| // Copyright 2017 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <cmath> |
| #include <sstream> |
| #include <string> |
| #include <vector> |
| |
| #include "dawn/common/Constants.h" |
| #include "dawn/tests/unittests/validation/ValidationTest.h" |
| #include "dawn/utils/ComboRenderPipelineDescriptor.h" |
| #include "dawn/utils/WGPUHelpers.h" |
| |
| namespace dawn { |
| namespace { |
| |
| class RenderPipelineValidationTest : public ValidationTest { |
| protected: |
| std::vector<wgpu::FeatureName> GetRequiredFeatures() override { |
| return {wgpu::FeatureName::ShaderF16}; |
| } |
| |
| void SetUp() override { |
| ValidationTest::SetUp(); |
| |
| vsModule = utils::CreateShaderModule(device, R"( |
| @vertex fn main() -> @builtin(position) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 1.0); |
| })"); |
| |
| fsModule = utils::CreateShaderModule(device, R"( |
| @fragment fn main() -> @location(0) vec4f { |
| return vec4f(0.0, 1.0, 0.0, 1.0); |
| })"); |
| |
| fsModuleUint = utils::CreateShaderModule(device, R"( |
| @fragment fn main() -> @location(0) vec4u { |
| return vec4u(0u, 255u, 0u, 255u); |
| })"); |
| } |
| |
| wgpu::ShaderModule vsModule; |
| wgpu::ShaderModule fsModule; |
| wgpu::ShaderModule fsModuleUint; |
| }; |
| |
| bool BlendFactorContainsSrcAlpha(const wgpu::BlendFactor& blendFactor) { |
| return blendFactor == wgpu::BlendFactor::SrcAlpha || |
| blendFactor == wgpu::BlendFactor::OneMinusSrcAlpha || |
| blendFactor == wgpu::BlendFactor::SrcAlphaSaturated; |
| } |
| |
| // Test cases where creation should succeed |
| TEST_F(RenderPipelineValidationTest, CreationSuccess) { |
| { |
| // New format |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| } |
| |
| // Tests that depth bias parameters must not be NaN. |
| TEST_F(RenderPipelineValidationTest, DepthBiasParameterNotBeNaN) { |
| // Control case, depth bias parameters in ComboRenderPipeline default to 0 which is finite |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.EnableDepthStencil(); |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Infinite depth bias clamp is valid |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil(); |
| depthStencil->depthBiasClamp = INFINITY; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| // NAN depth bias clamp is invalid |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil(); |
| depthStencil->depthBiasClamp = NAN; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Infinite depth bias slope is valid |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil(); |
| depthStencil->depthBiasSlopeScale = INFINITY; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| // NAN depth bias slope is invalid |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil(); |
| depthStencil->depthBiasSlopeScale = NAN; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Tests that depth or stencil aspect is required if we enable depth or stencil test. |
| TEST_F(RenderPipelineValidationTest, DepthStencilAspectRequirement) { |
| // Control case, stencil aspect is required if stencil test or stencil write is enabled |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8); |
| depthStencil->stencilFront.compare = wgpu::CompareFunction::LessEqual; |
| depthStencil->stencilBack.failOp = wgpu::StencilOperation::Replace; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Control case, stencil faces with Keep/Always are valid when the format doesn't have stencil |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24Plus); |
| depthStencil->stencilFront.compare = wgpu::CompareFunction::Always; |
| depthStencil->stencilFront.failOp = wgpu::StencilOperation::Keep; |
| depthStencil->stencilFront.depthFailOp = wgpu::StencilOperation::Keep; |
| depthStencil->stencilFront.passOp = wgpu::StencilOperation::Keep; |
| depthStencil->stencilBack.compare = wgpu::CompareFunction::Always; |
| depthStencil->stencilBack.failOp = wgpu::StencilOperation::Keep; |
| depthStencil->stencilBack.depthFailOp = wgpu::StencilOperation::Keep; |
| depthStencil->stencilBack.passOp = wgpu::StencilOperation::Keep; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Control case, stencil faces with Undefined are valid when the format doesn't have stencil |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24Plus); |
| depthStencil->stencilFront.compare = wgpu::CompareFunction::Undefined; |
| depthStencil->stencilFront.failOp = wgpu::StencilOperation::Undefined; |
| depthStencil->stencilFront.depthFailOp = wgpu::StencilOperation::Undefined; |
| depthStencil->stencilFront.passOp = wgpu::StencilOperation::Undefined; |
| depthStencil->stencilBack.compare = wgpu::CompareFunction::Undefined; |
| depthStencil->stencilBack.failOp = wgpu::StencilOperation::Undefined; |
| depthStencil->stencilBack.depthFailOp = wgpu::StencilOperation::Undefined; |
| depthStencil->stencilBack.passOp = wgpu::StencilOperation::Undefined; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // It is invalid if the texture format doesn't have stencil aspect while stencil test is |
| // enabled (depthStencilState.stencilFront are not default values). |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24Plus); |
| depthStencil->stencilFront.compare = wgpu::CompareFunction::LessEqual; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // It is invalid if the texture format doesn't have stencil aspect while stencil write is |
| // enabled (depthStencilState.stencilBack are not default values). |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24Plus); |
| depthStencil->stencilBack.failOp = wgpu::StencilOperation::Replace; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Control case, depth aspect is required if depth test or depth write is enabled |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8); |
| depthStencil->depthCompare = wgpu::CompareFunction::LessEqual; |
| depthStencil->depthWriteEnabled = true; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // It is invalid if the texture format doesn't have depth aspect while depth test is |
| // enabled. |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Stencil8); |
| depthStencil->depthCompare = wgpu::CompareFunction::LessEqual; |
| depthStencil->depthWriteEnabled = false; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // It is invalid if the texture format doesn't have depth aspect while depth write is |
| // enabled. |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::DepthStencilState* depthStencil = |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Stencil8); |
| depthStencil->depthCompare = wgpu::CompareFunction::Undefined; |
| depthStencil->depthWriteEnabled = true; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Tests that depth attachment is required when frag_depth is written in fragment stage. |
| TEST_F(RenderPipelineValidationTest, DepthAttachmentRequiredWhenFragDepthIsWritten) { |
| wgpu::ShaderModule fsModuleFragDepthOutput = utils::CreateShaderModule(device, R"( |
| struct Output { |
| @builtin(frag_depth) depth_out: f32, |
| @location(0) color : vec4f, |
| } |
| @fragment fn main() -> Output { |
| var o: Output; |
| // We need to make sure this frag_depth isn't optimized out even its value equals "no op". |
| o.depth_out = 0.5; |
| o.color = vec4f(1.0, 1.0, 1.0, 1.0); |
| return o; |
| } |
| )"); |
| |
| { |
| // Succeeds because there is depth stencil state. |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModuleFragDepthOutput; |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8); |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| { |
| // Fails because there is no depth stencil state. |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModuleFragDepthOutput; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| { |
| // Fails because there is depth stencil state but no depth aspect. |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModuleFragDepthOutput; |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Stencil8); |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Tests that at least one color target state is required. |
| TEST_F(RenderPipelineValidationTest, ColorTargetStateRequired) { |
| { |
| // This one succeeds because attachment 0 is the color attachment |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cFragment.targetCount = 1; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| { // Fail because lack of color target states (and depth/stencil state) |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cFragment.targetCount = 0; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Tests that target blend must not be set if the format is undefined. |
| TEST_F(RenderPipelineValidationTest, UndefinedColorStateFormatWithBlend) { |
| { |
| // Control case: Valid undefined format target. |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cFragment.targetCount = 1; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::Undefined; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| { |
| // Error case: undefined format target with blend state set. |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cFragment.targetCount = 1; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::Undefined; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; |
| |
| ASSERT_DEVICE_ERROR( |
| device.CreateRenderPipeline(&descriptor), |
| testing::HasSubstr("Color target[0] blend state is set when the format is undefined.")); |
| } |
| } |
| |
| // Tests that a color target that's present in the pipeline descriptor but not in the shader must |
| // have its writeMask set to 0. |
| TEST_F(RenderPipelineValidationTest, WriteMaskMustBeZeroForColorTargetWithNoShaderOutput) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cFragment.targetCount = 2; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[1].format = wgpu::TextureFormat::RGBA8Unorm; |
| |
| // Control case: Target 1 not output by the shader but has writeMask = 0 |
| descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // Error case: the writeMask is not 0. |
| descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Red; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Tests that the color formats must be renderable. |
| TEST_F(RenderPipelineValidationTest, NonRenderableFormat) { |
| { |
| // Succeeds because RGBA8Unorm is renderable |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| { |
| // Fails because RG11B10Ufloat is non-renderable |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RG11B10Ufloat; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Tests that the color formats must be blendable when blending is enabled. |
| // Those are renderable color formats with "float" capabilities in |
| // https://gpuweb.github.io/gpuweb/#plain-color-formats |
| TEST_F(RenderPipelineValidationTest, NonBlendableFormat) { |
| { |
| // Succeeds because RGBA8Unorm is blendable |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| { |
| // Fails because RGBA32Float is not blendable |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| { |
| // Succeeds because RGBA32Float is not blendable but blending is disabled |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].blend = nullptr; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| { |
| // Fails because RGBA8Uint is not blendable |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModuleUint; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| { |
| // Succeeds because RGBA8Uint is not blendable but blending is disabled |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModuleUint; |
| descriptor.cTargets[0].blend = nullptr; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| } |
| |
| // Tests that the format of the color state descriptor must match the output of the fragment shader. |
| TEST_F(RenderPipelineValidationTest, FragmentOutputFormatCompatibility) { |
| std::vector<std::vector<std::string>> kScalarTypeLists = {// Float scalar types |
| {"f32", "f16"}, |
| // Sint scalar type |
| {"i32"}, |
| // Uint scalar type |
| {"u32"}}; |
| |
| std::vector<std::vector<wgpu::TextureFormat>> kColorFormatLists = { |
| // Float color formats |
| {wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA16Float, |
| wgpu::TextureFormat::RGBA32Float}, |
| // Sint color formats |
| {wgpu::TextureFormat::RGBA8Sint, wgpu::TextureFormat::RGBA16Sint, |
| wgpu::TextureFormat::RGBA32Sint}, |
| // Uint color formats |
| {wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA16Uint, |
| wgpu::TextureFormat::RGBA32Uint}}; |
| |
| for (size_t i = 0; i < kScalarTypeLists.size(); ++i) { |
| for (const std::string& scalarType : kScalarTypeLists[i]) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| std::ostringstream stream; |
| |
| // Enable f16 extension if needed. |
| if (scalarType == "f16") { |
| stream << "enable f16;\n\n"; |
| } |
| stream << R"( |
| @fragment fn main() -> @location(0) vec4<)" |
| << scalarType << R"(> { |
| var result : vec4<)" |
| << scalarType << R"(>; |
| return result; |
| })"; |
| |
| descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str()); |
| |
| for (size_t j = 0; j < kColorFormatLists.size(); ++j) { |
| for (wgpu::TextureFormat textureFormat : kColorFormatLists[j]) { |
| descriptor.cTargets[0].format = textureFormat; |
| if (i == j) { |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Tests that the component count of the color state target format must be fewer than that of the |
| // fragment shader output. |
| TEST_F(RenderPipelineValidationTest, FragmentOutputComponentCountCompatibility) { |
| std::array<wgpu::TextureFormat, 3> kColorFormats = {wgpu::TextureFormat::R8Unorm, |
| wgpu::TextureFormat::RG8Unorm, |
| wgpu::TextureFormat::RGBA8Unorm}; |
| |
| std::array<wgpu::BlendFactor, 8> kBlendFactors = {wgpu::BlendFactor::Zero, |
| wgpu::BlendFactor::One, |
| wgpu::BlendFactor::SrcAlpha, |
| wgpu::BlendFactor::OneMinusSrcAlpha, |
| wgpu::BlendFactor::Src, |
| wgpu::BlendFactor::DstAlpha, |
| wgpu::BlendFactor::OneMinusDstAlpha, |
| wgpu::BlendFactor::Dst}; |
| |
| for (size_t componentCount = 1; componentCount <= 4; ++componentCount) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| std::ostringstream stream; |
| stream << R"( |
| @fragment fn main() -> @location(0) )"; |
| switch (componentCount) { |
| case 1: |
| stream << R"(f32 { |
| return 1.0; |
| })"; |
| break; |
| case 2: |
| stream << R"(vec2f { |
| return vec2f(1.0, 1.0); |
| })"; |
| break; |
| case 3: |
| stream << R"(vec3f { |
| return vec3f(1.0, 1.0, 1.0); |
| })"; |
| break; |
| case 4: |
| stream << R"(vec4f { |
| return vec4f(1.0, 1.0, 1.0, 1.0); |
| })"; |
| break; |
| default: |
| DAWN_UNREACHABLE(); |
| } |
| descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str()); |
| |
| for (auto colorFormat : kColorFormats) { |
| descriptor.cTargets[0].format = colorFormat; |
| |
| descriptor.cTargets[0].blend = nullptr; |
| if (componentCount >= utils::GetTextureComponentCount(colorFormat)) { |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| |
| for (auto colorSrcFactor : kBlendFactors) { |
| descriptor.cBlends[0].color.srcFactor = colorSrcFactor; |
| for (auto colorDstFactor : kBlendFactors) { |
| descriptor.cBlends[0].color.dstFactor = colorDstFactor; |
| for (auto alphaSrcFactor : kBlendFactors) { |
| descriptor.cBlends[0].alpha.srcFactor = alphaSrcFactor; |
| for (auto alphaDstFactor : kBlendFactors) { |
| descriptor.cBlends[0].alpha.dstFactor = alphaDstFactor; |
| |
| bool valid = true; |
| if (componentCount >= utils::GetTextureComponentCount(colorFormat)) { |
| if (BlendFactorContainsSrcAlpha( |
| descriptor.cTargets[0].blend->color.srcFactor) || |
| BlendFactorContainsSrcAlpha( |
| descriptor.cTargets[0].blend->color.dstFactor)) { |
| valid = componentCount == 4; |
| } |
| } else { |
| valid = false; |
| } |
| |
| if (valid) { |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Tests that when blendOperationMinOrMax is "min" or "max", both srcBlendFactor and dstBlendFactor |
| // must be "one". |
| TEST_F(RenderPipelineValidationTest, BlendOperationAndBlendFactors) { |
| constexpr std::array<wgpu::BlendFactor, 9> kBlendFactors = {wgpu::BlendFactor::Undefined, |
| wgpu::BlendFactor::Zero, |
| wgpu::BlendFactor::One, |
| wgpu::BlendFactor::SrcAlpha, |
| wgpu::BlendFactor::OneMinusSrcAlpha, |
| wgpu::BlendFactor::Src, |
| wgpu::BlendFactor::DstAlpha, |
| wgpu::BlendFactor::OneMinusDstAlpha, |
| wgpu::BlendFactor::Dst}; |
| |
| constexpr std::array<wgpu::BlendOperation, 2> kBlendOperationsForTest = { |
| wgpu::BlendOperation::Max, wgpu::BlendOperation::Min}; |
| |
| for (wgpu::BlendOperation blendOperationMinOrMax : kBlendOperationsForTest) { |
| for (wgpu::BlendFactor srcFactor : kBlendFactors) { |
| for (wgpu::BlendFactor dstFactor : kBlendFactors) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cBlends[0].color.srcFactor = srcFactor; |
| descriptor.cBlends[0].color.dstFactor = dstFactor; |
| descriptor.cBlends[0].alpha.srcFactor = srcFactor; |
| descriptor.cBlends[0].alpha.dstFactor = dstFactor; |
| |
| descriptor.cBlends[0].color.operation = blendOperationMinOrMax; |
| descriptor.cBlends[0].alpha.operation = wgpu::BlendOperation::Add; |
| |
| bool srcIsOne = srcFactor == wgpu::BlendFactor::One || |
| srcFactor == wgpu::BlendFactor::Undefined; |
| bool dstIsOne = dstFactor == wgpu::BlendFactor::One || |
| dstFactor == wgpu::BlendFactor::Undefined; |
| |
| if (srcIsOne && dstIsOne) { |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| descriptor.cBlends[0].color.operation = wgpu::BlendOperation::Add; |
| descriptor.cBlends[0].alpha.operation = blendOperationMinOrMax; |
| if (srcIsOne && dstIsOne) { |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| } |
| } |
| } |
| |
| // Tests that enums enabled by the DualSourceBlending feature are not valid when the feature is not |
| // enabled. |
| TEST_F(RenderPipelineValidationTest, DualSourceBlendingEnumsInvalid) { |
| std::array<wgpu::BlendFactor, 4> kBlendFactors = { |
| wgpu::BlendFactor::Src1, wgpu::BlendFactor::OneMinusSrc1, wgpu::BlendFactor::Src1Alpha, |
| wgpu::BlendFactor::OneMinusSrc1Alpha}; |
| |
| // Test color srcFactor |
| for (wgpu::BlendFactor blendFactor : kBlendFactors) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cBlends[0].color.srcFactor = blendFactor; |
| descriptor.cBlends[0].color.dstFactor = wgpu::BlendFactor::Src; |
| descriptor.cBlends[0].color.operation = wgpu::BlendOperation::Add; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Test color dstFactor |
| for (wgpu::BlendFactor blendFactor : kBlendFactors) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cBlends[0].color.srcFactor = wgpu::BlendFactor::Src; |
| descriptor.cBlends[0].color.dstFactor = blendFactor; |
| descriptor.cBlends[0].color.operation = wgpu::BlendOperation::Add; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Test alpha srcFactor |
| for (wgpu::BlendFactor blendFactor : kBlendFactors) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cBlends[0].alpha.srcFactor = blendFactor; |
| descriptor.cBlends[0].alpha.dstFactor = wgpu::BlendFactor::SrcAlpha; |
| descriptor.cBlends[0].alpha.operation = wgpu::BlendOperation::Add; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Test alpha dstFactor |
| for (wgpu::BlendFactor blendFactor : kBlendFactors) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cBlends[0].alpha.srcFactor = wgpu::BlendFactor::SrcAlpha; |
| descriptor.cBlends[0].alpha.dstFactor = blendFactor; |
| descriptor.cBlends[0].alpha.operation = wgpu::BlendOperation::Add; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| /// Tests that the sample count of the render pipeline must be valid. |
| TEST_F(RenderPipelineValidationTest, SampleCount) { |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.multisample.count = 4; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.multisample.count = 3; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Tests that the sample count of the render pipeline must be equal to the one of every attachments |
| // in the render pass. |
| TEST_F(RenderPipelineValidationTest, SampleCountCompatibilityWithRenderPass) { |
| constexpr uint32_t kMultisampledCount = 4; |
| constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm; |
| constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8; |
| |
| wgpu::TextureDescriptor baseTextureDescriptor; |
| baseTextureDescriptor.size.width = 4; |
| baseTextureDescriptor.size.height = 4; |
| baseTextureDescriptor.size.depthOrArrayLayers = 1; |
| baseTextureDescriptor.mipLevelCount = 1; |
| baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D; |
| baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment; |
| |
| utils::ComboRenderPipelineDescriptor nonMultisampledPipelineDescriptor; |
| nonMultisampledPipelineDescriptor.multisample.count = 1; |
| nonMultisampledPipelineDescriptor.vertex.module = vsModule; |
| nonMultisampledPipelineDescriptor.cFragment.module = fsModule; |
| wgpu::RenderPipeline nonMultisampledPipeline = |
| device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor); |
| |
| nonMultisampledPipelineDescriptor.cFragment.targetCount = 0; |
| nonMultisampledPipelineDescriptor.EnableDepthStencil(); |
| wgpu::RenderPipeline nonMultisampledPipelineWithDepthStencilOnly = |
| device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor); |
| |
| utils::ComboRenderPipelineDescriptor multisampledPipelineDescriptor; |
| multisampledPipelineDescriptor.multisample.count = kMultisampledCount; |
| multisampledPipelineDescriptor.vertex.module = vsModule; |
| multisampledPipelineDescriptor.cFragment.module = fsModule; |
| wgpu::RenderPipeline multisampledPipeline = |
| device.CreateRenderPipeline(&multisampledPipelineDescriptor); |
| |
| multisampledPipelineDescriptor.cFragment.targetCount = 0; |
| multisampledPipelineDescriptor.EnableDepthStencil(); |
| wgpu::RenderPipeline multisampledPipelineWithDepthStencilOnly = |
| device.CreateRenderPipeline(&multisampledPipelineDescriptor); |
| |
| // It is not allowed to use multisampled render pass and non-multisampled render pipeline. |
| { |
| wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; |
| textureDescriptor.format = kColorFormat; |
| textureDescriptor.sampleCount = kMultisampledCount; |
| wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor); |
| utils::ComboRenderPassDescriptor renderPassDescriptor( |
| {multisampledColorTexture.CreateView()}); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| renderPass.SetPipeline(nonMultisampledPipeline); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| |
| { |
| wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; |
| textureDescriptor.sampleCount = kMultisampledCount; |
| textureDescriptor.format = kDepthStencilFormat; |
| wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor); |
| utils::ComboRenderPassDescriptor renderPassDescriptor( |
| {}, multisampledDepthStencilTexture.CreateView()); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| renderPass.SetPipeline(nonMultisampledPipelineWithDepthStencilOnly); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| |
| // It is allowed to use multisampled render pass and multisampled render pipeline. |
| { |
| wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; |
| textureDescriptor.format = kColorFormat; |
| textureDescriptor.sampleCount = kMultisampledCount; |
| wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor); |
| utils::ComboRenderPassDescriptor renderPassDescriptor( |
| {multisampledColorTexture.CreateView()}); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| renderPass.SetPipeline(multisampledPipeline); |
| renderPass.End(); |
| |
| encoder.Finish(); |
| } |
| |
| { |
| wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; |
| textureDescriptor.sampleCount = kMultisampledCount; |
| textureDescriptor.format = kDepthStencilFormat; |
| wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor); |
| utils::ComboRenderPassDescriptor renderPassDescriptor( |
| {}, multisampledDepthStencilTexture.CreateView()); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly); |
| renderPass.End(); |
| |
| encoder.Finish(); |
| } |
| |
| // It is not allowed to use non-multisampled render pass and multisampled render pipeline. |
| { |
| wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; |
| textureDescriptor.format = kColorFormat; |
| textureDescriptor.sampleCount = 1; |
| wgpu::Texture nonMultisampledColorTexture = device.CreateTexture(&textureDescriptor); |
| utils::ComboRenderPassDescriptor nonMultisampledRenderPassDescriptor( |
| {nonMultisampledColorTexture.CreateView()}); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = |
| encoder.BeginRenderPass(&nonMultisampledRenderPassDescriptor); |
| renderPass.SetPipeline(multisampledPipeline); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| |
| { |
| wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; |
| textureDescriptor.sampleCount = 1; |
| textureDescriptor.format = kDepthStencilFormat; |
| wgpu::Texture nonMultisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor); |
| utils::ComboRenderPassDescriptor renderPassDescriptor( |
| {}, nonMultisampledDepthStencilTexture.CreateView()); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| } |
| |
| // Tests that the vertex only pipeline must be used with a depth-stencil attachment only render pass |
| TEST_F(RenderPipelineValidationTest, VertexOnlyPipelineRequireDepthStencilAttachment) { |
| constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm; |
| constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8; |
| |
| wgpu::TextureDescriptor baseTextureDescriptor; |
| baseTextureDescriptor.size = {4, 4}; |
| baseTextureDescriptor.mipLevelCount = 1; |
| baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D; |
| baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment; |
| |
| wgpu::TextureDescriptor colorTextureDescriptor = baseTextureDescriptor; |
| colorTextureDescriptor.format = kColorFormat; |
| colorTextureDescriptor.sampleCount = 1; |
| wgpu::Texture colorTexture = device.CreateTexture(&colorTextureDescriptor); |
| |
| wgpu::TextureDescriptor depthStencilTextureDescriptor = baseTextureDescriptor; |
| depthStencilTextureDescriptor.sampleCount = 1; |
| depthStencilTextureDescriptor.format = kDepthStencilFormat; |
| wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilTextureDescriptor); |
| |
| utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; |
| renderPipelineDescriptor.multisample.count = 1; |
| renderPipelineDescriptor.vertex.module = vsModule; |
| |
| renderPipelineDescriptor.fragment = nullptr; |
| |
| renderPipelineDescriptor.EnableDepthStencil(kDepthStencilFormat); |
| |
| wgpu::RenderPipeline vertexOnlyPipeline = |
| device.CreateRenderPipeline(&renderPipelineDescriptor); |
| |
| // Vertex-only render pipeline can work with depth stencil attachment and no color target |
| { |
| utils::ComboRenderPassDescriptor renderPassDescriptor({}, depthStencilTexture.CreateView()); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| renderPass.SetPipeline(vertexOnlyPipeline); |
| renderPass.End(); |
| |
| encoder.Finish(); |
| } |
| |
| // Vertex-only render pipeline must have a depth stencil attachment |
| { |
| utils::ComboRenderPassDescriptor renderPassDescriptor; |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| renderPass.SetPipeline(vertexOnlyPipeline); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| |
| // Vertex-only render pipeline can not work with color target |
| { |
| utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()}, |
| depthStencilTexture.CreateView()); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| renderPass.SetPipeline(vertexOnlyPipeline); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| |
| // Vertex-only render pipeline can not work with color target, and must have a depth stencil |
| // attachment |
| { |
| utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()}); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| renderPass.SetPipeline(vertexOnlyPipeline); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| } |
| |
| // Tests that the sample count of the render pipeline must be valid |
| // when the alphaToCoverage mode is enabled. |
| TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleCount) { |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.multisample.count = 4; |
| descriptor.multisample.alphaToCoverageEnabled = true; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.multisample.count = 1; |
| descriptor.multisample.alphaToCoverageEnabled = true; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Tests if the sample_mask builtin is a pipeline output of fragment shader, |
| // then alphaToCoverageEnabled must be false. |
| TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleMaskOutput) { |
| wgpu::ShaderModule fsModuleSampleMaskOutput = utils::CreateShaderModule(device, R"( |
| struct Output { |
| @builtin(sample_mask) mask_out: u32, |
| @location(0) color : vec4f, |
| } |
| @fragment fn main() -> Output { |
| var o: Output; |
| // We need to make sure this sample_mask isn't optimized out even its value equals "no op". |
| o.mask_out = 0xFFFFFFFFu; |
| o.color = vec4f(1.0, 1.0, 1.0, 1.0); |
| return o; |
| } |
| )"); |
| |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModuleSampleMaskOutput; |
| descriptor.multisample.count = 4; |
| descriptor.multisample.alphaToCoverageEnabled = false; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModuleSampleMaskOutput; |
| descriptor.multisample.count = 4; |
| descriptor.multisample.alphaToCoverageEnabled = true; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| { |
| // Control cases: when fragment has no sample_mask output, it's good to have |
| // alphaToCoverageEnabled enabled |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.multisample.count = 4; |
| descriptor.multisample.alphaToCoverageEnabled = true; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| } |
| |
| // Tests when alphaToCoverageEnabled is true, targets[0] must exist and have alpha channel. |
| TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndColorTargetAlpha) { |
| { |
| // Control case |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.multisample.count = 4; |
| descriptor.multisample.alphaToCoverageEnabled = true; |
| |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| { |
| // Fragment state must exist |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.fragment = nullptr; |
| descriptor.multisample.count = 4; |
| descriptor.multisample.alphaToCoverageEnabled = true; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| { |
| // Fragment targets[0] must exist |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cFragment.targetCount = 0; |
| descriptor.cFragment.targets = nullptr; |
| descriptor.multisample.count = 4; |
| descriptor.multisample.alphaToCoverageEnabled = true; |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float); |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| { |
| // Fragment targets[0].format must have alpha channel (only 1 target) |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::R8Unorm; |
| descriptor.multisample.count = 4; |
| descriptor.multisample.alphaToCoverageEnabled = true; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| wgpu::ShaderModule fsModule2 = utils::CreateShaderModule(device, R"( |
| struct FragmentOut { |
| @location(0) target0 : vec4f, |
| @location(1) target1 : vec4f, |
| } |
| @fragment fn main() -> FragmentOut { |
| var out: FragmentOut; |
| out.target0 = vec4f(0, 0, 0, 1); |
| out.target1 = vec4f(1, 0, 0, 0); |
| return out; |
| })"); |
| |
| { |
| // Fragment targets[0].format must have alpha channel (2 targets) |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule2; |
| descriptor.cFragment.targetCount = 2; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::R8Unorm; |
| descriptor.cTargets[1].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.multisample.count = 4; |
| descriptor.multisample.alphaToCoverageEnabled = true; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Tests that the texture component type in shader must match the bind group layout. |
| TEST_F(RenderPipelineValidationTest, TextureComponentTypeCompatibility) { |
| constexpr uint32_t kNumTextureComponentType = 3u; |
| std::array<const char*, kNumTextureComponentType> kScalarTypes = {{"f32", "i32", "u32"}}; |
| std::array<wgpu::TextureSampleType, kNumTextureComponentType> kTextureComponentTypes = {{ |
| wgpu::TextureSampleType::Float, |
| wgpu::TextureSampleType::Sint, |
| wgpu::TextureSampleType::Uint, |
| }}; |
| |
| for (size_t i = 0; i < kNumTextureComponentType; ++i) { |
| for (size_t j = 0; j < kNumTextureComponentType; ++j) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| std::ostringstream stream; |
| stream << R"( |
| @group(0) @binding(0) var myTexture : texture_2d<)" |
| << kScalarTypes[i] << R"(>; |
| |
| @fragment fn main() { |
| _ = textureDimensions(myTexture); |
| })"; |
| descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str()); |
| descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; |
| |
| wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout( |
| device, {{0, wgpu::ShaderStage::Fragment, kTextureComponentTypes[j]}}); |
| descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl); |
| |
| if (i == j) { |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| } |
| } |
| |
| // Tests that the texture view dimension in shader must match the bind group layout. |
| TEST_F(RenderPipelineValidationTest, TextureViewDimensionCompatibility) { |
| constexpr uint32_t kNumTextureViewDimensions = 6u; |
| std::array<const char*, kNumTextureViewDimensions> kTextureKeywords = {{ |
| "texture_1d", |
| "texture_2d", |
| "texture_2d_array", |
| "texture_cube", |
| "texture_cube_array", |
| "texture_3d", |
| }}; |
| |
| std::array<wgpu::TextureViewDimension, kNumTextureViewDimensions> kTextureViewDimensions = {{ |
| wgpu::TextureViewDimension::e1D, |
| wgpu::TextureViewDimension::e2D, |
| wgpu::TextureViewDimension::e2DArray, |
| wgpu::TextureViewDimension::Cube, |
| wgpu::TextureViewDimension::CubeArray, |
| wgpu::TextureViewDimension::e3D, |
| }}; |
| |
| for (size_t i = 0; i < kNumTextureViewDimensions; ++i) { |
| for (size_t j = 0; j < kNumTextureViewDimensions; ++j) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| std::ostringstream stream; |
| stream << R"( |
| @group(0) @binding(0) var myTexture : )" |
| << kTextureKeywords[i] << R"(<f32>; |
| @fragment fn main() { |
| _ = textureDimensions(myTexture); |
| })"; |
| descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str()); |
| descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; |
| |
| wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout( |
| device, {{0, wgpu::ShaderStage::Fragment, wgpu::TextureSampleType::Float, |
| kTextureViewDimensions[j]}}); |
| descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl); |
| |
| if (i == j) { |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| } |
| } |
| |
| // Test that declaring a storage buffer in the vertex shader without setting pipeline layout won't |
| // cause crash. |
| TEST_F(RenderPipelineValidationTest, StorageBufferInVertexShaderNoLayout) { |
| wgpu::ShaderModule vsModuleWithStorageBuffer = utils::CreateShaderModule(device, R"( |
| struct Dst { |
| data : array<u32, 100> |
| } |
| @group(0) @binding(0) var<storage, read_write> dst : Dst; |
| @vertex fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4f { |
| dst.data[VertexIndex] = 0x1234u; |
| return vec4f(); |
| })"); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.layout = nullptr; |
| descriptor.vertex.module = vsModuleWithStorageBuffer; |
| descriptor.cFragment.module = fsModule; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Tests that only strip primitive topologies allow an index format |
| TEST_F(RenderPipelineValidationTest, StripIndexFormatAllowed) { |
| constexpr uint32_t kNumStripType = 2u; |
| constexpr uint32_t kNumListType = 3u; |
| constexpr uint32_t kNumIndexFormat = 3u; |
| |
| std::array<wgpu::PrimitiveTopology, kNumStripType> kStripTopologyTypes = { |
| {wgpu::PrimitiveTopology::LineStrip, wgpu::PrimitiveTopology::TriangleStrip}}; |
| |
| std::array<wgpu::PrimitiveTopology, kNumListType> kListTopologyTypes = { |
| {wgpu::PrimitiveTopology::PointList, wgpu::PrimitiveTopology::LineList, |
| wgpu::PrimitiveTopology::TriangleList}}; |
| |
| std::array<wgpu::IndexFormat, kNumIndexFormat> kIndexFormatTypes = { |
| {wgpu::IndexFormat::Undefined, wgpu::IndexFormat::Uint16, wgpu::IndexFormat::Uint32}}; |
| |
| for (wgpu::PrimitiveTopology primitiveTopology : kStripTopologyTypes) { |
| for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.primitive.topology = primitiveTopology; |
| descriptor.primitive.stripIndexFormat = indexFormat; |
| |
| // Always succeeds, regardless of if an index format is given. |
| device.CreateRenderPipeline(&descriptor); |
| } |
| } |
| |
| for (wgpu::PrimitiveTopology primitiveTopology : kListTopologyTypes) { |
| for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.primitive.topology = primitiveTopology; |
| descriptor.primitive.stripIndexFormat = indexFormat; |
| |
| if (indexFormat == wgpu::IndexFormat::Undefined) { |
| // Succeeds even when the index format is undefined because the |
| // primitive topology isn't a strip type. |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| } |
| } |
| |
| // Test that specifying a unclippedDepth value is an error if the feature is not enabled. |
| TEST_F(RenderPipelineValidationTest, UnclippedDepthWithoutFeature) { |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::PrimitiveDepthClipControl depthClipControl; |
| depthClipControl.unclippedDepth = true; |
| descriptor.primitive.nextInChain = &depthClipControl; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor), |
| testing::HasSubstr("not supported")); |
| } |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::PrimitiveDepthClipControl depthClipControl; |
| depthClipControl.unclippedDepth = false; |
| descriptor.primitive.nextInChain = &depthClipControl; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor), |
| testing::HasSubstr("not supported")); |
| } |
| } |
| |
| // Test that specifying an unclippedDepth value is an error if the feature is not enabled. |
| TEST_F(RenderPipelineValidationTest, DepthClipControlWithoutFeature) { |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::PrimitiveDepthClipControl depthClipControl; |
| depthClipControl.unclippedDepth = true; |
| descriptor.primitive.nextInChain = &depthClipControl; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor), |
| testing::HasSubstr("not supported")); |
| } |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::PrimitiveDepthClipControl depthClipControl; |
| depthClipControl.unclippedDepth = false; |
| descriptor.primitive.nextInChain = &depthClipControl; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor), |
| testing::HasSubstr("not supported")); |
| } |
| } |
| |
| // Test that depthStencil.depthCompare is required only for formats with depth. |
| TEST_F(RenderPipelineValidationTest, DepthCompareRequiredForFormatsWithDepth) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| |
| descriptor.cDepthStencil.depthWriteEnabled = true; |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float); |
| |
| // Control case: Always is valid for format with depth. |
| descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Always; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // Error case: Undefined is invalid for format with depth. |
| descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Undefined; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| |
| // Undefined is valid though if depthCompare is not used by anything. |
| descriptor.cDepthStencil.depthWriteEnabled = false; |
| descriptor.cDepthStencil.stencilFront.depthFailOp = wgpu::StencilOperation::Keep; |
| descriptor.cDepthStencil.stencilBack.depthFailOp = wgpu::StencilOperation::Keep; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // Undefined is invalid if depthCompare is used by depthWriteEnabled. |
| descriptor.cDepthStencil.depthWriteEnabled = true; |
| descriptor.cDepthStencil.stencilFront.depthFailOp = wgpu::StencilOperation::Keep; |
| descriptor.cDepthStencil.stencilBack.depthFailOp = wgpu::StencilOperation::Keep; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| |
| // Undefined is invalid if depthCompare is used by stencilFront.depthFailOp. |
| descriptor.cDepthStencil.depthWriteEnabled = false; |
| descriptor.cDepthStencil.stencilFront.depthFailOp = wgpu::StencilOperation::Zero; |
| descriptor.cDepthStencil.stencilBack.depthFailOp = wgpu::StencilOperation::Keep; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| |
| // Undefined is invalid if depthCompare is used by stencilBack.depthFailOp. |
| descriptor.cDepthStencil.depthWriteEnabled = false; |
| descriptor.cDepthStencil.stencilFront.depthFailOp = wgpu::StencilOperation::Keep; |
| descriptor.cDepthStencil.stencilBack.depthFailOp = wgpu::StencilOperation::Zero; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| |
| descriptor.cDepthStencil.depthWriteEnabled = false; |
| descriptor.cDepthStencil.stencilFront.depthFailOp = wgpu::StencilOperation::Keep; |
| descriptor.cDepthStencil.stencilBack.depthFailOp = wgpu::StencilOperation::Keep; |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Stencil8); |
| |
| // Always is valid for format with no depth. |
| descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Always; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // Undefined is also valid for format with no depth. |
| descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Undefined; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Test that depthStencil.depthWriteEnabled is required only for formats with depth. |
| TEST_F(RenderPipelineValidationTest, DepthWriteEnabledRequiredForFormatsWithDepth) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Always; |
| |
| wgpu::DepthStencilState* depthStencil = |
| descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float); |
| |
| // Control case: Set depthWriteEnabled to false for format with depth. |
| depthStencil->depthWriteEnabled = false; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // When DepthStencilStateDepthWriteDefinedDawn struct is chained, depthWriteEnabled is now |
| // considered optional and depthWriteDefined needs to be true for formats with depth only. |
| wgpu::DepthStencilStateDepthWriteDefinedDawn depthWriteDefined; |
| depthStencil = descriptor.EnableDepthStencil(wgpu::TextureFormat::Stencil8); |
| depthStencil->nextInChain = &depthWriteDefined; |
| |
| // depthWriteDefined set to true is valid for format with no depth. |
| depthWriteDefined.depthWriteDefined = true; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // depthWriteDefined set to false is valid for format with no depth. |
| depthWriteDefined.depthWriteDefined = false; |
| device.CreateRenderPipeline(&descriptor); |
| |
| depthStencil = descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float); |
| depthStencil->nextInChain = &depthWriteDefined; |
| |
| // depthWriteDefined set to true is valid for format with depth. |
| depthWriteDefined.depthWriteDefined = true; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // Error case: depthWriteDefined set to false is invalid for format with depth. |
| depthWriteDefined.depthWriteDefined = false; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Test that the entryPoint names must be present for the correct stage in the shader module. |
| TEST_F(RenderPipelineValidationTest, EntryPointNameValidation) { |
| wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( |
| @vertex fn vertex_main() -> @builtin(position) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 1.0); |
| } |
| |
| @fragment fn fragment_main() -> @location(0) vec4f { |
| return vec4f(1.0, 0.0, 0.0, 1.0); |
| } |
| )"); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = module; |
| descriptor.vertex.entryPoint = "vertex_main"; |
| descriptor.cFragment.module = module; |
| descriptor.cFragment.entryPoint = "fragment_main"; |
| |
| // Success case. |
| device.CreateRenderPipeline(&descriptor); |
| |
| // Test for the vertex stage entryPoint name. |
| { |
| // The entryPoint name doesn't exist in the module. |
| descriptor.vertex.entryPoint = "main"; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| |
| // The entryPoint name exists, but not for the correct stage. |
| descriptor.vertex.entryPoint = "fragment_main"; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| descriptor.vertex.entryPoint = "vertex_main"; |
| |
| // Test for the fragment stage entryPoint name. |
| { |
| // The entryPoint name doesn't exist in the module. |
| descriptor.cFragment.entryPoint = "main"; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| |
| // The entryPoint name exists, but not for the correct stage. |
| descriptor.cFragment.entryPoint = "vertex_main"; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Check that entry points are optional. |
| TEST_F(RenderPipelineValidationTest, EntryPointNameOptional) { |
| wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( |
| @vertex fn vertex_main() -> @builtin(position) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 1.0); |
| } |
| |
| @fragment fn fragment_main() -> @location(0) vec4f { |
| return vec4f(1.0, 0.0, 0.0, 1.0); |
| } |
| )"); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = module; |
| descriptor.vertex.entryPoint = nullptr; |
| descriptor.cFragment.module = module; |
| descriptor.cFragment.entryPoint = nullptr; |
| |
| // Success case. |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Check that entry points are required if module has multiple entry points. |
| TEST_F(RenderPipelineValidationTest, EntryPointNameRequiredIfMultipleEntryPoints) { |
| wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( |
| @vertex fn vertex1() -> @builtin(position) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 1.0); |
| } |
| |
| @vertex fn vertex2() -> @builtin(position) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 1.0); |
| } |
| |
| @fragment fn fragment1() -> @location(0) vec4f { |
| return vec4f(1.0, 0.0, 0.0, 1.0); |
| } |
| |
| @fragment fn fragment2() -> @location(0) vec4f { |
| return vec4f(1.0, 0.0, 0.0, 1.0); |
| } |
| )"); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = module; |
| descriptor.cFragment.module = module; |
| |
| { |
| // The vertex stage has more than one entryPoint. |
| descriptor.vertex.entryPoint = nullptr; |
| descriptor.cFragment.entryPoint = "fragment1"; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| { |
| // The fragment stage has more than one entryPoint. |
| descriptor.vertex.entryPoint = "vertex1"; |
| descriptor.cFragment.entryPoint = nullptr; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Check that entry points are required if module has no compatible entry points. |
| TEST_F(RenderPipelineValidationTest, EntryPointNameRequiredIfNoCompatibleEntryPoints) { |
| { |
| wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( |
| @fragment fn fragment_main() -> @location(0) vec4f { |
| return vec4f(1.0, 0.0, 0.0, 1.0); |
| } |
| )"); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = module; |
| descriptor.cFragment.module = module; |
| |
| // The vertex stage has no entryPoint. |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| { |
| wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( |
| @vertex fn vertex_main() -> @builtin(position) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 1.0); |
| } |
| )"); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = module; |
| descriptor.cFragment.module = module; |
| |
| // The fragment stage has no entryPoint. |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| |
| // Test that vertex attrib validation is for the correct entryPoint |
| TEST_F(RenderPipelineValidationTest, VertexAttribCorrectEntryPoint) { |
| wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( |
| @vertex fn vertex0(@location(0) attrib0 : vec4f) |
| -> @builtin(position) vec4f { |
| return attrib0; |
| } |
| @vertex fn vertex1(@location(1) attrib1 : vec4f) |
| -> @builtin(position) vec4f { |
| return attrib1; |
| } |
| )"); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = module; |
| descriptor.cFragment.module = fsModule; |
| |
| descriptor.vertex.bufferCount = 1; |
| descriptor.cBuffers[0].attributeCount = 1; |
| descriptor.cBuffers[0].arrayStride = 16; |
| descriptor.cAttributes[0].format = wgpu::VertexFormat::Float32x4; |
| descriptor.cAttributes[0].offset = 0; |
| |
| // Success cases, the attribute used by the entryPoint is declared in the pipeline. |
| descriptor.vertex.entryPoint = "vertex0"; |
| descriptor.cAttributes[0].shaderLocation = 0; |
| device.CreateRenderPipeline(&descriptor); |
| |
| descriptor.vertex.entryPoint = "vertex1"; |
| descriptor.cAttributes[0].shaderLocation = 1; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // Error cases, the attribute used by the entryPoint isn't declared in the pipeline. |
| descriptor.vertex.entryPoint = "vertex1"; |
| descriptor.cAttributes[0].shaderLocation = 0; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| |
| descriptor.vertex.entryPoint = "vertex0"; |
| descriptor.cAttributes[0].shaderLocation = 1; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Test that fragment output validation is for the correct entryPoint |
| TEST_F(RenderPipelineValidationTest, FragmentOutputCorrectEntryPoint) { |
| wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( |
| @fragment fn fragmentFloat() -> @location(0) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 0.0); |
| } |
| @fragment fn fragmentUint() -> @location(0) vec4u { |
| return vec4u(0u, 0u, 0u, 0u); |
| } |
| )"); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = module; |
| |
| // Success case, the component type matches between the pipeline and the entryPoint |
| descriptor.cFragment.entryPoint = "fragmentFloat"; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; |
| device.CreateRenderPipeline(&descriptor); |
| |
| descriptor.cFragment.entryPoint = "fragmentUint"; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // Error case, the component type doesn't match between the pipeline and the entryPoint |
| descriptor.cFragment.entryPoint = "fragmentUint"; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| |
| descriptor.cFragment.entryPoint = "fragmentFloat"; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Test that unwritten fragment outputs must have a write mask of 0. |
| TEST_F(RenderPipelineValidationTest, UnwrittenFragmentOutputsMask0) { |
| wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( |
| @vertex fn main() -> @builtin(position) vec4f { |
| return vec4f(); |
| } |
| )"); |
| |
| wgpu::ShaderModule fsModuleWriteNone = utils::CreateShaderModule(device, R"( |
| @fragment fn main() {} |
| )"); |
| |
| wgpu::ShaderModule fsModuleWrite0 = utils::CreateShaderModule(device, R"( |
| @fragment fn main() -> @location(0) vec4f { |
| return vec4f(); |
| } |
| )"); |
| |
| wgpu::ShaderModule fsModuleWrite1 = utils::CreateShaderModule(device, R"( |
| @fragment fn main() -> @location(1) vec4f { |
| return vec4f(); |
| } |
| )"); |
| |
| wgpu::ShaderModule fsModuleWriteBoth = utils::CreateShaderModule(device, R"( |
| struct FragmentOut { |
| @location(0) target0 : vec4f, |
| @location(1) target1 : vec4f, |
| } |
| @fragment fn main() -> FragmentOut { |
| var out : FragmentOut; |
| return out; |
| } |
| )"); |
| |
| // Control case: write to target 0 |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| descriptor.cFragment.targetCount = 1; |
| descriptor.cFragment.module = fsModuleWrite0; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Control case: write to target 0 and target 1 |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| descriptor.cFragment.targetCount = 2; |
| descriptor.cFragment.module = fsModuleWriteBoth; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Write only target 1 (not in pipeline fragment state). |
| // Errors because target 0 does not have a write mask of 0. |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| descriptor.cFragment.targetCount = 1; |
| descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All; |
| descriptor.cFragment.module = fsModuleWrite1; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Write only target 1 (not in pipeline fragment state). |
| // OK because target 0 has a write mask of 0. |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| descriptor.cFragment.targetCount = 1; |
| descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; |
| descriptor.cFragment.module = fsModuleWrite1; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Write only target 0 with two color targets. |
| // Errors because target 1 does not have a write mask of 0. |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| descriptor.cFragment.targetCount = 2; |
| descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red; |
| descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Alpha; |
| descriptor.cFragment.module = fsModuleWrite0; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Write only target 0 with two color targets. |
| // OK because target 1 has a write mask of 0. |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| descriptor.cFragment.targetCount = 2; |
| descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All; |
| descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None; |
| descriptor.cFragment.module = fsModuleWrite0; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Write nothing with two color targets. |
| // Errors because both target 0 and 1 have nonzero write masks. |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| descriptor.cFragment.targetCount = 2; |
| descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red; |
| descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Green; |
| descriptor.cFragment.module = fsModuleWriteNone; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Write nothing with two color targets. |
| // OK because target 0 and 1 have write masks of 0. |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| |
| descriptor.cFragment.targetCount = 2; |
| descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; |
| descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None; |
| descriptor.cFragment.module = fsModuleWriteNone; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| } |
| |
| // Test that fragment output validation is for the correct entryPoint |
| TEST_F(RenderPipelineValidationTest, BindingsFromCorrectEntryPoint) { |
| wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( |
| struct Uniforms { |
| data : vec4f |
| } |
| @group(0) @binding(0) var<uniform> var0 : Uniforms; |
| @group(0) @binding(1) var<uniform> var1 : Uniforms; |
| |
| @vertex fn vertex0() -> @builtin(position) vec4f { |
| return var0.data; |
| } |
| @vertex fn vertex1() -> @builtin(position) vec4f { |
| return var1.data; |
| } |
| )"); |
| |
| wgpu::BindGroupLayout bgl0 = utils::MakeBindGroupLayout( |
| device, {{0, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}}); |
| wgpu::PipelineLayout layout0 = utils::MakeBasicPipelineLayout(device, &bgl0); |
| |
| wgpu::BindGroupLayout bgl1 = utils::MakeBindGroupLayout( |
| device, {{1, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}}); |
| wgpu::PipelineLayout layout1 = utils::MakeBasicPipelineLayout(device, &bgl1); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = module; |
| descriptor.cFragment.module = fsModule; |
| |
| // Success case, the BGL matches the bindings used by the entryPoint |
| descriptor.vertex.entryPoint = "vertex0"; |
| descriptor.layout = layout0; |
| device.CreateRenderPipeline(&descriptor); |
| |
| descriptor.vertex.entryPoint = "vertex1"; |
| descriptor.layout = layout1; |
| device.CreateRenderPipeline(&descriptor); |
| |
| // Error case, the BGL doesn't match the bindings used by the entryPoint |
| descriptor.vertex.entryPoint = "vertex1"; |
| descriptor.layout = layout0; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| |
| descriptor.vertex.entryPoint = "vertex0"; |
| descriptor.layout = layout1; |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| |
| // Tests validation for per-pixel accounting for render targets. The tests currently assume that the |
| // default maxColorAttachmentBytesPerSample limit of 32 is used. |
| TEST_F(RenderPipelineValidationTest, RenderPipelineColorAttachmentBytesPerSample) { |
| // Creates a fragment shader with maximum number of color attachments to enable testing. |
| auto CreateShader = [&](const std::vector<wgpu::TextureFormat>& formats) -> wgpu::ShaderModule { |
| // Default type to use when formats.size() < kMaxColorAttachments. |
| static constexpr std::string_view kDefaultWgslType = "vec4f"; |
| |
| std::ostringstream bindings; |
| std::ostringstream outputs; |
| for (size_t i = 0; i < kMaxColorAttachments; i++) { |
| if (i < formats.size()) { |
| std::ostringstream type; |
| type << "vec4<" << utils::GetWGSLColorTextureComponentType(formats.at(i)) << ">"; |
| bindings << "@location(" << i << ") o" << i << " : " << type.str() << ", "; |
| outputs << type.str() << "(1), "; |
| } else { |
| bindings << "@location(" << i << ") o" << i << " : " << kDefaultWgslType << ", "; |
| outputs << kDefaultWgslType << "(1), "; |
| } |
| } |
| |
| std::ostringstream fsShader; |
| fsShader << "struct Outputs { " << bindings.str() << "}\n"; |
| fsShader << "@fragment fn main() -> Outputs {\n"; |
| fsShader << " return Outputs(" << outputs.str() << ");\n"; |
| fsShader << "}"; |
| return utils::CreateShaderModule(device, fsShader.str().c_str()); |
| }; |
| |
| struct TestCase { |
| std::vector<wgpu::TextureFormat> formats; |
| bool success; |
| }; |
| static std::vector<TestCase> kTestCases = { |
| // Simple 1 format cases. |
| |
| // R8Unorm take 1 byte and are aligned to 1 byte so we can have 8 (max). |
| {{wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm, |
| wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm, |
| wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R8Unorm}, |
| true}, |
| // RGBA8Uint takes 4 bytes and are aligned to 1 byte so we can have 8 (max). |
| {{wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA8Uint, |
| wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA8Uint, |
| wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA8Uint, |
| wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::RGBA8Uint}, |
| true}, |
| // RGBA8Unorm takes 8 bytes (special case) and are aligned to 1 byte so only 4 allowed. |
| {{wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Unorm, |
| wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Unorm}, |
| true}, |
| {{wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Unorm, |
| wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Unorm, |
| wgpu::TextureFormat::RGBA8Unorm}, |
| false}, |
| // RGBA32Float takes 16 bytes and are aligned to 4 bytes so only 2 are allowed. |
| {{wgpu::TextureFormat::RGBA32Float, wgpu::TextureFormat::RGBA32Float}, true}, |
| {{wgpu::TextureFormat::RGBA32Float, wgpu::TextureFormat::RGBA32Float, |
| wgpu::TextureFormat::RGBA32Float}, |
| false}, |
| |
| // Different format alignment cases. |
| |
| // Alignment causes the first 1 byte R8Unorm to become 4 bytes. So even though 1+4+8+16+1 < |
| // 32, the 4 byte alignment requirement of R32Float makes the first R8Unorm become 4 and |
| // 4+4+8+16+1 > 32. Re-ordering this so the R8Unorm's are at the end, however is allowed: |
| // 4+8+16+1+1 < 32. |
| {{wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::R32Float, |
| wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA32Float, |
| wgpu::TextureFormat::R8Unorm}, |
| false}, |
| {{wgpu::TextureFormat::R32Float, wgpu::TextureFormat::RGBA8Unorm, |
| wgpu::TextureFormat::RGBA32Float, wgpu::TextureFormat::R8Unorm, |
| wgpu::TextureFormat::R8Unorm}, |
| true}, |
| }; |
| |
| for (const TestCase& testCase : kTestCases) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = CreateShader(testCase.formats); |
| descriptor.cFragment.targetCount = testCase.formats.size(); |
| for (size_t i = 0; i < testCase.formats.size(); i++) { |
| descriptor.cTargets[i].format = testCase.formats.at(i); |
| } |
| if (testCase.success) { |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| } |
| |
| // Creating render pipeline with ColorTargetStateExpandResolveTextureDawn without enabling |
| // LoadResolveTexture feature should result in error. |
| TEST_F(RenderPipelineValidationTest, LoadResolveTextureOnUnsupportedDevice) { |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsModule; |
| pipelineDescriptor.multisample.count = 4; |
| |
| wgpu::ColorTargetStateExpandResolveTextureDawn pipelineMSAAExpandResolveDesc; |
| pipelineMSAAExpandResolveDesc.enabled = true; |
| pipelineDescriptor.cTargets[0].nextInChain = &pipelineMSAAExpandResolveDesc; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&pipelineDescriptor), |
| testing::HasSubstr("feature is not enabled")); |
| } |
| |
| class DepthClipControlValidationTest : public RenderPipelineValidationTest { |
| protected: |
| std::vector<wgpu::FeatureName> GetRequiredFeatures() override { |
| return {wgpu::FeatureName::DepthClipControl}; |
| } |
| }; |
| |
| // Tests that specifying a unclippedDepth value succeeds if the feature is enabled. |
| TEST_F(DepthClipControlValidationTest, Success) { |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::PrimitiveDepthClipControl depthClipControl; |
| depthClipControl.unclippedDepth = true; |
| descriptor.primitive.nextInChain = &depthClipControl; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| wgpu::PrimitiveDepthClipControl depthClipControl; |
| depthClipControl.unclippedDepth = false; |
| descriptor.primitive.nextInChain = &depthClipControl; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| } |
| |
| class InterStageVariableMatchingValidationTest : public RenderPipelineValidationTest { |
| protected: |
| void CheckCreatingRenderPipeline(wgpu::ShaderModule vertexModule, |
| wgpu::ShaderModule fragmentModule, |
| bool shouldSucceed) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vertexModule; |
| descriptor.cFragment.module = fragmentModule; |
| if (shouldSucceed) { |
| device.CreateRenderPipeline(&descriptor); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); |
| } |
| } |
| }; |
| |
| // Tests that creating render pipeline should fail when there is a fragment input that |
| // doesn't have its corresponding vertex output at the same location. |
| TEST_F(InterStageVariableMatchingValidationTest, MissingDeclarationAtSameLocation) { |
| wgpu::ShaderModule vertexModuleOutputAtLocation0 = utils::CreateShaderModule(device, R"( |
| struct A { |
| @location(0) vout: f32, |
| @builtin(position) pos: vec4f, |
| } |
| @vertex fn main() -> A { |
| var vertexOut: A; |
| vertexOut.pos = vec4f(0.0, 0.0, 0.0, 1.0); |
| return vertexOut; |
| })"); |
| wgpu::ShaderModule fragmentModuleAtLocation0 = utils::CreateShaderModule(device, R"( |
| struct B { |
| @location(0) fin: f32 |
| } |
| @fragment fn main(fragmentIn: B) -> @location(0) vec4f { |
| return vec4f(fragmentIn.fin, 0.0, 0.0, 1.0); |
| })"); |
| wgpu::ShaderModule fragmentModuleInputAtLocation1 = utils::CreateShaderModule(device, R"( |
| struct A { |
| @location(1) vout: f32 |
| } |
| @fragment fn main(vertexOut: A) -> @location(0) vec4f { |
| return vec4f(vertexOut.vout, 0.0, 0.0, 1.0); |
| })"); |
| wgpu::ShaderModule vertexModuleOutputAtLocation1 = utils::CreateShaderModule(device, R"( |
| struct B { |
| @location(1) fin: f32, |
| @builtin(position) pos: vec4f, |
| } |
| @vertex fn main() -> B { |
| var fragmentIn: B; |
| fragmentIn.pos = vec4f(0.0, 0.0, 0.0, 1.0); |
| return fragmentIn; |
| })"); |
| |
| { |
| // It is okay if the fragment output is a subset of the vertex input. |
| CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fsModule, true); |
| } |
| { |
| CheckCreatingRenderPipeline(vsModule, fragmentModuleAtLocation0, false); |
| CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleInputAtLocation1, |
| false); |
| CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleAtLocation0, |
| false); |
| } |
| |
| { |
| CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleAtLocation0, true); |
| CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleInputAtLocation1, |
| true); |
| } |
| } |
| |
| // Tests that creating render pipeline should fail when the type of a vertex stage output variable |
| // doesn't match the type of the fragment stage input variable at the same location. |
| TEST_F(InterStageVariableMatchingValidationTest, DifferentTypeAtSameLocation) { |
| constexpr std::array<const char*, 16> kTypes = { |
| {"f32", "vec2f", "vec3f", "vec4f", "f16", "vec2<f16>", "vec3<f16>", "vec4<f16>", "i32", |
| "vec2i", "vec3i", "vec4i", "u32", "vec2u", "vec3u", "vec4u"}}; |
| |
| std::array<wgpu::ShaderModule, 16> vertexModules; |
| std::array<wgpu::ShaderModule, 16> fragmentModules; |
| for (uint32_t i = 0; i < kTypes.size(); ++i) { |
| std::string interfaceDeclaration; |
| { |
| std::ostringstream sstream; |
| sstream << "struct A { @location(0) @interpolate(flat) a: " << kTypes[i] << "," |
| << std::endl; |
| interfaceDeclaration = sstream.str(); |
| } |
| |
| std::string extensionDeclaration = "enable f16;\n\n"; |
| |
| { |
| std::ostringstream vertexStream; |
| vertexStream << extensionDeclaration << interfaceDeclaration << R"( |
| @builtin(position) pos: vec4f, |
| } |
| @vertex fn main() -> A { |
| var vertexOut: A; |
| vertexOut.pos = vec4f(0.0, 0.0, 0.0, 1.0); |
| return vertexOut; |
| })"; |
| vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str()); |
| } |
| { |
| std::ostringstream fragmentStream; |
| fragmentStream << extensionDeclaration << interfaceDeclaration << R"( |
| } |
| @fragment fn main(fragmentIn: A) -> @location(0) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 1.0); |
| })"; |
| fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str()); |
| } |
| } |
| |
| for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < kTypes.size(); ++vertexModuleIndex) { |
| wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex]; |
| for (uint32_t fragmentModuleIndex = 0; fragmentModuleIndex < kTypes.size(); |
| ++fragmentModuleIndex) { |
| wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex]; |
| bool shouldSuccess = vertexModuleIndex == fragmentModuleIndex; |
| CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess); |
| } |
| } |
| } |
| |
| // Tests that creating render pipeline should fail when the interpolation attribute of a vertex |
| // stage output variable doesn't match the type of the fragment stage input variable at the same |
| // location. |
| TEST_F(InterStageVariableMatchingValidationTest, DifferentInterpolationAttributeAtSameLocation) { |
| enum class InterpolationType : uint8_t { |
| None = 0, |
| Perspective, |
| Linear, |
| Flat, |
| Count, |
| }; |
| enum class InterpolationSampling : uint8_t { |
| None = 0, |
| Center, |
| Centroid, |
| Sample, |
| Count, |
| }; |
| constexpr std::array<const char*, static_cast<size_t>(InterpolationType::Count)> |
| kInterpolationTypeString = {{"", "perspective", "linear", "flat"}}; |
| constexpr std::array<const char*, static_cast<size_t>(InterpolationSampling::Count)> |
| kInterpolationSamplingString = {{"", "center", "centroid", "sample"}}; |
| |
| struct InterpolationAttribute { |
| InterpolationType interpolationType; |
| InterpolationSampling interpolationSampling; |
| }; |
| |
| // Interpolation sampling is not used with flat interpolation. |
| constexpr std::array<InterpolationAttribute, 10> validInterpolationAttributes = {{ |
| {InterpolationType::None, InterpolationSampling::None}, |
| {InterpolationType::Flat, InterpolationSampling::None}, |
| {InterpolationType::Linear, InterpolationSampling::None}, |
| {InterpolationType::Linear, InterpolationSampling::Center}, |
| {InterpolationType::Linear, InterpolationSampling::Centroid}, |
| {InterpolationType::Linear, InterpolationSampling::Sample}, |
| {InterpolationType::Perspective, InterpolationSampling::None}, |
| {InterpolationType::Perspective, InterpolationSampling::Center}, |
| {InterpolationType::Perspective, InterpolationSampling::Centroid}, |
| {InterpolationType::Perspective, InterpolationSampling::Sample}, |
| }}; |
| |
| std::vector<wgpu::ShaderModule> vertexModules(validInterpolationAttributes.size()); |
| std::vector<wgpu::ShaderModule> fragmentModules(validInterpolationAttributes.size()); |
| for (uint32_t i = 0; i < validInterpolationAttributes.size(); ++i) { |
| std::string interfaceDeclaration; |
| { |
| const auto& interpolationAttribute = validInterpolationAttributes[i]; |
| std::ostringstream sstream; |
| sstream << "struct A { @location(0)"; |
| if (interpolationAttribute.interpolationType != InterpolationType::None) { |
| sstream << " @interpolate(" |
| << kInterpolationTypeString[static_cast<uint8_t>( |
| interpolationAttribute.interpolationType)]; |
| if (interpolationAttribute.interpolationSampling != InterpolationSampling::None) { |
| sstream << ", " |
| << kInterpolationSamplingString[static_cast<uint8_t>( |
| interpolationAttribute.interpolationSampling)]; |
| } |
| sstream << ")"; |
| } |
| sstream << " a : vec4f," << std::endl; |
| interfaceDeclaration = sstream.str(); |
| } |
| { |
| std::ostringstream vertexStream; |
| vertexStream << interfaceDeclaration << R"( |
| @builtin(position) pos: vec4f, |
| } |
| @vertex fn main() -> A { |
| var vertexOut: A; |
| vertexOut.pos = vec4f(0.0, 0.0, 0.0, 1.0); |
| return vertexOut; |
| })"; |
| vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str()); |
| } |
| { |
| std::ostringstream fragmentStream; |
| fragmentStream << interfaceDeclaration << R"( |
| } |
| @fragment fn main(fragmentIn: A) -> @location(0) vec4f { |
| return fragmentIn.a; |
| })"; |
| fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str()); |
| } |
| } |
| |
| auto GetAppliedInterpolationAttribute = [](const InterpolationAttribute& attribute) { |
| InterpolationAttribute appliedAttribute = {attribute.interpolationType, |
| attribute.interpolationSampling}; |
| switch (attribute.interpolationType) { |
| // If the interpolation attribute is not specified, then |
| // @interpolate(perspective, center) or @interpolate(perspective) is assumed. |
| case InterpolationType::None: |
| appliedAttribute.interpolationType = InterpolationType::Perspective; |
| appliedAttribute.interpolationSampling = InterpolationSampling::Center; |
| break; |
| |
| // If the interpolation type is perspective or linear, and the interpolation |
| // sampling is not specified, then 'center' is assumed. |
| case InterpolationType::Perspective: |
| case InterpolationType::Linear: |
| if (appliedAttribute.interpolationSampling == InterpolationSampling::None) { |
| appliedAttribute.interpolationSampling = InterpolationSampling::Center; |
| } |
| break; |
| |
| case InterpolationType::Flat: |
| break; |
| default: |
| DAWN_UNREACHABLE(); |
| } |
| return appliedAttribute; |
| }; |
| |
| auto InterpolationAttributeMatch = [GetAppliedInterpolationAttribute]( |
| const InterpolationAttribute& attribute1, |
| const InterpolationAttribute& attribute2) { |
| InterpolationAttribute appliedAttribute1 = GetAppliedInterpolationAttribute(attribute1); |
| InterpolationAttribute appliedAttribute2 = GetAppliedInterpolationAttribute(attribute2); |
| |
| return appliedAttribute1.interpolationType == appliedAttribute2.interpolationType && |
| appliedAttribute1.interpolationSampling == appliedAttribute2.interpolationSampling; |
| }; |
| |
| for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < validInterpolationAttributes.size(); |
| ++vertexModuleIndex) { |
| wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex]; |
| for (uint32_t fragmentModuleIndex = 0; |
| fragmentModuleIndex < validInterpolationAttributes.size(); ++fragmentModuleIndex) { |
| wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex]; |
| bool shouldSuccess = |
| InterpolationAttributeMatch(validInterpolationAttributes[vertexModuleIndex], |
| validInterpolationAttributes[fragmentModuleIndex]); |
| CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess); |
| } |
| } |
| } |
| |
| class RenderPipelineTransientAttachmentValidationTest : public RenderPipelineValidationTest { |
| protected: |
| std::vector<wgpu::FeatureName> GetRequiredFeatures() override { |
| return {wgpu::FeatureName::ShaderF16, wgpu::FeatureName::TransientAttachments}; |
| } |
| }; |
| |
| // Test case where creation should succeed. |
| TEST_F(RenderPipelineTransientAttachmentValidationTest, CreationSuccess) { |
| constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm; |
| |
| wgpu::TextureDescriptor textureDescriptor; |
| textureDescriptor.usage = |
| wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TransientAttachment; |
| textureDescriptor.format = kColorFormat; |
| textureDescriptor.size.width = 4; |
| textureDescriptor.size.height = 4; |
| |
| wgpu::Texture transientTexture = device.CreateTexture(&textureDescriptor); |
| utils::ComboRenderPassDescriptor renderPassDescriptor({transientTexture.CreateView()}); |
| |
| // Set load and store ops to supported values with transient attachments. |
| renderPassDescriptor.cColorAttachments[0].storeOp = wgpu::StoreOp::Discard; |
| renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear; |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsModule; |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor); |
| |
| renderPass.SetPipeline(pipeline); |
| renderPass.End(); |
| |
| encoder.Finish(); |
| } |
| |
| // Creation of a pipeline that stores into a transient attachment should cause |
| // an error. |
| TEST_F(RenderPipelineTransientAttachmentValidationTest, StoreCausesError) { |
| constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm; |
| |
| wgpu::TextureDescriptor textureDescriptor; |
| textureDescriptor.usage = |
| wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TransientAttachment; |
| textureDescriptor.format = kColorFormat; |
| textureDescriptor.size.width = 4; |
| textureDescriptor.size.height = 4; |
| |
| wgpu::Texture transientTexture = device.CreateTexture(&textureDescriptor); |
| utils::ComboRenderPassDescriptor renderPassDescriptor({transientTexture.CreateView()}); |
| |
| renderPassDescriptor.cColorAttachments[0].storeOp = wgpu::StoreOp::Store; |
| renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear; |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsModule; |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor); |
| |
| renderPass.SetPipeline(pipeline); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| |
| // Creation of a pipeline that loads from a transient attachment should cause |
| // an error. |
| TEST_F(RenderPipelineTransientAttachmentValidationTest, LoadCausesError) { |
| constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm; |
| |
| wgpu::TextureDescriptor textureDescriptor; |
| textureDescriptor.usage = |
| wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TransientAttachment; |
| textureDescriptor.format = kColorFormat; |
| textureDescriptor.size.width = 4; |
| textureDescriptor.size.height = 4; |
| |
| wgpu::Texture transientTexture = device.CreateTexture(&textureDescriptor); |
| utils::ComboRenderPassDescriptor renderPassDescriptor({transientTexture.CreateView()}); |
| |
| renderPassDescriptor.cColorAttachments[0].storeOp = wgpu::StoreOp::Discard; |
| renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Load; |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsModule; |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor); |
| |
| renderPass.SetPipeline(pipeline); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| |
| class LoadResolveTexturePipelineDescriptorValidationTest : public RenderPipelineValidationTest { |
| protected: |
| void SetUp() override { |
| RenderPipelineValidationTest::SetUp(); |
| |
| fsWithTextureModule = utils::CreateShaderModule(device, R"( |
| @group(0) @binding(0) var src_tex : texture_2d<f32>; |
| |
| @fragment fn main() -> @location(0) vec4f { |
| return textureLoad(src_tex, vec2u(0, 0), 0); |
| })"); |
| |
| fsWithTextureToTarget1Module = utils::CreateShaderModule(device, R"( |
| @group(0) @binding(0) var src_tex : texture_2d<f32>; |
| |
| @fragment fn main() -> @location(1) vec4f { |
| return textureLoad(src_tex, vec2u(0, 0), 0); |
| })"); |
| } |
| |
| std::vector<wgpu::FeatureName> GetRequiredFeatures() override { |
| return {wgpu::FeatureName::DawnLoadResolveTexture}; |
| } |
| |
| wgpu::Texture CreateTexture(wgpu::TextureUsage textureUsage, uint32_t sampleCount) { |
| wgpu::TextureDescriptor textureDescriptor; |
| textureDescriptor.usage = textureUsage; |
| textureDescriptor.format = kColorFormat; |
| textureDescriptor.sampleCount = sampleCount; |
| textureDescriptor.size.width = 4; |
| textureDescriptor.size.height = 4; |
| return device.CreateTexture(&textureDescriptor); |
| } |
| |
| static constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm; |
| |
| wgpu::ShaderModule fsWithTextureModule; |
| wgpu::ShaderModule fsWithTextureToTarget1Module; |
| }; |
| |
| // Test that creating and using a render pipeline with ColorTargetStateExpandResolveTextureDawn |
| // chained struct should success. |
| TEST_F(LoadResolveTexturePipelineDescriptorValidationTest, ValidUse) { |
| constexpr uint32_t kSampleCount = 4; |
| |
| auto msaaTexture = CreateTexture(wgpu::TextureUsage::RenderAttachment, kSampleCount); |
| |
| // Create single sampled texture. |
| auto texture = |
| CreateTexture(wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TextureBinding, 1); |
| |
| // Create render pass (with ExpandResolveTexture load op). |
| utils::ComboRenderPassDescriptor renderPassDescriptor({msaaTexture.CreateView()}); |
| renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::ExpandResolveTexture; |
| renderPassDescriptor.cColorAttachments[0].resolveTarget = texture.CreateView(); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| |
| // Create render pipeline |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsWithTextureModule; |
| pipelineDescriptor.multisample.count = kSampleCount; |
| |
| wgpu::ColorTargetStateExpandResolveTextureDawn pipelineMSAAExpandResolveDesc; |
| pipelineMSAAExpandResolveDesc.enabled = true; |
| pipelineDescriptor.cTargets[0].nextInChain = &pipelineMSAAExpandResolveDesc; |
| |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor); |
| |
| // Input texture. |
| auto sampledTexture = CreateTexture(wgpu::TextureUsage::TextureBinding, 1); |
| wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), |
| {{0, sampledTexture.CreateView()}}); |
| |
| renderPass.SetPipeline(pipeline); |
| renderPass.SetBindGroup(0, bindGroup); |
| renderPass.Draw(3); |
| renderPass.End(); |
| |
| encoder.Finish(); |
| } |
| |
| // Test that creating and using a render pipeline with ColorTargetStateExpandResolveTextureDawn |
| // chained struct in a non-zero indexed attachment should success. |
| TEST_F(LoadResolveTexturePipelineDescriptorValidationTest, UseInNonZeroIndexedAttachment) { |
| constexpr uint32_t kSampleCount = 4; |
| |
| auto msaaTexture = CreateTexture(wgpu::TextureUsage::RenderAttachment, kSampleCount); |
| |
| // Create single sampled texture. |
| auto texture = |
| CreateTexture(wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TextureBinding, 1); |
| |
| // Create render pass (with ExpandResolveTexture load op). |
| utils::ComboRenderPassDescriptor renderPassDescriptor({nullptr, msaaTexture.CreateView()}); |
| renderPassDescriptor.cColorAttachments[1].loadOp = wgpu::LoadOp::ExpandResolveTexture; |
| renderPassDescriptor.cColorAttachments[1].resolveTarget = texture.CreateView(); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| |
| // Create render pipeline |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsWithTextureToTarget1Module; |
| pipelineDescriptor.multisample.count = kSampleCount; |
| pipelineDescriptor.cFragment.targetCount = 2; |
| pipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::Undefined; |
| pipelineDescriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; |
| pipelineDescriptor.cTargets[1].format = kColorFormat; |
| pipelineDescriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::All; |
| |
| wgpu::ColorTargetStateExpandResolveTextureDawn pipelineMSAAExpandResolveDesc; |
| pipelineMSAAExpandResolveDesc.enabled = true; |
| pipelineDescriptor.cTargets[1].nextInChain = &pipelineMSAAExpandResolveDesc; |
| |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor); |
| |
| // Input texture. |
| auto sampledTexture = CreateTexture(wgpu::TextureUsage::TextureBinding, 1); |
| wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), |
| {{0, sampledTexture.CreateView()}}); |
| |
| renderPass.SetPipeline(pipeline); |
| renderPass.SetBindGroup(0, bindGroup); |
| renderPass.Draw(3); |
| renderPass.End(); |
| |
| encoder.Finish(); |
| } |
| |
| // If a render pipeline's MultisampleState contains ColorTargetStateExpandResolveTextureDawn |
| // chained struct. Then its sampleCount must be > 1. |
| TEST_F(LoadResolveTexturePipelineDescriptorValidationTest, |
| PipelineSampleCountMustBeGreaterThanOne) { |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsModule; |
| pipelineDescriptor.multisample.count = 1; |
| |
| wgpu::ColorTargetStateExpandResolveTextureDawn pipelineMSAAExpandResolveDesc; |
| pipelineMSAAExpandResolveDesc.enabled = true; |
| pipelineDescriptor.cTargets[0].nextInChain = &pipelineMSAAExpandResolveDesc; |
| |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&pipelineDescriptor), |
| testing::HasSubstr("multisample count (1) is not > 1")); |
| } |
| |
| // If a render pipeline is created with ColorTargetStateExpandResolveTextureDawn.enabled = |
| // true, then it cannot be used in a render pass that wasn't created with ExpandResolveTexture load |
| // op. |
| TEST_F(LoadResolveTexturePipelineDescriptorValidationTest, |
| ExpandResolveTexturePipeline_UseIn_NormalRenderPass_Error) { |
| constexpr uint32_t kSampleCount = 4; |
| |
| // Create MSAA texture. |
| auto texture = CreateTexture(wgpu::TextureUsage::RenderAttachment, 4); |
| |
| // Create render pass (without ExpandResolveTexture load op). |
| utils::ComboRenderPassDescriptor renderPassDescriptor({texture.CreateView()}); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| |
| // Create render pipeline |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsModule; |
| pipelineDescriptor.multisample.count = kSampleCount; |
| |
| wgpu::ColorTargetStateExpandResolveTextureDawn pipelineMSAAExpandResolveDesc; |
| pipelineMSAAExpandResolveDesc.enabled = true; |
| pipelineDescriptor.cTargets[0].nextInChain = &pipelineMSAAExpandResolveDesc; |
| |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor); |
| renderPass.SetPipeline(pipeline); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| |
| // Using a normal render pipeline in a ExpandResolveTexture render pass should result in |
| // incompatible error. |
| TEST_F(LoadResolveTexturePipelineDescriptorValidationTest, |
| NormalPipeline_Use_In_ExpandResolveTextureRenderPass_Error) { |
| constexpr uint32_t kSampleCount = 4; |
| |
| // Create multi sampled texture. |
| auto msaaTexture = CreateTexture(wgpu::TextureUsage::RenderAttachment, kSampleCount); |
| |
| // Create single sampled texture. |
| auto texture = |
| CreateTexture(wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TextureBinding, 1); |
| |
| // Create render pass (with ExpandResolveTexture load op). |
| utils::ComboRenderPassDescriptor renderPassDescriptor({msaaTexture.CreateView()}); |
| renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::ExpandResolveTexture; |
| renderPassDescriptor.cColorAttachments[0].resolveTarget = texture.CreateView(); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| |
| // Create render pipeline (without ColorTargetStateExpandResolveTextureDawn) |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsModule; |
| |
| pipelineDescriptor.multisample.count = kSampleCount; |
| |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor); |
| renderPass.SetPipeline(pipeline); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR(encoder.Finish()); |
| } |
| |
| // Bind resolve attachment in a ExpandResolveTexture render pass as texture should result |
| // in error. |
| TEST_F(LoadResolveTexturePipelineDescriptorValidationTest, BindColorAttachmentAsTextureError) { |
| constexpr uint32_t kSampleCount = 4; |
| |
| // Create multi sampled texture. |
| auto msaaTexture = CreateTexture(wgpu::TextureUsage::RenderAttachment, kSampleCount); |
| |
| // Create single sampled texture. |
| auto resolveTexture = |
| CreateTexture(wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::TextureBinding, 1); |
| |
| // Create render pass (with ExpandResolveTexture load op). |
| utils::ComboRenderPassDescriptor renderPassDescriptor({msaaTexture.CreateView()}); |
| renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::ExpandResolveTexture; |
| renderPassDescriptor.cColorAttachments[0].resolveTarget = resolveTexture.CreateView(); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); |
| |
| // Create render pipeline |
| utils::ComboRenderPipelineDescriptor pipelineDescriptor; |
| pipelineDescriptor.vertex.module = vsModule; |
| pipelineDescriptor.cFragment.module = fsWithTextureModule; |
| pipelineDescriptor.multisample.count = kSampleCount; |
| |
| wgpu::ColorTargetStateExpandResolveTextureDawn pipelineMSAAExpandResolveDesc; |
| pipelineMSAAExpandResolveDesc.enabled = true; |
| pipelineDescriptor.cTargets[0].nextInChain = &pipelineMSAAExpandResolveDesc; |
| |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor); |
| |
| // Use resolve attachment as input texture. |
| wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), |
| {{0, resolveTexture.CreateView()}}); |
| |
| renderPass.SetPipeline(pipeline); |
| renderPass.SetBindGroup(0, bindGroup); |
| renderPass.Draw(3); |
| renderPass.End(); |
| |
| ASSERT_DEVICE_ERROR( |
| encoder.Finish(), |
| testing::HasSubstr( |
| "includes writable usage and another usage in the same synchronization scope")); |
| } |
| |
| class DualSourceBlendingFeatureTest : public RenderPipelineValidationTest { |
| protected: |
| std::vector<wgpu::FeatureName> GetRequiredFeatures() override { |
| return {wgpu::FeatureName::DualSourceBlending}; |
| } |
| }; |
| |
| // Tests that enums associated with the DualSourceBlending feature are valid when the feature is |
| // enabled. |
| TEST_F(DualSourceBlendingFeatureTest, FeatureEnumsValidWithFeatureEnabled) { |
| std::array<wgpu::BlendFactor, 4> kBlendFactors = { |
| wgpu::BlendFactor::Src1, wgpu::BlendFactor::OneMinusSrc1, wgpu::BlendFactor::Src1Alpha, |
| wgpu::BlendFactor::OneMinusSrc1Alpha}; |
| |
| // Test color srcFactor |
| for (wgpu::BlendFactor blendFactor : kBlendFactors) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cBlends[0].color.srcFactor = blendFactor; |
| descriptor.cBlends[0].color.dstFactor = wgpu::BlendFactor::Src; |
| descriptor.cBlends[0].color.operation = wgpu::BlendOperation::Add; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Test color dstFactor |
| for (wgpu::BlendFactor blendFactor : kBlendFactors) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cBlends[0].color.srcFactor = wgpu::BlendFactor::Src; |
| descriptor.cBlends[0].color.dstFactor = blendFactor; |
| descriptor.cBlends[0].color.operation = wgpu::BlendOperation::Add; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Test alpha srcFactor |
| for (wgpu::BlendFactor blendFactor : kBlendFactors) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cBlends[0].alpha.srcFactor = blendFactor; |
| descriptor.cBlends[0].alpha.dstFactor = wgpu::BlendFactor::SrcAlpha; |
| descriptor.cBlends[0].alpha.operation = wgpu::BlendOperation::Add; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| |
| // Test alpha dstFactor |
| for (wgpu::BlendFactor blendFactor : kBlendFactors) { |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; |
| descriptor.cTargets[0].blend = &descriptor.cBlends[0]; |
| descriptor.cBlends[0].alpha.srcFactor = wgpu::BlendFactor::SrcAlpha; |
| descriptor.cBlends[0].alpha.dstFactor = blendFactor; |
| descriptor.cBlends[0].alpha.operation = wgpu::BlendOperation::Add; |
| device.CreateRenderPipeline(&descriptor); |
| } |
| } |
| |
| // Test that rendering to multiple render targets while using dual source blending results in an |
| // error. |
| TEST_F(DualSourceBlendingFeatureTest, MultipleRenderTargetsNotAllowed) { |
| wgpu::SupportedLimits limits; |
| device.GetLimits(&limits); |
| |
| for (uint32_t location = 1; location < limits.limits.maxColorAttachments; location++) { |
| std::ostringstream sstream; |
| sstream << R"( |
| enable chromium_internal_dual_source_blending; |
| |
| struct TestData { |
| color : vec4f, |
| blend : vec4f |
| } |
| |
| @group(0) @binding(0) var<uniform> testData : TestData; |
| |
| struct FragOut { |
| @location(0) @blend_src(0) color : vec4<f32>, |
| @location(0) @blend_src(1) blend : vec4<f32>, |
| @location()" |
| << location << R"("invalidOutput : vec4<f32> |
| } |
| |
| @fragment fn main() -> FragOut { |
| var output : FragOut; |
| output.color = testData.color; |
| output.blend = testData.blend; |
| return output;)"; |
| |
| ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, sstream.str().c_str())); |
| } |
| } |
| |
| class FramebufferFetchFeatureTest : public RenderPipelineValidationTest { |
| protected: |
| std::vector<wgpu::FeatureName> GetRequiredFeatures() override { |
| return {wgpu::FeatureName::FramebufferFetch}; |
| } |
| }; |
| |
| // Test that the framebuffer input must have a corresponding color target. |
| TEST_F(FramebufferFetchFeatureTest, FramebufferInputMustHaveColorTarget) { |
| uint32_t colorIndices[] = {0, 1, 2, kMaxColorAttachments - 1, kMaxColorAttachments}; |
| for (uint32_t colorIndex : colorIndices) { |
| std::ostringstream fsStream; |
| fsStream << R"( |
| enable chromium_experimental_framebuffer_fetch; |
| @fragment fn main(@color()" |
| << colorIndex << R"() in : vec4f) -> @location(1) vec4f { |
| return in; |
| } |
| )"; |
| |
| utils::ComboRenderPipelineDescriptor desc; |
| desc.vertex.module = vsModule; |
| desc.cFragment.module = utils::CreateShaderModule(device, fsStream.str().c_str()); |
| desc.cFragment.targetCount = 2; |
| desc.cTargets[0].format = wgpu::TextureFormat::Undefined; |
| desc.cTargets[1].format = wgpu::TextureFormat::RGBA8Unorm; |
| |
| // Only colorIndex 1 should work because it is the only index with a color target. |
| if (colorIndex == 1) { |
| device.CreateRenderPipeline(&desc); |
| } else { |
| ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&desc)); |
| } |
| } |
| } |
| |
| // Test that the framebuffer fetch type matches the texture format exactly. |
| TEST_F(FramebufferFetchFeatureTest, InputMatchesFormat) { |
| struct ValidPair { |
| const char* type; |
| wgpu::TextureFormat format; |
| }; |
| |
| std::array<ValidPair, 9> validPairs = {{ |
| {"f32", wgpu::TextureFormat::R32Float}, |
| {"vec2f", wgpu::TextureFormat::RG16Float}, |
| {"vec4f", wgpu::TextureFormat::RGBA8Unorm}, |
| {"u32", wgpu::TextureFormat::R32Uint}, |
| {"vec2u", wgpu::TextureFormat::RG16Uint}, |
| {"vec4u", wgpu::TextureFormat::RGBA8Uint}, |
| {"i32", wgpu::TextureFormat::R32Sint}, |
| {"vec2i", wgpu::TextureFormat::RG16Sint}, |
| {"vec4i", wgpu::TextureFormat::RGBA8Sint}, |
| }}; |
| |
| for (size_t i = 0; i < validPairs.size(); i++) { |
| wgpu::TextureFormat format = validPairs[i].format; |
| const char* outputType = validPairs[i].type; |
| |
| for (size_t j = 0; j < validPairs.size(); j++) |