |
| if (auto r = (const_eval_.*entry.const_eval_fn)(entry.target->ReturnType(), |
| const_args.Get(), expr->source)) { |
| value = r.Get(); |
| } else { |
| return nullptr; |
| } |
| } |
| return builder_->create<sem::Call>(expr, entry.target, stage, std::move(args), |
| current_statement_, value, has_side_effects); |
| }; |
| |
| // arr_or_str_init is a helper for building a sem::ValueConstructor for an array or structure |
| // constructor call target. |
| auto arr_or_str_init = [&](const type::Type* ty, |
| const sem::CallTarget* call_target) -> sem::Call* { |
| if (!MaybeMaterializeAndLoadArguments(args, call_target)) { |
| return nullptr; |
| } |
| |
| auto stage = args_stage; // The evaluation stage of the call |
| const constant::Value* value = nullptr; // The constant value for the call |
| if (stage == sem::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = sem::EvaluationStage::kNotEvaluated; |
| } |
| if (stage == sem::EvaluationStage::kConstant) { |
| auto els = utils::Transform(args, [&](auto* arg) { return arg->ConstantValue(); }); |
| if (auto r = const_eval_.ArrayOrStructCtor(ty, std::move(els))) { |
| value = r.Get(); |
| } else { |
| return nullptr; |
| } |
| if (!value) { |
| // Constant evaluation failed. |
| // Can happen for expressions that will fail validation (later). |
| // Use the kRuntime EvaluationStage, as kConstant will trigger an assertion in |
| // the sem::ValueExpression constructor, which checks that kConstant is paired |
| // with a constant value. |
| stage = sem::EvaluationStage::kRuntime; |
| } |
| } |
| |
| return builder_->create<sem::Call>(expr, call_target, stage, std::move(args), |
| current_statement_, value, has_side_effects); |
| }; |
| |
| auto ty_init_or_conv = [&](const type::Type* type) { |
| return Switch( |
| type, // |
| [&](const type::I32*) { return ctor_or_conv(CtorConvIntrinsic::kI32, nullptr); }, |
| [&](const type::U32*) { return ctor_or_conv(CtorConvIntrinsic::kU32, nullptr); }, |
| [&](const type::F16*) { |
| return validator_.CheckF16Enabled(expr->source) |
| ? ctor_or_conv(CtorConvIntrinsic::kF16, nullptr) |
| : nullptr; |
| }, |
| [&](const type::F32*) { return ctor_or_conv(CtorConvIntrinsic::kF32, nullptr); }, |
| [&](const type::Bool*) { return ctor_or_conv(CtorConvIntrinsic::kBool, nullptr); }, |
| [&](const type::Vector* v) { |
| if (v->Packed()) { |
| TINT_ASSERT(Resolver, v->Width() == 3u); |
| return ctor_or_conv(CtorConvIntrinsic::kPackedVec3, v->type()); |
| } |
| return ctor_or_conv(VectorCtorConvIntrinsic(v->Width()), v->type()); |
| }, |
| [&](const type::Matrix* m) { |
| return ctor_or_conv(MatrixCtorConvIntrinsic(m->columns(), m->rows()), m->type()); |
| }, |
| [&](const type::Array* arr) -> sem::Call* { |
| auto* call_target = array_ctors_.GetOrCreate( |
| ArrayConstructorSig{{arr, args.Length(), args_stage}}, |
| [&]() -> sem::ValueConstructor* { |
| auto params = utils::Transform(args, [&](auto, size_t i) { |
| return builder_->create<sem::Parameter>( |
| nullptr, // declaration |
| static_cast<uint32_t>(i), // index |
| arr->ElemType(), // type |
| builtin::AddressSpace::kUndefined, // address_space |
| builtin::Access::kUndefined); |
| }); |
| return builder_->create<sem::ValueConstructor>(arr, std::move(params), |
| args_stage); |
| }); |
| |
| auto* call = arr_or_str_init(arr, call_target); |
| if (!call) { |
| return nullptr; |
| } |
| |
| // Validation must occur after argument materialization in arr_or_str_init(). |
| if (!validator_.ArrayConstructor(expr, arr)) { |
| return nullptr; |
| } |
| return call; |
| }, |
| [&](const type::Struct* str) -> sem::Call* { |
| auto* call_target = struct_ctors_.GetOrCreate( |
| StructConstructorSig{{str, args.Length(), args_stage}}, |
| [&]() -> sem::ValueConstructor* { |
| utils::Vector<sem::Parameter*, 8> params; |
| params.Resize(std::min(args.Length(), str->Members().Length())); |
| for (size_t i = 0, n = params.Length(); i < n; i++) { |
| params[i] = builder_->create<sem::Parameter>( |
| nullptr, // declaration |
| static_cast<uint32_t>(i), // index |
| str->Members()[i]->Type(), // type |
| builtin::AddressSpace::kUndefined, // address_space |
| builtin::Access::kUndefined); // access |
| } |
| return builder_->create<sem::ValueConstructor>(str, std::move(params), |
| args_stage); |
| }); |
| |
| auto* call = arr_or_str_init(str, call_target); |
| if (!call) { |
| return nullptr; |
| } |
| |
| // Validation must occur after argument materialization in arr_or_str_init(). |
| if (!validator_.StructureInitializer(expr, str)) { |
| return nullptr; |
| } |
| return call; |
| }, |
| [&](Default) { |
| AddError("type is not constructible", expr->source); |
| return nullptr; |
| }); |
| }; |
| |
| auto inferred_array = [&]() -> tint::sem::Call* { |
| auto el_count = |
| builder_->create<type::ConstantArrayCount>(static_cast<uint32_t>(args.Length())); |
| auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type()->UnwrapRef(); }); |
| auto el_ty = type::Type::Common(arg_tys); |
| if (!el_ty) { |
| AddError("cannot infer common array element type from constructor arguments", |
| expr->source); |
| utils::Hashset<const type::Type*, 8> types; |
| for (size_t i = 0; i < args.Length(); i++) { |
| if (types.Add(args[i]->Type())) { |
| AddNote("argument " + std::to_string(i) + " is of type '" + |
| sem_.TypeNameOf(args[i]->Type()) + "'", |
| args[i]->Declaration()->source); |
| } |
| } |
| return nullptr; |
| } |
| auto* arr = Array(expr->source, expr->source, expr->source, el_ty, el_count, |
| /* explicit_stride */ 0); |
| if (!arr) { |
| return nullptr; |
| } |
| return ty_init_or_conv(arr); |
| }; |
| |
| auto call = [&]() -> sem::Call* { |
| auto resolved = dependencies_.resolved_identifiers.Get(ident); |
| if (!resolved) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "identifier '" << ident->symbol.Name() << "' was not resolved"; |
| return nullptr; |
| } |
| |
| if (auto* ast_node = resolved->Node()) { |
| return Switch( |
| sem_.Get(ast_node), // |
| [&](type::Type* t) { return ty_init_or_conv(t); }, |
| [&](sem::Function* f) -> sem::Call* { |
| if (!TINT_LIKELY(CheckNotTemplated("function", ident))) { |
| return nullptr; |
| } |
| return FunctionCall(expr, f, args, arg_behaviors); |
| }, |
| [&](sem::Expression* e) { |
| sem_.ErrorUnexpectedExprKind(e, "call target"); |
| return nullptr; |
| }, |
| [&](Default) { |
| ErrorMismatchedResolvedIdentifier(ident->source, *resolved, "call target"); |
| return nullptr; |
| }); |
| } |
| |
| if (auto f = resolved->BuiltinFunction(); f != builtin::Function::kNone) { |
| if (!TINT_LIKELY(CheckNotTemplated("builtin", ident))) { |
| return nullptr; |
| } |
| return BuiltinCall(expr, f, args); |
| } |
| |
| if (auto b = resolved->BuiltinType(); b != builtin::Builtin::kUndefined) { |
| if (!ident->Is<ast::TemplatedIdentifier>()) { |
| // No template arguments provided. |
| // Check to see if this is an inferred-element-type call. |
| switch (b) { |
| case builtin::Builtin::kArray: |
| return inferred_array(); |
| case builtin::Builtin::kVec2: |
| return ctor_or_conv(CtorConvIntrinsic::kVec2, nullptr); |
| case builtin::Builtin::kVec3: |
| return ctor_or_conv(CtorConvIntrinsic::kVec3, nullptr); |
| case builtin::Builtin::kVec4: |
| return ctor_or_conv(CtorConvIntrinsic::kVec4, nullptr); |
| case builtin::Builtin::kMat2X2: |
| return ctor_or_conv(CtorConvIntrinsic::kMat2x2, nullptr); |
| case builtin::Builtin::kMat2X3: |
| return ctor_or_conv(CtorConvIntrinsic::kMat2x3, nullptr); |
| case builtin::Builtin::kMat2X4: |
| return ctor_or_conv(CtorConvIntrinsic::kMat2x4, nullptr); |
| case builtin::Builtin::kMat3X2: |
| return ctor_or_conv(CtorConvIntrinsic::kMat3x2, nullptr); |
| case builtin::Builtin::kMat3X3: |
| return ctor_or_conv(CtorConvIntrinsic::kMat3x3, nullptr); |
| case builtin::Builtin::kMat3X4: |
| return ctor_or_conv(CtorConvIntrinsic::kMat3x4, nullptr); |
| case builtin::Builtin::kMat4X2: |
| return ctor_or_conv(CtorConvIntrinsic::kMat4x2, nullptr); |
| case builtin::Builtin::kMat4X3: |
| return ctor_or_conv(CtorConvIntrinsic::kMat4x3, nullptr); |
| case builtin::Builtin::kMat4X4: |
| return ctor_or_conv(CtorConvIntrinsic::kMat4x4, nullptr); |
| default: |
| break; |
| } |
| } |
| auto* ty = BuiltinType(b, ident); |
| if (TINT_UNLIKELY(!ty)) { |
| return nullptr; |
| } |
| return ty_init_or_conv(ty); |
| } |
| |
| if (auto* unresolved = resolved->Unresolved()) { |
| AddError("unresolved call target '" + unresolved->name + "'", expr->source); |
| return nullptr; |
| } |
| |
| ErrorMismatchedResolvedIdentifier(ident->source, *resolved, "call target"); |
| return nullptr; |
| }(); |
| |
| if (!call) { |
| return nullptr; |
| } |
| |
| if (call->Target()->IsAnyOf<sem::ValueConstructor, sem::ValueConversion>()) { |
| // The target of the call was a type. |
| // Associate the target identifier expression with the resolved type. |
| auto* ty_expr = |
| builder_->create<sem::TypeExpression>(target, current_statement_, call->Type()); |
| builder_->Sem().Add(target, ty_expr); |
| } |
| |
| return validator_.Call(call, current_statement_) ? call : nullptr; |
| } |
| |
| template <size_t N> |
| sem::Call* Resolver::BuiltinCall(const ast::CallExpression* expr, |
| builtin::Function builtin_type, |
| utils::Vector<const sem::ValueExpression*, N>& args) { |
| auto arg_stage = sem::EvaluationStage::kConstant; |
| for (auto* arg : args) { |
| arg_stage = sem::EarliestStage(arg_stage, arg->Stage()); |
| } |
| |
| IntrinsicTable::Builtin builtin; |
| { |
| auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); }); |
| builtin = intrinsic_table_->Lookup(builtin_type, arg_tys, arg_stage, expr->source); |
| if (!builtin.sem) { |
| return nullptr; |
| } |
| } |
| |
| if (builtin_type == builtin::Function::kTintMaterialize) { |
| args[0] = Materialize(args[0]); |
| if (!args[0]) { |
| return nullptr; |
| } |
| } else { |
| // Materialize arguments if the parameter type is not abstract |
| if (!MaybeMaterializeAndLoadArguments(args, builtin.sem)) { |
| return nullptr; |
| } |
| } |
| |
| if (builtin.sem->IsDeprecated()) { |
| AddWarning("use of deprecated builtin", expr->source); |
| } |
| |
| // If the builtin is @const, and all arguments have constant values, evaluate the builtin |
| // now. |
| const constant::Value* value = nullptr; |
| auto stage = sem::EarliestStage(arg_stage, builtin.sem->Stage()); |
| if (stage == sem::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = sem::EvaluationStage::kNotEvaluated; |
| } |
| if (stage == sem::EvaluationStage::kConstant) { |
| auto const_args = ConvertArguments(args, builtin.sem); |
| if (!const_args) { |
| return nullptr; |
| } |
| |
| if (auto r = (const_eval_.*builtin.const_eval_fn)(builtin.sem->ReturnType(), |
| const_args.Get(), expr->source)) { |
| value = r.Get(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| bool has_side_effects = |
| builtin.sem->HasSideEffects() || |
| std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); |
| auto* call = builder_->create<sem::Call>(expr, builtin.sem, stage, std::move(args), |
| current_statement_, value, has_side_effects); |
| |
| if (current_function_) { |
| current_function_->AddDirectlyCalledBuiltin(builtin.sem); |
| current_function_->AddDirectCall(call); |
| } |
| |
| if (!validator_.RequiredExtensionForBuiltinFunction(call)) { |
| return nullptr; |
| } |
| |
| if (sem::IsTextureBuiltin(builtin_type)) { |
| if (!validator_.TextureBuiltinFunction(call)) { |
| return nullptr; |
| } |
| CollectTextureSamplerPairs(builtin.sem, call->Arguments()); |
| } |
| |
| if (builtin_type == builtin::Function::kWorkgroupUniformLoad) { |
| if (!validator_.WorkgroupUniformLoad(call)) { |
| return nullptr; |
| } |
| } |
| |
| if (!validator_.BuiltinCall(call)) { |
| return nullptr; |
| } |
| |
| return call; |
| } |
| |
| type::Type* Resolver::BuiltinType(builtin::Builtin builtin_ty, const ast::Identifier* ident) { |
| auto& b = *builder_; |
| |
| auto check_no_tmpl_args = [&](type::Type* ty) -> type::Type* { |
| return TINT_LIKELY(CheckNotTemplated("type", ident)) ? ty : nullptr; |
| }; |
| auto af = [&] { return b.create<type::AbstractFloat>(); }; |
| auto f32 = [&] { return b.create<type::F32>(); }; |
| auto i32 = [&] { return b.create<type::I32>(); }; |
| auto u32 = [&] { return b.create<type::U32>(); }; |
| auto f16 = [&] { |
| return validator_.CheckF16Enabled(ident->source) ? b.create<type::F16>() : nullptr; |
| }; |
| auto templated_identifier = |
| [&](size_t min_args, size_t max_args = /* use min */ 0) -> const ast::TemplatedIdentifier* { |
| if (max_args == 0) { |
| max_args = min_args; |
| } |
| auto* tmpl_ident = ident->As<ast::TemplatedIdentifier>(); |
| if (!tmpl_ident) { |
| if (TINT_UNLIKELY(min_args != 0)) { |
| AddError("expected '<' for '" + ident->symbol.Name() + "'", |
| Source{ident->source.range.end}); |
| } |
| return nullptr; |
| } |
| if (min_args == max_args) { |
| if (TINT_UNLIKELY(tmpl_ident->arguments.Length() != min_args)) { |
| AddError("'" + ident->symbol.Name() + "' requires " + std::to_string(min_args) + |
| " template arguments", |
| ident->source); |
| return nullptr; |
| } |
| } else { |
| if (TINT_UNLIKELY(tmpl_ident->arguments.Length() < min_args)) { |
| AddError("'" + ident->symbol.Name() + "' requires at least " + |
| std::to_string(min_args) + " template arguments", |
| ident->source); |
| return nullptr; |
| } |
| if (TINT_UNLIKELY(tmpl_ident->arguments.Length() > max_args)) { |
| AddError("'" + ident->symbol.Name() + "' requires at most " + |
| std::to_string(max_args) + " template arguments", |
| ident->source); |
| return nullptr; |
| } |
| } |
| return tmpl_ident; |
| }; |
| auto vec = [&](type::Type* el, uint32_t n) -> type::Vector* { |
| if (TINT_UNLIKELY(!el)) { |
| return nullptr; |
| } |
| if (TINT_UNLIKELY(!validator_.Vector(el, ident->source))) { |
| return nullptr; |
| } |
| return b.create<type::Vector>(el, n); |
| }; |
| auto mat = [&](type::Type* el, uint32_t num_columns, uint32_t num_rows) -> type::Matrix* { |
| if (TINT_UNLIKELY(!el)) { |
| return nullptr; |
| } |
| if (TINT_UNLIKELY(!validator_.Matrix(el, ident->source))) { |
| return nullptr; |
| } |
| auto* column = vec(el, num_rows); |
| if (!column) { |
| return nullptr; |
| } |
| return b.create<type::Matrix>(column, num_columns); |
| }; |
| auto vec_t = [&](uint32_t n) -> type::Vector* { |
| auto* tmpl_ident = templated_identifier(1); |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| auto* ty = Type(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!ty)) { |
| return nullptr; |
| } |
| return vec(const_cast<type::Type*>(ty), n); |
| }; |
| auto mat_t = [&](uint32_t num_columns, uint32_t num_rows) -> type::Matrix* { |
| auto* tmpl_ident = templated_identifier(1); |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| auto* ty = Type(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!ty)) { |
| return nullptr; |
| } |
| return mat(const_cast<type::Type*>(ty), num_columns, num_rows); |
| }; |
| auto array = [&]() -> type::Array* { |
| utils::UniqueVector<const sem::GlobalVariable*, 4> transitively_referenced_overrides; |
| TINT_SCOPED_ASSIGNMENT(resolved_overrides_, &transitively_referenced_overrides); |
| |
| auto* tmpl_ident = templated_identifier(1, 2); |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| auto* ast_el_ty = tmpl_ident->arguments[0]; |
| auto* ast_count = (tmpl_ident->arguments.Length() > 1) ? tmpl_ident->arguments[1] : nullptr; |
| |
| auto* el_ty = Type(ast_el_ty); |
| if (!el_ty) { |
| return nullptr; |
| } |
| |
| const type::ArrayCount* el_count = |
| ast_count ? ArrayCount(ast_count) : builder_->create<type::RuntimeArrayCount>(); |
| if (!el_count) { |
| return nullptr; |
| } |
| |
| // Look for explicit stride via @stride(n) attribute |
| uint32_t explicit_stride = 0; |
| if (!ArrayAttributes(tmpl_ident->attributes, el_ty, explicit_stride)) { |
| return nullptr; |
| } |
| |
| auto* out = Array(tmpl_ident->source, // |
| ast_el_ty->source, // |
| ast_count ? ast_count->source : ident->source, // |
| el_ty, el_count, explicit_stride); |
| if (!out) { |
| return nullptr; |
| } |
| |
| if (el_ty->Is<type::Atomic>()) { |
| atomic_composite_info_.Add(out, &ast_el_ty->source); |
| } else { |
| if (auto found = atomic_composite_info_.Get(el_ty)) { |
| atomic_composite_info_.Add(out, *found); |
| } |
| } |
| |
| // Track the pipeline-overridable constants that are transitively referenced by this |
| // array type. |
| for (auto* var : transitively_referenced_overrides) { |
| builder_->Sem().AddTransitivelyReferencedOverride(out, var); |
| } |
| return out; |
| }; |
| auto atomic = [&]() -> type::Atomic* { |
| auto* tmpl_ident = templated_identifier(1); // atomic<type> |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| |
| auto* ty_expr = TypeExpression(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!ty_expr)) { |
| return nullptr; |
| } |
| auto* ty = ty_expr->Type(); |
| |
| auto* out = builder_->create<type::Atomic>(ty); |
| if (!validator_.Atomic(tmpl_ident, out)) { |
| return nullptr; |
| } |
| return out; |
| }; |
| auto ptr = [&]() -> type::Pointer* { |
| auto* tmpl_ident = templated_identifier(2, 3); // ptr<address, type [, access]> |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| |
| auto* address_space_expr = AddressSpaceExpression(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!address_space_expr)) { |
| return nullptr; |
| } |
| auto address_space = address_space_expr->Value(); |
| |
| auto* store_ty_expr = TypeExpression(tmpl_ident->arguments[1]); |
| if (TINT_UNLIKELY(!store_ty_expr)) { |
| return nullptr; |
| } |
| auto* store_ty = const_cast<type::Type*>(store_ty_expr->Type()); |
| |
| auto access = DefaultAccessForAddressSpace(address_space); |
|