| // Copyright 2017 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <cmath> |
| #include <limits> |
| #include <vector> |
| |
| #include "dawn/EnumClassBitmasks.h" |
| #include "dawn/common/Math.h" |
| #include "dawn/webgpu_cpp.h" |
| #include "gtest/gtest.h" |
| |
| namespace wgpu { |
| enum class TestEnum { |
| A = 0x1, |
| B = 0x2, |
| C = 0x4, |
| }; |
| } // namespace wgpu |
| |
| namespace dawn { |
| |
| template <> |
| struct IsDawnBitmask<wgpu::TestEnum> { |
| static constexpr bool enable = true; |
| }; |
| |
| namespace { |
| |
| // Tests for ScanForward |
| TEST(Math, ScanForward) { |
| // Test extrema |
| ASSERT_EQ(ScanForward(1), 0u); |
| ASSERT_EQ(ScanForward(0x80000000), 31u); |
| |
| // Test with more than one bit set. |
| ASSERT_EQ(ScanForward(256), 8u); |
| ASSERT_EQ(ScanForward(256 + 32), 5u); |
| ASSERT_EQ(ScanForward(1024 + 256 + 32), 5u); |
| } |
| |
| // Tests for Log2 |
| TEST(Math, Log2) { |
| // Test extrema |
| ASSERT_EQ(Log2(1u), 0u); |
| ASSERT_EQ(Log2(0xFFFFFFFFu), 31u); |
| ASSERT_EQ(Log2(static_cast<uint64_t>(0xFFFFFFFFFFFFFFFF)), 63u); |
| |
| static_assert(ConstexprLog2(1u) == 0u); |
| static_assert(ConstexprLog2(0xFFFFFFFFu) == 31u); |
| static_assert(ConstexprLog2(static_cast<uint64_t>(0xFFFFFFFFFFFFFFFF)) == 63u); |
| |
| // Test boundary between two logs |
| ASSERT_EQ(Log2(0x80000000u), 31u); |
| ASSERT_EQ(Log2(0x7FFFFFFFu), 30u); |
| ASSERT_EQ(Log2(static_cast<uint64_t>(0x8000000000000000)), 63u); |
| ASSERT_EQ(Log2(static_cast<uint64_t>(0x7FFFFFFFFFFFFFFF)), 62u); |
| |
| static_assert(ConstexprLog2(0x80000000u) == 31u); |
| static_assert(ConstexprLog2(0x7FFFFFFFu) == 30u); |
| static_assert(ConstexprLog2(static_cast<uint64_t>(0x8000000000000000)) == 63u); |
| static_assert(ConstexprLog2(static_cast<uint64_t>(0x7FFFFFFFFFFFFFFF)) == 62u); |
| |
| ASSERT_EQ(Log2(16u), 4u); |
| ASSERT_EQ(Log2(15u), 3u); |
| |
| static_assert(ConstexprLog2(16u) == 4u); |
| static_assert(ConstexprLog2(15u) == 3u); |
| } |
| |
| // Tests for Log2Ceil |
| TEST(Math, Log2Ceil) { |
| // Test extrema |
| ASSERT_EQ(Log2Ceil(1u), 0u); |
| ASSERT_EQ(Log2Ceil(0xFFFFFFFFu), 32u); |
| ASSERT_EQ(Log2Ceil(static_cast<uint64_t>(0xFFFFFFFFFFFFFFFF)), 64u); |
| |
| static_assert(ConstexprLog2Ceil(1u) == 0u); |
| static_assert(ConstexprLog2Ceil(0xFFFFFFFFu) == 32u); |
| static_assert(ConstexprLog2Ceil(static_cast<uint64_t>(0xFFFFFFFFFFFFFFFF)) == 64u); |
| |
| // Test boundary between two logs |
| ASSERT_EQ(Log2Ceil(0x80000001u), 32u); |
| ASSERT_EQ(Log2Ceil(0x80000000u), 31u); |
| ASSERT_EQ(Log2Ceil(0x7FFFFFFFu), 31u); |
| ASSERT_EQ(Log2Ceil(static_cast<uint64_t>(0x8000000000000001)), 64u); |
| ASSERT_EQ(Log2Ceil(static_cast<uint64_t>(0x8000000000000000)), 63u); |
| ASSERT_EQ(Log2Ceil(static_cast<uint64_t>(0x7FFFFFFFFFFFFFFF)), 63u); |
| |
| static_assert(ConstexprLog2Ceil(0x80000001u) == 32u); |
| static_assert(ConstexprLog2Ceil(0x80000000u) == 31u); |
| static_assert(ConstexprLog2Ceil(0x7FFFFFFFu) == 31u); |
| static_assert(ConstexprLog2Ceil(static_cast<uint64_t>(0x8000000000000001)) == 64u); |
| static_assert(ConstexprLog2Ceil(static_cast<uint64_t>(0x8000000000000000)) == 63u); |
| static_assert(ConstexprLog2Ceil(static_cast<uint64_t>(0x7FFFFFFFFFFFFFFF)) == 63u); |
| |
| ASSERT_EQ(Log2Ceil(17u), 5u); |
| ASSERT_EQ(Log2Ceil(16u), 4u); |
| ASSERT_EQ(Log2Ceil(15u), 4u); |
| |
| static_assert(ConstexprLog2Ceil(17u) == 5u); |
| static_assert(ConstexprLog2Ceil(16u) == 4u); |
| static_assert(ConstexprLog2Ceil(15u) == 4u); |
| } |
| |
| // Tests for IsPowerOfTwo |
| TEST(Math, IsPowerOfTwo) { |
| ASSERT_TRUE(IsPowerOfTwo(1)); |
| ASSERT_TRUE(IsPowerOfTwo(2)); |
| ASSERT_FALSE(IsPowerOfTwo(3)); |
| |
| ASSERT_TRUE(IsPowerOfTwo(0x8000000)); |
| ASSERT_FALSE(IsPowerOfTwo(0x8000400)); |
| } |
| |
| // Tests for NextPowerOfTwo |
| TEST(Math, NextPowerOfTwo) { |
| // Test extrema |
| ASSERT_EQ(NextPowerOfTwo(0), 1ull); |
| ASSERT_EQ(NextPowerOfTwo(0x7FFFFFFFFFFFFFFF), 0x8000000000000000); |
| |
| // Test boundary between powers-of-two. |
| ASSERT_EQ(NextPowerOfTwo(31), 32ull); |
| ASSERT_EQ(NextPowerOfTwo(33), 64ull); |
| |
| ASSERT_EQ(NextPowerOfTwo(32), 32ull); |
| } |
| |
| // Tests for AlignPtr |
| TEST(Math, AlignPtr) { |
| constexpr size_t kTestAlignment = 8; |
| |
| char buffer[kTestAlignment * 4]; |
| |
| for (size_t i = 0; i < 2 * kTestAlignment; ++i) { |
| char* unaligned = &buffer[i]; |
| char* aligned = AlignPtr(unaligned, kTestAlignment); |
| |
| ASSERT_GE(aligned - unaligned, 0); |
| ASSERT_LT(static_cast<size_t>(aligned - unaligned), kTestAlignment); |
| ASSERT_EQ(reinterpret_cast<uintptr_t>(aligned) & (kTestAlignment - 1), 0u); |
| } |
| } |
| |
| // Tests for Align |
| TEST(Math, Align) { |
| // 0 aligns to 0 |
| ASSERT_EQ(Align(0u, 4), 0u); |
| ASSERT_EQ(Align(0u, 256), 0u); |
| ASSERT_EQ(Align(0u, 512), 0u); |
| |
| // Multiples align to self |
| ASSERT_EQ(Align(8u, 8), 8u); |
| ASSERT_EQ(Align(16u, 8), 16u); |
| ASSERT_EQ(Align(24u, 8), 24u); |
| ASSERT_EQ(Align(256u, 256), 256u); |
| ASSERT_EQ(Align(512u, 256), 512u); |
| ASSERT_EQ(Align(768u, 256), 768u); |
| |
| // Alignment with 1 is self |
| for (uint32_t i = 0; i < 128; ++i) { |
| ASSERT_EQ(Align(i, 1), i); |
| } |
| |
| // Everything in the range (align, 2*align] aligns to 2*align |
| for (uint32_t i = 1; i <= 64; ++i) { |
| ASSERT_EQ(Align(64 + i, 64), 128u); |
| } |
| |
| // Test extrema |
| ASSERT_EQ(Align(static_cast<uint64_t>(0xFFFFFFFF), 4), 0x100000000u); |
| ASSERT_EQ(Align(static_cast<uint64_t>(0xFFFFFFFFFFFFFFFF), 1), 0xFFFFFFFFFFFFFFFFull); |
| } |
| |
| TEST(Math, AlignSizeof) { |
| // Basic types should align to self if alignment is a divisor. |
| ASSERT_EQ((AlignSizeof<uint8_t, 1>()), 1u); |
| |
| ASSERT_EQ((AlignSizeof<uint16_t, 1>()), 2u); |
| ASSERT_EQ((AlignSizeof<uint16_t, 2>()), 2u); |
| |
| ASSERT_EQ((AlignSizeof<uint32_t, 1>()), 4u); |
| ASSERT_EQ((AlignSizeof<uint32_t, 2>()), 4u); |
| ASSERT_EQ((AlignSizeof<uint32_t, 4>()), 4u); |
| |
| ASSERT_EQ((AlignSizeof<uint64_t, 1>()), 8u); |
| ASSERT_EQ((AlignSizeof<uint64_t, 2>()), 8u); |
| ASSERT_EQ((AlignSizeof<uint64_t, 4>()), 8u); |
| ASSERT_EQ((AlignSizeof<uint64_t, 8>()), 8u); |
| |
| // Everything in range (align, 2*align] aligns to 2*align. |
| ASSERT_EQ((AlignSizeof<char[5], 4>()), 8u); |
| ASSERT_EQ((AlignSizeof<char[6], 4>()), 8u); |
| ASSERT_EQ((AlignSizeof<char[7], 4>()), 8u); |
| ASSERT_EQ((AlignSizeof<char[8], 4>()), 8u); |
| } |
| |
| TEST(Math, AlignSizeofN) { |
| // Everything in range (align, 2*align] aligns to 2*align. |
| ASSERT_EQ(*(AlignSizeofN<char, 4>(5)), 8u); |
| ASSERT_EQ(*(AlignSizeofN<char, 4>(6)), 8u); |
| ASSERT_EQ(*(AlignSizeofN<char, 4>(7)), 8u); |
| ASSERT_EQ(*(AlignSizeofN<char, 4>(8)), 8u); |
| |
| // Extremes should return nullopt. |
| ASSERT_EQ((AlignSizeofN<char, 4>(std::numeric_limits<size_t>::max())), std::nullopt); |
| ASSERT_EQ((AlignSizeofN<char, 4>(std::numeric_limits<uint64_t>::max())), std::nullopt); |
| } |
| |
| // Tests for IsPtrAligned |
| TEST(Math, IsPtrAligned) { |
| constexpr size_t kTestAlignment = 8; |
| |
| char buffer[kTestAlignment * 4]; |
| |
| for (size_t i = 0; i < 2 * kTestAlignment; ++i) { |
| char* unaligned = &buffer[i]; |
| char* aligned = AlignPtr(unaligned, kTestAlignment); |
| |
| ASSERT_EQ(IsPtrAligned(unaligned, kTestAlignment), unaligned == aligned); |
| } |
| } |
| |
| // Tests for IsAligned |
| TEST(Math, IsAligned) { |
| // 0 is aligned |
| ASSERT_TRUE(IsAligned(0, 4)); |
| ASSERT_TRUE(IsAligned(0, 256)); |
| ASSERT_TRUE(IsAligned(0, 512)); |
| |
| // Multiples are aligned |
| ASSERT_TRUE(IsAligned(8, 8)); |
| ASSERT_TRUE(IsAligned(16, 8)); |
| ASSERT_TRUE(IsAligned(24, 8)); |
| ASSERT_TRUE(IsAligned(256, 256)); |
| ASSERT_TRUE(IsAligned(512, 256)); |
| ASSERT_TRUE(IsAligned(768, 256)); |
| |
| // Alignment with 1 is always aligned |
| for (uint32_t i = 0; i < 128; ++i) { |
| ASSERT_TRUE(IsAligned(i, 1)); |
| } |
| |
| // Everything in the range (align, 2*align) is not aligned |
| for (uint32_t i = 1; i < 64; ++i) { |
| ASSERT_FALSE(IsAligned(64 + i, 64)); |
| } |
| } |
| |
| // Tests for float32 to float16 conversion |
| TEST(Math, Float32ToFloat16) { |
| ASSERT_EQ(Float32ToFloat16(0.0f), 0x0000); |
| ASSERT_EQ(Float32ToFloat16(-0.0f), 0x8000); |
| |
| ASSERT_EQ(Float32ToFloat16(INFINITY), 0x7C00); |
| ASSERT_EQ(Float32ToFloat16(-INFINITY), 0xFC00); |
| |
| // Check that NaN is converted to a value in one of the float16 NaN ranges |
| uint16_t nan16 = Float32ToFloat16(NAN); |
| ASSERT_TRUE(nan16 > 0xFC00 || (nan16 < 0x8000 && nan16 > 0x7C00)); |
| |
| ASSERT_EQ(Float32ToFloat16(1.0f), 0x3C00); |
| } |
| |
| // Tests for IsFloat16NaN |
| TEST(Math, IsFloat16NaN) { |
| ASSERT_FALSE(IsFloat16NaN(0u)); |
| ASSERT_FALSE(IsFloat16NaN(0u)); |
| ASSERT_FALSE(IsFloat16NaN(Float32ToFloat16(1.0f))); |
| ASSERT_FALSE(IsFloat16NaN(Float32ToFloat16(INFINITY))); |
| ASSERT_FALSE(IsFloat16NaN(Float32ToFloat16(-INFINITY))); |
| |
| ASSERT_TRUE(IsFloat16NaN(Float32ToFloat16(INFINITY) + 1)); |
| ASSERT_TRUE(IsFloat16NaN(Float32ToFloat16(-INFINITY) + 1)); |
| ASSERT_TRUE(IsFloat16NaN(0x7FFF)); |
| ASSERT_TRUE(IsFloat16NaN(0xFFFF)); |
| } |
| |
| // Tests for FloatToUnorm |
| TEST(Math, FloatToUnorm) { |
| std::vector<float> kTestFloatValues = {0.0f, 0.4f, 0.5f, 1.0f}; |
| std::vector<unsigned char> kExpectedCharValues = {0, 102, 127, 255}; |
| std::vector<uint8_t> kExpectedUint8Values = {0, 102, 127, 255}; |
| std::vector<uint16_t> kExpectedUint16Values = {0, 26214, 32767, 65535}; |
| for (size_t i = 0; i < kTestFloatValues.size(); i++) { |
| ASSERT_EQ(FloatToUnorm<unsigned char>(kTestFloatValues[i]), kExpectedCharValues[i]); |
| ASSERT_EQ(FloatToUnorm<uint8_t>(kTestFloatValues[i]), kExpectedUint8Values[i]); |
| ASSERT_EQ(FloatToUnorm<uint16_t>(kTestFloatValues[i]), kExpectedUint16Values[i]); |
| } |
| } |
| |
| // Tests for SRGBToLinear |
| TEST(Math, SRGBToLinear) { |
| ASSERT_EQ(SRGBToLinear(0.0f), 0.0f); |
| ASSERT_EQ(SRGBToLinear(1.0f), 1.0f); |
| |
| ASSERT_EQ(SRGBToLinear(-1.0f), 0.0f); |
| ASSERT_EQ(SRGBToLinear(2.0f), 1.0f); |
| |
| ASSERT_FLOAT_EQ(SRGBToLinear(0.5f), 0.21404114f); |
| } |
| |
| // Tests for RoundUp |
| TEST(Math, RoundUp) { |
| ASSERT_EQ(RoundUp(2, 2), 2u); |
| ASSERT_EQ(RoundUp(2, 4), 4u); |
| ASSERT_EQ(RoundUp(6, 2), 6u); |
| ASSERT_EQ(RoundUp(8, 4), 8u); |
| ASSERT_EQ(RoundUp(12, 6), 12u); |
| |
| ASSERT_EQ(RoundUp(3, 3), 3u); |
| ASSERT_EQ(RoundUp(3, 5), 5u); |
| ASSERT_EQ(RoundUp(5, 3), 6u); |
| ASSERT_EQ(RoundUp(9, 5), 10u); |
| |
| // Test extrema |
| ASSERT_EQ(RoundUp(0x7FFFFFFFFFFFFFFFull, 0x8000000000000000ull), 0x8000000000000000ull); |
| ASSERT_EQ(RoundUp(1, 1), 1u); |
| } |
| |
| // Tests for IsSubset |
| TEST(Math, IsSubset) { |
| // single value is a subset |
| ASSERT_TRUE(IsSubset(0b100, 0b101)); |
| ASSERT_FALSE(IsSubset(0b010, 0b101)); |
| ASSERT_TRUE(IsSubset(0b001, 0b101)); |
| |
| // empty set is a subset |
| ASSERT_TRUE(IsSubset(0b000, 0b101)); |
| |
| // equal-to is a subset |
| ASSERT_TRUE(IsSubset(0b101, 0b101)); |
| |
| // superset is not a subset |
| ASSERT_FALSE(IsSubset(0b111, 0b101)); |
| |
| // only empty is a subset of empty |
| ASSERT_FALSE(IsSubset(0b100, 0b000)); |
| ASSERT_FALSE(IsSubset(0b010, 0b000)); |
| ASSERT_FALSE(IsSubset(0b001, 0b000)); |
| ASSERT_TRUE(IsSubset(0b000, 0b000)); |
| |
| // Test with enums |
| ASSERT_TRUE(IsSubset(wgpu::TestEnum::A, wgpu::TestEnum::A)); |
| ASSERT_TRUE(IsSubset(wgpu::TestEnum::A, wgpu::TestEnum::A | wgpu::TestEnum::B)); |
| ASSERT_FALSE(IsSubset(wgpu::TestEnum::C, wgpu::TestEnum::A | wgpu::TestEnum::B)); |
| ASSERT_FALSE(IsSubset(wgpu::TestEnum::A | wgpu::TestEnum::C, wgpu::TestEnum::A)); |
| } |
| |
| } // anonymous namespace |
| } // namespace dawn |