blob: f4f64291864d57da4e003834ffb200d9689f2834 [file] [log] [blame] [edit]
// Copyright 2019 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <limits>
#include <string>
#include <vector>
#include "dawn/common/Assert.h"
#include "dawn/common/Math.h"
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
namespace dawn {
namespace {
// Vertex format tests all work the same way: the test will render a triangle.
// Each test will set up a vertex buffer, and the vertex shader will check that
// the vertex content is the same as what we expected. On success it outputs green,
// otherwise red.
constexpr uint32_t kRTSize = 1;
constexpr uint32_t kVertexNum = 3;
std::vector<uint16_t> Float32ToFloat16(std::vector<float> data) {
std::vector<uint16_t> expectedData;
for (auto& element : data) {
expectedData.push_back(dawn::Float32ToFloat16(element));
}
return expectedData;
}
template <typename destType, typename srcType>
std::vector<destType> BitCast(std::vector<srcType> data) {
std::vector<destType> expectedData;
for (auto& element : data) {
expectedData.push_back(BitCast(element));
}
return expectedData;
}
class VertexFormatTest : public DawnTest {
protected:
void SetUp() override {
DawnTest::SetUp();
renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
}
utils::BasicRenderPass renderPass;
bool IsNormalizedFormat(wgpu::VertexFormat format) {
switch (format) {
case wgpu::VertexFormat::Unorm8x2:
case wgpu::VertexFormat::Unorm8x4:
case wgpu::VertexFormat::Snorm8x2:
case wgpu::VertexFormat::Snorm8x4:
case wgpu::VertexFormat::Unorm16x2:
case wgpu::VertexFormat::Unorm16x4:
case wgpu::VertexFormat::Snorm16x2:
case wgpu::VertexFormat::Snorm16x4:
return true;
default:
return false;
}
}
bool IsUnsignedFormat(wgpu::VertexFormat format) {
switch (format) {
case wgpu::VertexFormat::Uint32:
case wgpu::VertexFormat::Uint8x2:
case wgpu::VertexFormat::Uint8x4:
case wgpu::VertexFormat::Uint16x2:
case wgpu::VertexFormat::Uint16x4:
case wgpu::VertexFormat::Uint32x2:
case wgpu::VertexFormat::Uint32x3:
case wgpu::VertexFormat::Uint32x4:
case wgpu::VertexFormat::Unorm8x2:
case wgpu::VertexFormat::Unorm8x4:
case wgpu::VertexFormat::Unorm16x2:
case wgpu::VertexFormat::Unorm16x4:
return true;
default:
return false;
}
}
bool IsFloatFormat(wgpu::VertexFormat format) {
switch (format) {
case wgpu::VertexFormat::Float16x2:
case wgpu::VertexFormat::Float16x4:
case wgpu::VertexFormat::Float32:
case wgpu::VertexFormat::Float32x2:
case wgpu::VertexFormat::Float32x3:
case wgpu::VertexFormat::Float32x4:
return true;
default:
return false;
}
}
bool IsHalfFormat(wgpu::VertexFormat format) {
switch (format) {
case wgpu::VertexFormat::Float16x2:
case wgpu::VertexFormat::Float16x4:
return true;
default:
return false;
}
}
uint32_t BytesPerComponents(wgpu::VertexFormat format) {
switch (format) {
case wgpu::VertexFormat::Uint8x2:
case wgpu::VertexFormat::Uint8x4:
case wgpu::VertexFormat::Sint8x2:
case wgpu::VertexFormat::Sint8x4:
case wgpu::VertexFormat::Unorm8x2:
case wgpu::VertexFormat::Unorm8x4:
case wgpu::VertexFormat::Snorm8x2:
case wgpu::VertexFormat::Snorm8x4:
return 1;
case wgpu::VertexFormat::Uint16x2:
case wgpu::VertexFormat::Uint16x4:
case wgpu::VertexFormat::Unorm16x2:
case wgpu::VertexFormat::Unorm16x4:
case wgpu::VertexFormat::Sint16x2:
case wgpu::VertexFormat::Sint16x4:
case wgpu::VertexFormat::Snorm16x2:
case wgpu::VertexFormat::Snorm16x4:
case wgpu::VertexFormat::Float16x2:
case wgpu::VertexFormat::Float16x4:
return 2;
case wgpu::VertexFormat::Float32:
case wgpu::VertexFormat::Float32x2:
case wgpu::VertexFormat::Float32x3:
case wgpu::VertexFormat::Float32x4:
case wgpu::VertexFormat::Uint32:
case wgpu::VertexFormat::Uint32x2:
case wgpu::VertexFormat::Uint32x3:
case wgpu::VertexFormat::Uint32x4:
case wgpu::VertexFormat::Sint32:
case wgpu::VertexFormat::Sint32x2:
case wgpu::VertexFormat::Sint32x3:
case wgpu::VertexFormat::Sint32x4:
return 4;
default:
DAWN_UNREACHABLE();
}
}
uint32_t ComponentCount(wgpu::VertexFormat format) {
switch (format) {
case wgpu::VertexFormat::Float32:
case wgpu::VertexFormat::Uint32:
case wgpu::VertexFormat::Sint32:
return 1;
case wgpu::VertexFormat::Uint8x2:
case wgpu::VertexFormat::Sint8x2:
case wgpu::VertexFormat::Unorm8x2:
case wgpu::VertexFormat::Snorm8x2:
case wgpu::VertexFormat::Uint16x2:
case wgpu::VertexFormat::Sint16x2:
case wgpu::VertexFormat::Unorm16x2:
case wgpu::VertexFormat::Snorm16x2:
case wgpu::VertexFormat::Float16x2:
case wgpu::VertexFormat::Float32x2:
case wgpu::VertexFormat::Uint32x2:
case wgpu::VertexFormat::Sint32x2:
return 2;
case wgpu::VertexFormat::Float32x3:
case wgpu::VertexFormat::Uint32x3:
case wgpu::VertexFormat::Sint32x3:
return 3;
case wgpu::VertexFormat::Uint8x4:
case wgpu::VertexFormat::Sint8x4:
case wgpu::VertexFormat::Unorm8x4:
case wgpu::VertexFormat::Snorm8x4:
case wgpu::VertexFormat::Uint16x4:
case wgpu::VertexFormat::Sint16x4:
case wgpu::VertexFormat::Unorm16x4:
case wgpu::VertexFormat::Snorm16x4:
case wgpu::VertexFormat::Float16x4:
case wgpu::VertexFormat::Float32x4:
case wgpu::VertexFormat::Uint32x4:
case wgpu::VertexFormat::Sint32x4:
return 4;
default:
DAWN_UNREACHABLE();
}
}
std::string ShaderTypeGenerator(bool isFloat,
bool isNormalized,
bool isUnsigned,
uint32_t componentCount) {
std::string base;
if (isFloat || isNormalized) {
base = "f32";
} else if (isUnsigned) {
base = "u32";
} else {
base = "i32";
}
if (componentCount == 1) {
return base;
}
return "vec" + std::to_string(componentCount) + "<" + base + ">";
}
// The length of vertexData is fixed to 3, it aligns to triangle vertex number
template <typename T>
wgpu::RenderPipeline MakeTestPipeline(wgpu::VertexFormat format, std::vector<T>& expectedData) {
bool isFloat = IsFloatFormat(format);
bool isNormalized = IsNormalizedFormat(format);
bool isUnsigned = IsUnsignedFormat(format);
bool isInputTypeFloat = isFloat || isNormalized;
bool isHalf = IsHalfFormat(format);
const uint16_t kNegativeZeroInHalf = 0x8000;
uint32_t componentCount = ComponentCount(format);
std::string variableType =
ShaderTypeGenerator(isFloat, isNormalized, isUnsigned, componentCount);
std::string expectedDataType = ShaderTypeGenerator(isFloat, isNormalized, isUnsigned, 1);
std::ostringstream vs;
vs << "struct VertexIn {\n";
vs << " @location(0) test : " << variableType << ",\n";
vs << " @builtin(vertex_index) VertexIndex : u32,\n";
vs << "}\n";
// These functions map a 32-bit scalar value to its bits in u32, except
// that the negative zero floating point value is remapped to u32(0),
// which is also the bit representation for +0.0.
// This is necessary because of the simple way we compute ULP.
// Negative zero *equals* zero, so treat it as having the same bit
// representation.
vs << R"(
fn rectify_u32(a: u32) -> u32 { return a; }
fn rectify_i32(a: i32) -> u32 { return bitcast<u32>(a); }
fn rectify_f32(a: f32) -> u32 {
const negative_zero_bits = 1u << 31u;
let b = bitcast<u32>(a);
return select(b, 0u, b == negative_zero_bits);
}
)";
// Because x86 CPU using "extended
// precision"(https://en.wikipedia.org/wiki/Extended_precision) during float
// math(https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf),
// move normalization and Float16ToFloat32 into shader to generate
// expected value.
vs << R"(
fn Float16ToFloat32(fp16 : u32) -> f32 {
let magic : u32 = (254u - 15u) << 23u;
let was_inf_nan : u32 = (127u + 16u) << 23u;
var fp32u : u32 = (fp16 & 0x7FFFu) << 13u;
let fp32 : f32 = bitcast<f32>(fp32u) * bitcast<f32>(magic);
fp32u = bitcast<u32>(fp32);
if (fp32 >= bitcast<f32>(was_inf_nan)) {
fp32u = fp32u | (255u << 23u);
}
fp32u = fp32u | ((fp16 & 0x8000u) << 16u);
return bitcast<f32>(fp32u);
}
// NaN definition in IEEE 754-1985 is :
// - sign = either 0 or 1.
// - biased exponent = all 1 bits.
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
fn isNaNCustom(val: f32) -> bool {
let floatToUint: u32 = bitcast<u32>(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
struct VertexOut {
@location(0) color : vec4f,
@builtin(position) position : vec4f,
}
@vertex
fn main(input : VertexIn) -> VertexOut {
var pos = array(
vec2f(-1.0, -1.0),
vec2f( 2.0, 0.0),
vec2f( 0.0, 2.0));
var output : VertexOut;
output.position = vec4f(pos[input.VertexIndex], 0.0, 1.0);
)";
// Declare expected values.
vs << "var expected : array<array<" << expectedDataType << ", "
<< std::to_string(componentCount) << ">, " << std::to_string(kVertexNum) << ">;\n";
// Assign each elements in expected values
// e.g. expected[0][0] = u32(1u);
// expected[0][1] = u32(2u);
for (uint32_t i = 0; i < kVertexNum; ++i) {
for (uint32_t j = 0; j < componentCount; ++j) {
vs << " expected[" + std::to_string(i) + "][" + std::to_string(j) + "] = "
<< expectedDataType << "(";
if (isInputTypeFloat &&
std::isnan(static_cast<float>(expectedData[i * componentCount + j]))) {
// Set NaN.
vs << "0.0 / 0.0);\n";
} else if (isNormalized) {
// Move normalize operation into shader because of CPU and GPU precision
// different on float math.
vs << "max(f32(" << std::to_string(expectedData[i * componentCount + j])
<< ") / " << std::to_string(std::numeric_limits<T>::max())
<< ".0 , -1.0));\n";
} else if (isHalf) {
// Because Vulkan and D3D12 handle -0.0f through bitcast have different
// result (Vulkan take -0.0f as -0.0 but D3D12 take -0.0f as 0), add workaround
// for -0.0f.
// TODO(dawn:1566) Since rectify_32 will be used, we might
// not need this.
if (static_cast<uint16_t>(expectedData[i * componentCount + j]) ==
kNegativeZeroInHalf) {
vs << "-0.0);\n";
} else {
vs << "Float16ToFloat32(u32("
<< std::to_string(expectedData[i * componentCount + j]) << ")));\n";
}
} else if (isUnsigned) {
vs << std::to_string(expectedData[i * componentCount + j]) << "u);\n";
} else {
vs << std::to_string(expectedData[i * componentCount + j]) << ");\n";
}
}
}
vs << " var success : bool = true;\n";
// Perform the checks by successively ANDing a boolean
for (uint32_t component = 0; component < componentCount; ++component) {
std::string suffix = componentCount == 1 ? "" : "[" + std::to_string(component) + "]";
std::string testVal = "testVal" + std::to_string(component);
std::string expectedVal = "expectedVal" + std::to_string(component);
vs << " var " << testVal << " : " << expectedDataType << ";\n";
vs << " var " << expectedVal << " : " << expectedDataType << ";\n";
vs << " " << testVal << " = input.test" << suffix << ";\n";
vs << " " << expectedVal << " = expected[input.VertexIndex]"
<< "[" << component << "];\n";
if (!isInputTypeFloat) { // Integer / unsigned integer need to match exactly.
vs << " success = success && (" << testVal << " == " << expectedVal << ");\n";
} else {
vs << " success = success && (isNaNCustom(" << expectedVal << ") == isNaNCustom("
<< testVal << "));\n";
vs << " if (!isNaNCustom(" << expectedVal << ")) {\n";
// TODO(shaobo.yan@intel.com) : a difference of 8 ULPs is allowed in this test
// because it is required on MacbookPro 11.5,AMD Radeon HD 8870M(on macOS 10.13.6),
// but that it might be possible to tighten.
vs << " let testValFloatToUint : u32 = rectify_" << expectedDataType << "("
<< testVal << ");\n";
vs << " let expectedValFloatToUint : u32 = rectify_" << expectedDataType
<< "(" << expectedVal << ");\n";
vs << " success = success && max(testValFloatToUint, "
"expectedValFloatToUint)";
vs << " - min(testValFloatToUint, expectedValFloatToUint) < 8u;\n";
vs << " }\n";
}
}
vs << R"(
if (success) {
output.color = vec4f(0.0, 1.0, 0.0, 1.0);
} else {
output.color = vec4f(1.0, 0.0, 0.0, 1.0);
}
return output;
})";
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, vs.str().c_str());
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment
fn main(@location(0) color : vec4f) -> @location(0) vec4f {
return color;
})");
uint32_t bytesPerComponents = BytesPerComponents(format);
uint32_t strideBytes = bytesPerComponents * componentCount;
// Stride size must be multiple of 4 bytes.
if (strideBytes % 4 != 0) {
strideBytes += (4 - strideBytes % 4);
}
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.vertex.bufferCount = 1;
descriptor.cBuffers[0].arrayStride = strideBytes;
descriptor.cBuffers[0].attributeCount = 1;
descriptor.cAttributes[0].format = format;
descriptor.cTargets[0].format = renderPass.colorFormat;
return device.CreateRenderPipeline(&descriptor);
}
template <typename VertexType, typename ExpectedType>
void DoVertexFormatTest(wgpu::VertexFormat format,
std::vector<VertexType> vertex,
std::vector<ExpectedType> expectedData) {
wgpu::RenderPipeline pipeline = MakeTestPipeline(format, expectedData);
wgpu::Buffer vertexBuffer = utils::CreateBufferFromData(
device, vertex.data(), vertex.size() * sizeof(VertexType), wgpu::BufferUsage::Vertex);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(pipeline);
pass.SetVertexBuffer(0, vertexBuffer);
pass.Draw(3);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kGreen, renderPass.color, 0, 0);
}
};
TEST_P(VertexFormatTest, Uint8x2) {
std::vector<uint8_t> vertexData = {
std::numeric_limits<uint8_t>::max(),
0,
0, // padding two bytes for stride
0,
std::numeric_limits<uint8_t>::min(),
2,
0,
0, // padding two bytes for stride
200,
201,
0,
0 // padding two bytes for buffer copy
};
std::vector<uint8_t> expectedData = {
std::numeric_limits<uint8_t>::max(), 0, std::numeric_limits<uint8_t>::min(), 2, 200, 201,
};
DoVertexFormatTest(wgpu::VertexFormat::Uint8x2, vertexData, expectedData);
}
TEST_P(VertexFormatTest, Uint8x4) {
std::vector<uint8_t> vertexData = {
std::numeric_limits<uint8_t>::max(),
0,
1,
2,
std::numeric_limits<uint8_t>::min(),
2,
3,
4,
200,
201,
202,
203,
};
DoVertexFormatTest(wgpu::VertexFormat::Uint8x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Sint8x2) {
std::vector<int8_t> vertexData = {
std::numeric_limits<int8_t>::max(),
0,
0, // padding two bytes for stride
0,
std::numeric_limits<int8_t>::min(),
-2,
0, // padding two bytes for stride
0,
120,
-121,
0,
0 // padding two bytes for buffer copy
};
std::vector<int8_t> expectedData = {
std::numeric_limits<int8_t>::max(), 0, std::numeric_limits<int8_t>::min(), -2, 120, -121,
};
DoVertexFormatTest(wgpu::VertexFormat::Sint8x2, vertexData, expectedData);
}
TEST_P(VertexFormatTest, Sint8x4) {
std::vector<int8_t> vertexData = {
std::numeric_limits<int8_t>::max(),
0,
-1,
2,
std::numeric_limits<int8_t>::min(),
-2,
3,
4,
120,
-121,
122,
-123,
};
DoVertexFormatTest(wgpu::VertexFormat::Sint8x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Unorm8x2) {
std::vector<uint8_t> vertexData = {
std::numeric_limits<uint8_t>::max(),
std::numeric_limits<uint8_t>::min(),
0, // padding two bytes for stride
0,
std::numeric_limits<uint8_t>::max() / 2u,
std::numeric_limits<uint8_t>::min() / 2u,
0, // padding two bytes for stride
0,
200,
201,
0,
0 // padding two bytes for buffer copy
};
std::vector<uint8_t> expectedData = {std::numeric_limits<uint8_t>::max(),
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max() / 2u,
std::numeric_limits<uint8_t>::min() / 2u,
200,
201};
DoVertexFormatTest(wgpu::VertexFormat::Unorm8x2, vertexData, expectedData);
}
TEST_P(VertexFormatTest, Unorm8x4) {
std::vector<uint8_t> vertexData = {std::numeric_limits<uint8_t>::max(),
std::numeric_limits<uint8_t>::min(),
0,
0,
std::numeric_limits<uint8_t>::max() / 2u,
std::numeric_limits<uint8_t>::min() / 2u,
0,
0,
200,
201,
202,
203};
DoVertexFormatTest(wgpu::VertexFormat::Unorm8x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Snorm8x2) {
std::vector<int8_t> vertexData = {
std::numeric_limits<int8_t>::max(),
std::numeric_limits<int8_t>::min(),
0, // padding two bytes for stride
0,
std::numeric_limits<int8_t>::max() / 2,
std::numeric_limits<int8_t>::min() / 2,
0, // padding two bytes for stride
0,
120,
-121,
0,
0 // padding two bytes for buffer copy
};
std::vector<int8_t> expectedData = {
std::numeric_limits<int8_t>::max(),
std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max() / 2,
std::numeric_limits<int8_t>::min() / 2,
120,
-121,
};
DoVertexFormatTest(wgpu::VertexFormat::Snorm8x2, vertexData, expectedData);
}
TEST_P(VertexFormatTest, Snorm8x4) {
std::vector<int8_t> vertexData = {std::numeric_limits<int8_t>::max(),
std::numeric_limits<int8_t>::min(),
0,
0,
std::numeric_limits<int8_t>::max() / 2,
std::numeric_limits<int8_t>::min() / 2,
-2,
2,
120,
-120,
102,
-123};
DoVertexFormatTest(wgpu::VertexFormat::Snorm8x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Uint16x2) {
std::vector<uint16_t> vertexData = {std::numeric_limits<uint16_t>::max(),
0,
std::numeric_limits<uint16_t>::min(),
2,
65432,
4890};
DoVertexFormatTest(wgpu::VertexFormat::Uint16x2, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Uint16x4) {
std::vector<uint16_t> vertexData = {
std::numeric_limits<uint16_t>::max(),
std::numeric_limits<uint8_t>::max(),
1,
2,
std::numeric_limits<uint16_t>::min(),
2,
3,
4,
65520,
65521,
3435,
3467,
};
DoVertexFormatTest(wgpu::VertexFormat::Uint16x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Sint16x2) {
std::vector<int16_t> vertexData = {std::numeric_limits<int16_t>::max(),
0,
std::numeric_limits<int16_t>::min(),
-2,
3876,
-3948};
DoVertexFormatTest(wgpu::VertexFormat::Sint16x2, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Sint16x4) {
std::vector<int16_t> vertexData = {
std::numeric_limits<int16_t>::max(),
0,
-1,
2,
std::numeric_limits<int16_t>::min(),
-2,
3,
4,
24567,
-23545,
4350,
-2987,
};
DoVertexFormatTest(wgpu::VertexFormat::Sint16x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Unorm16x2) {
std::vector<uint16_t> vertexData = {std::numeric_limits<uint16_t>::max(),
std::numeric_limits<uint16_t>::min(),
std::numeric_limits<uint16_t>::max() / 2u,
std::numeric_limits<uint16_t>::min() / 2u,
3456,
6543};
DoVertexFormatTest(wgpu::VertexFormat::Unorm16x2, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Unorm16x4) {
std::vector<uint16_t> vertexData = {std::numeric_limits<uint16_t>::max(),
std::numeric_limits<uint16_t>::min(),
0,
0,
std::numeric_limits<uint16_t>::max() / 2u,
std::numeric_limits<uint16_t>::min() / 2u,
0,
0,
2987,
3055,
2987,
2987};
DoVertexFormatTest(wgpu::VertexFormat::Unorm16x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Snorm16x2) {
std::vector<int16_t> vertexData = {std::numeric_limits<int16_t>::max(),
std::numeric_limits<int16_t>::min(),
std::numeric_limits<int16_t>::max() / 2,
std::numeric_limits<int16_t>::min() / 2,
4987,
-6789};
DoVertexFormatTest(wgpu::VertexFormat::Snorm16x2, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Snorm16x4) {
std::vector<int16_t> vertexData = {std::numeric_limits<int16_t>::max(),
std::numeric_limits<int16_t>::min(),
0,
0,
std::numeric_limits<int16_t>::max() / 2,
std::numeric_limits<int16_t>::min() / 2,
-2,
2,
2890,
-29011,
20432,
-2083};
DoVertexFormatTest(wgpu::VertexFormat::Snorm16x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Float16x2) {
// Fails on NVIDIA's Vulkan drivers on CQ but passes locally.
// TODO(dawn:1566) Might pass when using rectify_f32?
DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsNvidia());
std::vector<uint16_t> vertexData =
Float32ToFloat16(std::vector<float>({14.8f, -0.0f, 22.5f, 1.3f, +0.0f, -24.8f}));
DoVertexFormatTest(wgpu::VertexFormat::Float16x2, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Float16x4) {
// Fails on NVIDIA's Vulkan drivers on CQ but passes locally.
// TODO(dawn:1566) Might pass when using rectify_f32?
DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsNvidia());
std::vector<uint16_t> vertexData = Float32ToFloat16(std::vector<float>(
{+0.0f, -16.8f, 18.2f, -0.0f, 12.5f, 1.3f, 14.8f, -12.4f, 22.5f, -48.8f, 47.4f, -24.8f}));
DoVertexFormatTest(wgpu::VertexFormat::Float16x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Float32_Zeros) {
std::vector<float> vertexData = {1.3f, +0.0f, -0.0f};
DoVertexFormatTest(wgpu::VertexFormat::Float32, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Float32_Plain) {
std::vector<float> vertexData = {+1.0f, -1.0f, 18.23f};
DoVertexFormatTest(wgpu::VertexFormat::Float32, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Float32x2) {
// Fails on NVIDIA's Vulkan drivers on CQ but passes locally.
// TODO(dawn:1566) This might pass now that we use rectify_f32?
DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsNvidia());
std::vector<float> vertexData = {18.23f, -0.0f, +0.0f, +1.0f, 1.3f, -1.0f};
DoVertexFormatTest(wgpu::VertexFormat::Float32x2, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Float32x3) {
// Fails on NVIDIA's Vulkan drivers on CQ but passes locally.
// TODO(dawn:1566) This might pass now that we use rectify_f32?
DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsNvidia());
std::vector<float> vertexData = {
+0.0f, -1.0f, -0.0f, 1.0f, 1.3f, 99.45f, 23.6f, -81.2f, 55.0f,
};
DoVertexFormatTest(wgpu::VertexFormat::Float32x3, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Float32x4) {
std::vector<float> vertexData = {
19.2f, -19.3f, +0.0f, 1.0f, -0.0f, 1.0f, 1.3f, -1.0f, 13.078f, 21.1965f, -1.1f, -1.2f,
};
DoVertexFormatTest(wgpu::VertexFormat::Float32x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Uint32) {
std::vector<uint32_t> vertexData = {std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint16_t>::max(),
std::numeric_limits<uint8_t>::max()};
DoVertexFormatTest(wgpu::VertexFormat::Uint32, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Uint32x2) {
std::vector<uint32_t> vertexData = {std::numeric_limits<uint32_t>::max(), 32,
std::numeric_limits<uint16_t>::max(), 64,
std::numeric_limits<uint8_t>::max(), 128};
DoVertexFormatTest(wgpu::VertexFormat::Uint32x2, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Uint32x3) {
std::vector<uint32_t> vertexData = {std::numeric_limits<uint32_t>::max(), 32, 64,
std::numeric_limits<uint16_t>::max(), 164, 128,
std::numeric_limits<uint8_t>::max(), 1283, 256};
DoVertexFormatTest(wgpu::VertexFormat::Uint32x3, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Uint32x4) {
std::vector<uint32_t> vertexData = {std::numeric_limits<uint32_t>::max(), 32, 64, 5460,
std::numeric_limits<uint16_t>::max(), 164, 128, 0,
std::numeric_limits<uint8_t>::max(), 1283, 256, 4567};
DoVertexFormatTest(wgpu::VertexFormat::Uint32x4, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Sint32) {
std::vector<int32_t> vertexData = {std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::min(),
std::numeric_limits<int8_t>::max()};
DoVertexFormatTest(wgpu::VertexFormat::Sint32, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Sint32x2) {
std::vector<int32_t> vertexData = {
std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::min(),
std::numeric_limits<int16_t>::max(), std::numeric_limits<int16_t>::min(),
std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::min()};
DoVertexFormatTest(wgpu::VertexFormat::Sint32x2, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Sint32x3) {
std::vector<int32_t> vertexData = {
std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::min(), 64,
std::numeric_limits<int16_t>::max(), std::numeric_limits<int16_t>::min(), 128,
std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::min(), 256};
DoVertexFormatTest(wgpu::VertexFormat::Sint32x3, vertexData, vertexData);
}
TEST_P(VertexFormatTest, Sint32x4) {
std::vector<int32_t> vertexData = {
std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::min(), 64, -5460,
std::numeric_limits<int16_t>::max(), std::numeric_limits<int16_t>::min(), -128, 0,
std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::min(), 256, -4567};
DoVertexFormatTest(wgpu::VertexFormat::Sint32x4, vertexData, vertexData);
}
DAWN_INSTANTIATE_TEST(VertexFormatTest,
D3D11Backend(),
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
} // anonymous namespace
} // namespace dawn