blob: 29f11a34bb6385e608740a6bcd6e0398a49f0d34 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gtest/gtest.h"
#include "src/ast/array_accessor_expression.h"
#include "src/ast/as_expression.h"
#include "src/ast/bool_literal.h"
#include "src/ast/cast_expression.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/int_literal.h"
#include "src/ast/scalar_constructor_expression.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type_constructor_expression.h"
#include "src/ast/unary_derivative_expression.h"
#include "src/ast/unary_method_expression.h"
#include "src/ast/unary_op_expression.h"
#include "src/reader/wgsl/parser_impl.h"
#include "src/reader/wgsl/parser_impl_test_helper.h"
#include "src/type_manager.h"
namespace tint {
namespace reader {
namespace wgsl {
namespace {
TEST_F(ParserImplTest, PrimaryExpression_Ident) {
auto* p = parser("a");
auto e = p->primary_expression();
ASSERT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e, nullptr);
ASSERT_TRUE(e->IsIdentifier());
auto* ident = e->AsIdentifier();
ASSERT_EQ(ident->name().size(), 1u);
EXPECT_EQ(ident->name()[0], "a");
}
TEST_F(ParserImplTest, PrimaryExpression_Ident_WithNamespace) {
auto* p = parser("a::b::c::d");
auto e = p->primary_expression();
ASSERT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e, nullptr);
ASSERT_TRUE(e->IsIdentifier());
auto* ident = e->AsIdentifier();
ASSERT_EQ(ident->name().size(), 4u);
EXPECT_EQ(ident->name()[0], "a");
EXPECT_EQ(ident->name()[1], "b");
EXPECT_EQ(ident->name()[2], "c");
EXPECT_EQ(ident->name()[3], "d");
}
TEST_F(ParserImplTest, PrimaryExpression_Ident_MissingIdent) {
auto* p = parser("a::");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:4: identifier expected");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl) {
auto* p = parser("vec4<i32>(1, 2, 3, 4))");
auto e = p->primary_expression();
ASSERT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e, nullptr);
ASSERT_TRUE(e->IsConstructor());
ASSERT_TRUE(e->AsConstructor()->IsTypeConstructor());
auto* ty = e->AsConstructor()->AsTypeConstructor();
ASSERT_EQ(ty->values().size(), 4u);
const auto& val = ty->values();
ASSERT_TRUE(val[0]->IsConstructor());
ASSERT_TRUE(val[0]->AsConstructor()->IsScalarConstructor());
auto* ident = val[0]->AsConstructor()->AsScalarConstructor();
ASSERT_TRUE(ident->literal()->IsInt());
EXPECT_EQ(ident->literal()->AsInt()->value(), 1);
ASSERT_TRUE(val[1]->IsConstructor());
ASSERT_TRUE(val[1]->AsConstructor()->IsScalarConstructor());
ident = val[1]->AsConstructor()->AsScalarConstructor();
ASSERT_TRUE(ident->literal()->IsInt());
EXPECT_EQ(ident->literal()->AsInt()->value(), 2);
ASSERT_TRUE(val[2]->IsConstructor());
ASSERT_TRUE(val[2]->AsConstructor()->IsScalarConstructor());
ident = val[2]->AsConstructor()->AsScalarConstructor();
ASSERT_TRUE(ident->literal()->IsInt());
EXPECT_EQ(ident->literal()->AsInt()->value(), 3);
ASSERT_TRUE(val[3]->IsConstructor());
ASSERT_TRUE(val[3]->AsConstructor()->IsScalarConstructor());
ident = val[3]->AsConstructor()->AsScalarConstructor();
ASSERT_TRUE(ident->literal()->IsInt());
EXPECT_EQ(ident->literal()->AsInt()->value(), 4);
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidTypeDecl) {
auto* p = parser("vec4<if>(2., 3., 4., 5.)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:6: unable to determine subtype for vector");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingLeftParen) {
auto* p = parser("vec4<f32> 2., 3., 4., 5.)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:11: missing ( for type constructor");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingRightParen) {
auto* p = parser("vec4<f32>(2., 3., 4., 5.");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:25: missing ) for type constructor");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidValue) {
auto* p = parser("i32(if(a) {})");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:5: unable to parse argument expression");
}
TEST_F(ParserImplTest, PrimaryExpression_ConstLiteral_True) {
auto* p = parser("true");
auto e = p->primary_expression();
ASSERT_FALSE(p->has_error());
ASSERT_NE(e, nullptr);
ASSERT_TRUE(e->IsConstructor());
ASSERT_TRUE(e->AsConstructor()->IsScalarConstructor());
auto* init = e->AsConstructor()->AsScalarConstructor();
ASSERT_TRUE(init->literal()->IsBool());
EXPECT_TRUE(init->literal()->AsBool()->IsTrue());
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr) {
auto* p = parser("(a == b)");
auto e = p->primary_expression();
ASSERT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e, nullptr);
ASSERT_TRUE(e->IsBinary());
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingRightParen) {
auto* p = parser("(a == b");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:8: expected )");
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingExpr) {
auto* p = parser("()");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:2: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_InvalidExpr) {
auto* p = parser("(if (a) {})");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:2: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Cast) {
auto* f32_type = tm()->Get(std::make_unique<ast::type::F32Type>());
auto* p = parser("cast<f32>(1)");
auto e = p->primary_expression();
ASSERT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e, nullptr);
ASSERT_TRUE(e->IsCast());
auto* c = e->AsCast();
ASSERT_EQ(c->type(), f32_type);
ASSERT_TRUE(c->expr()->IsConstructor());
ASSERT_TRUE(c->expr()->AsConstructor()->IsScalarConstructor());
}
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingGreaterThan) {
auto* p = parser("cast<f32(1)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:9: missing > for cast expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingType) {
auto* p = parser("cast<>(1)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:6: missing type for cast expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Cast_InvalidType) {
auto* p = parser("cast<invalid>(1)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:6: unknown type alias 'invalid'");
}
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingLeftParen) {
auto* p = parser("cast<f32>1)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:10: expected (");
}
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingRightParen) {
auto* p = parser("cast<f32>(1");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:12: expected )");
}
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingExpression) {
auto* p = parser("cast<f32>()");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:11: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Cast_InvalidExpression) {
auto* p = parser("cast<f32>(if (a) {})");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:11: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_As) {
auto* f32_type = tm()->Get(std::make_unique<ast::type::F32Type>());
auto* p = parser("as<f32>(1)");
auto e = p->primary_expression();
ASSERT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e, nullptr);
ASSERT_TRUE(e->IsAs());
auto* c = e->AsAs();
ASSERT_EQ(c->type(), f32_type);
ASSERT_TRUE(c->expr()->IsConstructor());
ASSERT_TRUE(c->expr()->AsConstructor()->IsScalarConstructor());
}
TEST_F(ParserImplTest, PrimaryExpression_As_MissingGreaterThan) {
auto* p = parser("as<f32(1)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:7: missing > for as expression");
}
TEST_F(ParserImplTest, PrimaryExpression_As_MissingType) {
auto* p = parser("as<>(1)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:4: missing type for as expression");
}
TEST_F(ParserImplTest, PrimaryExpression_As_InvalidType) {
auto* p = parser("as<invalid>(1)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:4: unknown type alias 'invalid'");
}
TEST_F(ParserImplTest, PrimaryExpression_As_MissingLeftParen) {
auto* p = parser("as<f32>1)");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:8: expected (");
}
TEST_F(ParserImplTest, PrimaryExpression_As_MissingRightParen) {
auto* p = parser("as<f32>(1");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:10: expected )");
}
TEST_F(ParserImplTest, PrimaryExpression_As_MissingExpression) {
auto* p = parser("as<f32>()");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:9: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_As_InvalidExpression) {
auto* p = parser("as<f32>(if (a) {})");
auto e = p->primary_expression();
ASSERT_TRUE(p->has_error());
ASSERT_EQ(e, nullptr);
EXPECT_EQ(p->error(), "1:9: unable to parse expression");
}
} // namespace
} // namespace wgsl
} // namespace reader
} // namespace tint