blob: 5eb1a3b3499fab74a5cb68e9ce87be150ccc0c17 [file] [log] [blame]
/// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/writer/hlsl/generator_impl.h"
#include <limits>
#include <sstream>
#include <utility>
#include <vector>
#include "src/ast/array_accessor_expression.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/binary_expression.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/bool_literal.h"
#include "src/ast/call_expression.h"
#include "src/ast/call_statement.h"
#include "src/ast/case_statement.h"
#include "src/ast/decorated_variable.h"
#include "src/ast/else_statement.h"
#include "src/ast/float_literal.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/if_statement.h"
#include "src/ast/loop_statement.h"
#include "src/ast/member_accessor_expression.h"
#include "src/ast/return_statement.h"
#include "src/ast/sint_literal.h"
#include "src/ast/struct.h"
#include "src/ast/switch_statement.h"
#include "src/ast/type/access_control_type.h"
#include "src/ast/type/alias_type.h"
#include "src/ast/type/array_type.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/sampler_type.h"
#include "src/ast/type/struct_type.h"
#include "src/ast/type/texture_type.h"
#include "src/ast/type/vector_type.h"
#include "src/ast/uint_literal.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
#include "src/writer/float_to_string.h"
namespace tint {
namespace writer {
namespace hlsl {
namespace {
const char kInStructNameSuffix[] = "in";
const char kOutStructNameSuffix[] = "out";
const char kTintStructInVarPrefix[] = "tint_in";
const char kTintStructOutVarPrefix[] = "tint_out";
const char kTempNamePrefix[] = "_tint_tmp";
bool last_is_break_or_fallthrough(const ast::BlockStatement* stmts) {
if (stmts->empty()) {
return false;
}
return stmts->last()->IsBreak() || stmts->last()->IsFallthrough();
}
std::string get_buffer_name(ast::Expression* expr) {
for (;;) {
if (expr->IsIdentifier()) {
return expr->AsIdentifier()->name();
} else if (expr->IsMemberAccessor()) {
expr = expr->AsMemberAccessor()->structure();
} else if (expr->IsArrayAccessor()) {
expr = expr->AsArrayAccessor()->array();
} else {
break;
}
}
return "";
}
uint32_t convert_swizzle_to_index(const std::string& swizzle) {
if (swizzle == "r" || swizzle == "x") {
return 0;
}
if (swizzle == "g" || swizzle == "y") {
return 1;
}
if (swizzle == "b" || swizzle == "z") {
return 2;
}
if (swizzle == "a" || swizzle == "w") {
return 3;
}
return 0;
}
ast::TypeConstructorExpression* AsVectorConstructor(ast::Expression* expr) {
if (!expr->IsConstructor())
return nullptr;
auto* constructor = expr->AsConstructor();
if (!constructor->IsTypeConstructor()) {
return nullptr;
}
auto* type_constructor = constructor->AsTypeConstructor();
if (!type_constructor->type()->IsVector()) {
return nullptr;
}
return type_constructor;
}
} // namespace
GeneratorImpl::GeneratorImpl(Context* ctx, ast::Module* module)
: ctx_(ctx), module_(module) {
assert(ctx);
}
GeneratorImpl::~GeneratorImpl() = default;
void GeneratorImpl::make_indent(std::ostream& out) {
for (size_t i = 0; i < indent_; i++) {
out << " ";
}
}
bool GeneratorImpl::Generate(std::ostream& out) {
for (auto* global : module_->global_variables()) {
register_global(global);
}
for (auto* const ty : module_->constructed_types()) {
if (!EmitConstructedType(out, ty)) {
return false;
}
}
if (!module_->constructed_types().empty()) {
out << std::endl;
}
for (auto* var : module_->global_variables()) {
if (!var->is_const()) {
continue;
}
if (!EmitProgramConstVariable(out, var)) {
return false;
}
}
std::unordered_set<std::string> emitted_globals;
// Make sure all entry point data is emitted before the entry point functions
for (auto* func : module_->functions()) {
if (!func->IsEntryPoint()) {
continue;
}
if (!EmitEntryPointData(out, func, emitted_globals)) {
return false;
}
}
for (auto* func : module_->functions()) {
if (!EmitFunction(out, func)) {
return false;
}
}
for (auto* func : module_->functions()) {
if (!func->IsEntryPoint()) {
continue;
}
if (!EmitEntryPointFunction(out, func)) {
return false;
}
out << std::endl;
}
return true;
}
void GeneratorImpl::register_global(ast::Variable* global) {
global_variables_.set(global->name(), global);
}
std::string GeneratorImpl::generate_name(const std::string& prefix) {
std::string name = prefix;
uint32_t i = 0;
while (namer_.IsMapped(name) || namer_.IsRemapped(name)) {
name = prefix + "_" + std::to_string(i);
++i;
}
namer_.RegisterRemappedName(name);
return name;
}
std::string GeneratorImpl::current_ep_var_name(VarType type) {
std::string name = "";
switch (type) {
case VarType::kIn: {
auto in_it = ep_name_to_in_data_.find(current_ep_name_);
if (in_it != ep_name_to_in_data_.end()) {
name = in_it->second.var_name;
}
break;
}
case VarType::kOut: {
auto outit = ep_name_to_out_data_.find(current_ep_name_);
if (outit != ep_name_to_out_data_.end()) {
name = outit->second.var_name;
}
break;
}
}
return name;
}
bool GeneratorImpl::EmitConstructedType(std::ostream& out,
const ast::type::Type* ty) {
make_indent(out);
if (ty->IsAlias()) {
auto* alias = ty->AsAlias();
// HLSL typedef is for intrinsic types only. For an alias'd struct,
// generate a secondary struct with the new name.
if (alias->type()->IsStruct()) {
if (!EmitStructType(out, alias->type()->AsStruct(), alias->name())) {
return false;
}
return true;
}
out << "typedef ";
if (!EmitType(out, alias->type(), "")) {
return false;
}
out << " " << namer_.NameFor(alias->name()) << ";" << std::endl;
} else if (ty->IsStruct()) {
auto* str = ty->AsStruct();
if (!EmitStructType(out, str, str->name())) {
return false;
}
} else {
error_ = "unknown constructed type: " + ty->type_name();
return false;
}
return true;
}
bool GeneratorImpl::EmitArrayAccessor(std::ostream& pre,
std::ostream& out,
ast::ArrayAccessorExpression* expr) {
// Handle writing into a storage buffer array
if (is_storage_buffer_access(expr)) {
return EmitStorageBufferAccessor(pre, out, expr, nullptr);
}
if (!EmitExpression(pre, out, expr->array())) {
return false;
}
out << "[";
if (!EmitExpression(pre, out, expr->idx_expr())) {
return false;
}
out << "]";
return true;
}
bool GeneratorImpl::EmitBitcast(std::ostream& pre,
std::ostream& out,
ast::BitcastExpression* expr) {
if (!expr->type()->IsF32() && !expr->type()->IsI32() &&
!expr->type()->IsU32()) {
error_ = "Unable to do bitcast to type " + expr->type()->type_name();
return false;
}
out << "as";
if (!EmitType(out, expr->type(), "")) {
return false;
}
out << "(";
if (!EmitExpression(pre, out, expr->expr())) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitAssign(std::ostream& out,
ast::AssignmentStatement* stmt) {
make_indent(out);
std::ostringstream pre;
// If the LHS is an accessor into a storage buffer then we have to
// emit a Store operation instead of an ='s.
if (stmt->lhs()->IsMemberAccessor()) {
auto* mem = stmt->lhs()->AsMemberAccessor();
if (is_storage_buffer_access(mem)) {
std::ostringstream accessor_out;
if (!EmitStorageBufferAccessor(pre, accessor_out, mem, stmt->rhs())) {
return false;
}
out << pre.str();
out << accessor_out.str() << ";" << std::endl;
return true;
}
} else if (stmt->lhs()->IsArrayAccessor()) {
auto* ary = stmt->lhs()->AsArrayAccessor();
if (is_storage_buffer_access(ary)) {
std::ostringstream accessor_out;
if (!EmitStorageBufferAccessor(pre, accessor_out, ary, stmt->rhs())) {
return false;
}
out << pre.str();
out << accessor_out.str() << ";" << std::endl;
return true;
}
}
std::ostringstream lhs_out;
if (!EmitExpression(pre, lhs_out, stmt->lhs())) {
return false;
}
std::ostringstream rhs_out;
if (!EmitExpression(pre, rhs_out, stmt->rhs())) {
return false;
}
out << pre.str();
out << lhs_out.str() << " = " << rhs_out.str() << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitBinary(std::ostream& pre,
std::ostream& out,
ast::BinaryExpression* expr) {
if (expr->op() == ast::BinaryOp::kLogicalAnd ||
expr->op() == ast::BinaryOp::kLogicalOr) {
std::ostringstream lhs_out;
if (!EmitExpression(pre, lhs_out, expr->lhs())) {
return false;
}
auto name = generate_name(kTempNamePrefix);
make_indent(pre);
pre << "bool " << name << " = " << lhs_out.str() << ";" << std::endl;
make_indent(pre);
pre << "if (";
if (expr->op() == ast::BinaryOp::kLogicalOr) {
pre << "!";
}
pre << name << ") {" << std::endl;
increment_indent();
std::ostringstream rhs_out;
if (!EmitExpression(pre, rhs_out, expr->rhs())) {
return false;
}
make_indent(pre);
pre << name << " = " << rhs_out.str() << ";" << std::endl;
decrement_indent();
make_indent(pre);
pre << "}" << std::endl;
out << "(" << name << ")";
return true;
}
auto* lhs_type = expr->lhs()->result_type()->UnwrapAll();
auto* rhs_type = expr->rhs()->result_type()->UnwrapAll();
// Multiplying by a matrix requires the use of `mul` in order to get the
// type of multiply we desire.
if (expr->op() == ast::BinaryOp::kMultiply &&
((lhs_type->IsVector() && rhs_type->IsMatrix()) ||
(lhs_type->IsMatrix() && rhs_type->IsVector()) ||
(lhs_type->IsMatrix() && rhs_type->IsMatrix()))) {
out << "mul(";
if (!EmitExpression(pre, out, expr->lhs())) {
return false;
}
out << ", ";
if (!EmitExpression(pre, out, expr->rhs())) {
return false;
}
out << ")";
return true;
}
out << "(";
if (!EmitExpression(pre, out, expr->lhs())) {
return false;
}
out << " ";
switch (expr->op()) {
case ast::BinaryOp::kAnd:
out << "&";
break;
case ast::BinaryOp::kOr:
out << "|";
break;
case ast::BinaryOp::kXor:
out << "^";
break;
case ast::BinaryOp::kLogicalAnd:
case ast::BinaryOp::kLogicalOr: {
// These are both handled above.
assert(false);
return false;
}
case ast::BinaryOp::kEqual:
out << "==";
break;
case ast::BinaryOp::kNotEqual:
out << "!=";
break;
case ast::BinaryOp::kLessThan:
out << "<";
break;
case ast::BinaryOp::kGreaterThan:
out << ">";
break;
case ast::BinaryOp::kLessThanEqual:
out << "<=";
break;
case ast::BinaryOp::kGreaterThanEqual:
out << ">=";
break;
case ast::BinaryOp::kShiftLeft:
out << "<<";
break;
case ast::BinaryOp::kShiftRight:
// TODO(dsinclair): MSL is based on C++14, and >> in C++14 has
// implementation-defined behaviour for negative LHS. We may have to
// generate extra code to implement WGSL-specified behaviour for negative
// LHS.
out << R"(>>)";
break;
case ast::BinaryOp::kAdd:
out << "+";
break;
case ast::BinaryOp::kSubtract:
out << "-";
break;
case ast::BinaryOp::kMultiply:
out << "*";
break;
case ast::BinaryOp::kDivide:
out << "/";
break;
case ast::BinaryOp::kModulo:
out << "%";
break;
case ast::BinaryOp::kNone:
error_ = "missing binary operation type";
return false;
}
out << " ";
if (!EmitExpression(pre, out, expr->rhs())) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitBlock(std::ostream& out,
const ast::BlockStatement* stmt) {
out << "{" << std::endl;
increment_indent();
for (auto* s : *stmt) {
if (!EmitStatement(out, s)) {
return false;
}
}
decrement_indent();
make_indent(out);
out << "}";
return true;
}
bool GeneratorImpl::EmitBlockAndNewline(std::ostream& out,
const ast::BlockStatement* stmt) {
const bool result = EmitBlock(out, stmt);
if (result) {
out << std::endl;
}
return result;
}
bool GeneratorImpl::EmitIndentedBlockAndNewline(std::ostream& out,
ast::BlockStatement* stmt) {
make_indent(out);
const bool result = EmitBlock(out, stmt);
if (result) {
out << std::endl;
}
return result;
}
bool GeneratorImpl::EmitBreak(std::ostream& out, ast::BreakStatement*) {
make_indent(out);
out << "break;" << std::endl;
return true;
}
std::string GeneratorImpl::generate_intrinsic_name(ast::Intrinsic intrinsic) {
if (intrinsic == ast::Intrinsic::kAny) {
return "any";
}
if (intrinsic == ast::Intrinsic::kAll) {
return "all";
}
if (intrinsic == ast::Intrinsic::kCountOneBits) {
return "countbits";
}
if (intrinsic == ast::Intrinsic::kDot) {
return "dot";
}
if (intrinsic == ast::Intrinsic::kDpdy) {
return "ddy";
}
if (intrinsic == ast::Intrinsic::kDpdyFine) {
return "ddy_fine";
}
if (intrinsic == ast::Intrinsic::kDpdyCoarse) {
return "ddy_coarse";
}
if (intrinsic == ast::Intrinsic::kDpdx) {
return "ddx";
}
if (intrinsic == ast::Intrinsic::kDpdxFine) {
return "ddx_fine";
}
if (intrinsic == ast::Intrinsic::kDpdxCoarse) {
return "ddx_coarse";
}
if (intrinsic == ast::Intrinsic::kFwidth ||
intrinsic == ast::Intrinsic::kFwidthFine ||
intrinsic == ast::Intrinsic::kFwidthCoarse) {
return "fwidth";
}
if (intrinsic == ast::Intrinsic::kIsFinite) {
return "isfinite";
}
if (intrinsic == ast::Intrinsic::kIsInf) {
return "isinf";
}
if (intrinsic == ast::Intrinsic::kIsNan) {
return "isnan";
}
if (intrinsic == ast::Intrinsic::kReverseBits) {
return "reversebits";
}
return "";
}
bool GeneratorImpl::EmitCall(std::ostream& pre,
std::ostream& out,
ast::CallExpression* expr) {
if (!expr->func()->IsIdentifier()) {
error_ = "invalid function name";
return 0;
}
auto* ident = expr->func()->AsIdentifier();
if (ident->IsIntrinsic()) {
const auto& params = expr->params();
if (ident->intrinsic() == ast::Intrinsic::kSelect) {
error_ = "select not supported in HLSL backend yet";
return false;
} else if (ident->intrinsic() == ast::Intrinsic::kIsNormal) {
error_ = "is_normal not supported in HLSL backend yet";
return false;
} else if (ident->intrinsic() == ast::Intrinsic::kOuterProduct) {
error_ = "outer_product not supported yet";
return false;
// TODO(dsinclair): This gets tricky. We need to generate two variables to
// hold the outer_product expressions, but we maybe inside an expression
// ourselves. So, this will need to, possibly, output the variables
// _before_ the expression which contains the outer product.
//
// This then has the follow on, what if we have `(false &&
// outer_product())` in that case, we shouldn't evaluate the expressions
// at all because of short circuting.
//
// So .... this turns out to be hard ...
// // We create variables to hold the two parameters in case they're
// // function calls with side effects.
// auto* param0 = param[0].get();
// auto* name0 = generate_name("outer_product_expr_0");
// auto* param1 = param[1].get();
// auto* name1 = generate_name("outer_product_expr_1");
// make_indent(out);
// if (!EmitType(out, expr->result_type(), "")) {
// return false;
// }
// out << "(";
// auto param1_type = params[1]->result_type()->UnwrapPtrIfNeeded();
// if (!param1_type->IsVector()) {
// error_ = "invalid param type in outer_product got: " +
// param1_type->type_name();
// return false;
// }
// for (uint32_t i = 0; i < param1_type->AsVector()->size(); ++i) {
// if (i > 0) {
// out << ", ";
// }
// if (!EmitExpression(pre, out, params[0].get())) {
// return false;
// }
// out << " * ";
// if (!EmitExpression(pre, out, params[1].get())) {
// return false;
// }
// out << "[" << i << "]";
// }
// out << ")";
} else {
auto name = generate_intrinsic_name(ident->intrinsic());
if (name.empty()) {
if (ast::intrinsic::IsTextureIntrinsic(ident->intrinsic())) {
return EmitTextureCall(pre, out, expr);
}
name = generate_builtin_name(expr);
if (name.empty()) {
return false;
}
}
make_indent(out);
out << name << "(";
bool first = true;
for (auto* param : params) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(pre, out, param)) {
return false;
}
}
out << ")";
}
return true;
}
auto name = ident->name();
auto it = ep_func_name_remapped_.find(current_ep_name_ + "_" + name);
if (it != ep_func_name_remapped_.end()) {
name = it->second;
}
auto* func = module_->FindFunctionByName(ident->name());
if (func == nullptr) {
error_ = "Unable to find function: " + name;
return false;
}
out << name << "(";
bool first = true;
if (has_referenced_in_var_needing_struct(func)) {
auto var_name = current_ep_var_name(VarType::kIn);
if (!var_name.empty()) {
out << var_name;
first = false;
}
}
if (has_referenced_out_var_needing_struct(func)) {
auto var_name = current_ep_var_name(VarType::kOut);
if (!var_name.empty()) {
if (!first) {
out << ", ";
}
first = false;
out << var_name;
}
}
const auto& params = expr->params();
for (auto* param : params) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(pre, out, param)) {
return false;
}
}
out << ")";
return true;
}
bool GeneratorImpl::EmitTextureCall(std::ostream& pre,
std::ostream& out,
ast::CallExpression* expr) {
make_indent(out);
auto* ident = expr->func()->AsIdentifier();
auto params = expr->params();
auto* signature = static_cast<const ast::intrinsic::TextureSignature*>(
ident->intrinsic_signature());
auto& pidx = signature->params.idx;
auto const kNotUsed = ast::intrinsic::TextureSignature::Parameters::kNotUsed;
if (!EmitExpression(pre, out, params[pidx.texture]))
return false;
switch (ident->intrinsic()) {
case ast::Intrinsic::kTextureSample:
out << ".Sample(";
break;
case ast::Intrinsic::kTextureSampleBias:
out << ".SampleBias(";
break;
case ast::Intrinsic::kTextureSampleLevel:
out << ".SampleLevel(";
break;
case ast::Intrinsic::kTextureSampleGrad:
out << ".SampleGrad(";
break;
case ast::Intrinsic::kTextureSampleCompare:
out << ".SampleCmp(";
break;
default:
error_ = "Internal compiler error: Unhandled texture intrinsic '" +
ident->name() + "'";
break;
}
if (!EmitExpression(pre, out, params[pidx.sampler]))
return false;
out << ", ";
// TODO(ben-clayton): Refactor this with the near identical code in
// src/writer/spirv/builder.cc.
if (pidx.array_index != kNotUsed) {
// Array index needs to be appended to the coordinates.
auto* param_coords = params[pidx.coords];
auto* param_array_index = params[pidx.array_index];
uint32_t packed_coords_size;
ast::type::Type* packed_coords_el_ty; // Currenly must be f32.
if (param_coords->result_type()->IsVector()) {
auto* vec = param_coords->result_type()->AsVector();
packed_coords_size = vec->size() + 1;
packed_coords_el_ty = vec->type();
} else {
packed_coords_size = 2;
packed_coords_el_ty = param_coords->result_type();
}
// Cast param_array_index to the vector element type
ast::TypeConstructorExpression array_index_cast(packed_coords_el_ty,
{param_array_index});
array_index_cast.set_result_type(packed_coords_el_ty);
ast::type::VectorType packed_coords_ty(packed_coords_el_ty,
packed_coords_size);
ast::ExpressionList coords;
// If the coordinates are already passed in a vector constructor, extract
// the elements into the new vector instead of nesting a vector-in-vector.
if (auto* vc = AsVectorConstructor(param_coords)) {
coords = vc->values();
} else {
coords.emplace_back(param_coords);
}
coords.emplace_back(&array_index_cast);
ast::TypeConstructorExpression constructor{&packed_coords_ty,
std::move(coords)};
if (!EmitExpression(pre, out, &constructor))
return false;
} else {
if (!EmitExpression(pre, out, params[pidx.coords]))
return false;
}
for (auto idx : {pidx.depth_ref, pidx.bias, pidx.level, pidx.ddx, pidx.ddy,
pidx.offset}) {
if (idx != kNotUsed) {
out << ", ";
if (!EmitExpression(pre, out, params[idx]))
return false;
}
}
out << ")";
return true;
}
std::string GeneratorImpl::generate_builtin_name(ast::CallExpression* expr) {
std::string out;
auto* ident = expr->func()->AsIdentifier();
switch (ident->intrinsic()) {
case ast::Intrinsic::kAcos:
case ast::Intrinsic::kAsin:
case ast::Intrinsic::kAtan:
case ast::Intrinsic::kAtan2:
case ast::Intrinsic::kCeil:
case ast::Intrinsic::kCos:
case ast::Intrinsic::kCosh:
case ast::Intrinsic::kCross:
case ast::Intrinsic::kDeterminant:
case ast::Intrinsic::kDistance:
case ast::Intrinsic::kExp:
case ast::Intrinsic::kExp2:
case ast::Intrinsic::kFloor:
case ast::Intrinsic::kFma:
case ast::Intrinsic::kLength:
case ast::Intrinsic::kLog:
case ast::Intrinsic::kLog2:
case ast::Intrinsic::kNormalize:
case ast::Intrinsic::kPow:
case ast::Intrinsic::kReflect:
case ast::Intrinsic::kRound:
case ast::Intrinsic::kSin:
case ast::Intrinsic::kSinh:
case ast::Intrinsic::kSqrt:
case ast::Intrinsic::kStep:
case ast::Intrinsic::kTan:
case ast::Intrinsic::kTanh:
case ast::Intrinsic::kTrunc:
case ast::Intrinsic::kMix:
case ast::Intrinsic::kSign:
case ast::Intrinsic::kAbs:
case ast::Intrinsic::kMax:
case ast::Intrinsic::kMin:
case ast::Intrinsic::kClamp:
out = ident->name();
break;
case ast::Intrinsic::kFaceForward:
out = "faceforward";
break;
case ast::Intrinsic::kFract:
out = "frac";
break;
case ast::Intrinsic::kInverseSqrt:
out = "rsqrt";
break;
case ast::Intrinsic::kSmoothStep:
out = "smoothstep";
break;
default:
error_ = "Unknown builtin method: " + ident->name();
return "";
}
return out;
}
bool GeneratorImpl::EmitCase(std::ostream& out, ast::CaseStatement* stmt) {
make_indent(out);
if (stmt->IsDefault()) {
out << "default:";
} else {
bool first = true;
for (auto* selector : stmt->selectors()) {
if (!first) {
out << std::endl;
make_indent(out);
}
first = false;
out << "case ";
if (!EmitLiteral(out, selector)) {
return false;
}
out << ":";
}
}
out << " {" << std::endl;
increment_indent();
for (auto* s : *stmt->body()) {
if (!EmitStatement(out, s)) {
return false;
}
}
if (!last_is_break_or_fallthrough(stmt->body())) {
make_indent(out);
out << "break;" << std::endl;
}
decrement_indent();
make_indent(out);
out << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitConstructor(std::ostream& pre,
std::ostream& out,
ast::ConstructorExpression* expr) {
if (expr->IsScalarConstructor()) {
return EmitScalarConstructor(pre, out, expr->AsScalarConstructor());
}
return EmitTypeConstructor(pre, out, expr->AsTypeConstructor());
}
bool GeneratorImpl::EmitScalarConstructor(
std::ostream&,
std::ostream& out,
ast::ScalarConstructorExpression* expr) {
return EmitLiteral(out, expr->literal());
}
bool GeneratorImpl::EmitTypeConstructor(std::ostream& pre,
std::ostream& out,
ast::TypeConstructorExpression* expr) {
if (expr->type()->IsArray()) {
out << "{";
} else {
if (!EmitType(out, expr->type(), "")) {
return false;
}
out << "(";
}
// If the type constructor is empty then we need to construct with the zero
// value for all components.
if (expr->values().empty()) {
if (!EmitZeroValue(out, expr->type())) {
return false;
}
} else {
bool first = true;
for (auto* e : expr->values()) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(pre, out, e)) {
return false;
}
}
}
if (expr->type()->IsArray()) {
out << "}";
} else {
out << ")";
}
return true;
}
bool GeneratorImpl::EmitContinue(std::ostream& out, ast::ContinueStatement*) {
make_indent(out);
out << "continue;" << std::endl;
return true;
}
bool GeneratorImpl::EmitDiscard(std::ostream& out, ast::DiscardStatement*) {
make_indent(out);
// TODO(dsinclair): Verify this is correct when the discard semantics are
// defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361)
out << "discard;" << std::endl;
return true;
}
bool GeneratorImpl::EmitExpression(std::ostream& pre,
std::ostream& out,
ast::Expression* expr) {
if (expr->IsArrayAccessor()) {
return EmitArrayAccessor(pre, out, expr->AsArrayAccessor());
}
if (expr->IsBinary()) {
return EmitBinary(pre, out, expr->AsBinary());
}
if (expr->IsBitcast()) {
return EmitBitcast(pre, out, expr->AsBitcast());
}
if (expr->IsCall()) {
return EmitCall(pre, out, expr->AsCall());
}
if (expr->IsConstructor()) {
return EmitConstructor(pre, out, expr->AsConstructor());
}
if (expr->IsIdentifier()) {
return EmitIdentifier(pre, out, expr->AsIdentifier());
}
if (expr->IsMemberAccessor()) {
return EmitMemberAccessor(pre, out, expr->AsMemberAccessor());
}
if (expr->IsUnaryOp()) {
return EmitUnaryOp(pre, out, expr->AsUnaryOp());
}
error_ = "unknown expression type: " + expr->str();
return false;
}
bool GeneratorImpl::global_is_in_struct(ast::Variable* var) const {
return var->IsDecorated() &&
(var->AsDecorated()->HasLocationDecoration() ||
var->AsDecorated()->HasBuiltinDecoration()) &&
(var->storage_class() == ast::StorageClass::kInput ||
var->storage_class() == ast::StorageClass::kOutput);
}
bool GeneratorImpl::EmitIdentifier(std::ostream&,
std::ostream& out,
ast::IdentifierExpression* expr) {
auto* ident = expr->AsIdentifier();
ast::Variable* var = nullptr;
if (global_variables_.get(ident->name(), &var)) {
if (global_is_in_struct(var)) {
auto var_type = var->storage_class() == ast::StorageClass::kInput
? VarType::kIn
: VarType::kOut;
auto name = current_ep_var_name(var_type);
if (name.empty()) {
error_ = "unable to find entry point data for variable";
return false;
}
out << name << ".";
}
}
out << namer_.NameFor(ident->name());
return true;
}
bool GeneratorImpl::EmitIf(std::ostream& out, ast::IfStatement* stmt) {
make_indent(out);
std::ostringstream pre;
std::ostringstream cond;
if (!EmitExpression(pre, cond, stmt->condition())) {
return false;
}
std::ostringstream if_out;
if_out << "if (" << cond.str() << ") ";
if (!EmitBlock(if_out, stmt->body())) {
return false;
}
for (auto* e : stmt->else_statements()) {
if (e->HasCondition()) {
if_out << " else {" << std::endl;
increment_indent();
std::ostringstream else_pre;
std::ostringstream else_cond_out;
if (!EmitExpression(else_pre, else_cond_out, e->condition())) {
return false;
}
if_out << else_pre.str();
make_indent(if_out);
if_out << "if (" << else_cond_out.str() << ") ";
} else {
if_out << " else ";
}
if (!EmitBlock(if_out, e->body())) {
return false;
}
}
if_out << std::endl;
for (auto* e : stmt->else_statements()) {
if (!e->HasCondition()) {
continue;
}
decrement_indent();
make_indent(if_out);
if_out << "}" << std::endl;
}
out << pre.str();
out << if_out.str();
return true;
}
bool GeneratorImpl::has_referenced_in_var_needing_struct(ast::Function* func) {
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kInput) {
return true;
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kInput) {
return true;
}
}
return false;
}
bool GeneratorImpl::has_referenced_out_var_needing_struct(ast::Function* func) {
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput) {
return true;
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput) {
return true;
}
}
return false;
}
bool GeneratorImpl::has_referenced_var_needing_struct(ast::Function* func) {
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput ||
var->storage_class() == ast::StorageClass::kInput) {
return true;
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput ||
var->storage_class() == ast::StorageClass::kInput) {
return true;
}
}
return false;
}
bool GeneratorImpl::EmitFunction(std::ostream& out, ast::Function* func) {
make_indent(out);
// Entry points will be emitted later, skip for now.
if (func->IsEntryPoint()) {
return true;
}
// TODO(dsinclair): This could be smarter. If the input/outputs for multiple
// entry points are the same we could generate a single struct and then have
// this determine it's the same struct and just emit once.
bool emit_duplicate_functions = func->ancestor_entry_points().size() > 0 &&
has_referenced_var_needing_struct(func);
if (emit_duplicate_functions) {
for (const auto& ep_name : func->ancestor_entry_points()) {
if (!EmitFunctionInternal(out, func, emit_duplicate_functions, ep_name)) {
return false;
}
out << std::endl;
}
} else {
// Emit as non-duplicated
if (!EmitFunctionInternal(out, func, false, "")) {
return false;
}
out << std::endl;
}
return true;
}
bool GeneratorImpl::EmitFunctionInternal(std::ostream& out,
ast::Function* func,
bool emit_duplicate_functions,
const std::string& ep_name) {
auto name = func->name();
if (!EmitType(out, func->return_type(), "")) {
return false;
}
out << " ";
if (emit_duplicate_functions) {
name = generate_name(name + "_" + ep_name);
ep_func_name_remapped_[ep_name + "_" + func->name()] = name;
} else {
name = namer_.NameFor(name);
}
out << name << "(";
bool first = true;
// If we're emitting duplicate functions that means the function takes
// the stage_in or stage_out value from the entry point, emit them.
//
// We emit both of them if they're there regardless of if they're both used.
if (emit_duplicate_functions) {
auto in_it = ep_name_to_in_data_.find(ep_name);
if (in_it != ep_name_to_in_data_.end()) {
out << "in " << in_it->second.struct_name << " "
<< in_it->second.var_name;
first = false;
}
auto outit = ep_name_to_out_data_.find(ep_name);
if (outit != ep_name_to_out_data_.end()) {
if (!first) {
out << ", ";
}
out << "out " << outit->second.struct_name << " "
<< outit->second.var_name;
first = false;
}
}
for (auto* v : func->params()) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitType(out, v->type(), v->name())) {
return false;
}
// Array name is output as part of the type
if (!v->type()->IsArray()) {
out << " " << v->name();
}
}
out << ") ";
current_ep_name_ = ep_name;
if (!EmitBlockAndNewline(out, func->body())) {
return false;
}
current_ep_name_ = "";
return true;
}
bool GeneratorImpl::EmitEntryPointData(
std::ostream& out,
ast::Function* func,
std::unordered_set<std::string>& emitted_globals) {
std::vector<std::pair<ast::Variable*, ast::VariableDecoration*>> in_variables;
std::vector<std::pair<ast::Variable*, ast::VariableDecoration*>> outvariables;
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
auto* deco = data.second;
if (var->storage_class() == ast::StorageClass::kInput) {
in_variables.push_back({var, deco});
} else if (var->storage_class() == ast::StorageClass::kOutput) {
outvariables.push_back({var, deco});
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
auto* deco = data.second;
if (var->storage_class() == ast::StorageClass::kInput) {
in_variables.push_back({var, deco});
} else if (var->storage_class() == ast::StorageClass::kOutput) {
outvariables.push_back({var, deco});
}
}
bool emitted_uniform = false;
for (auto data : func->referenced_uniform_variables()) {
auto* var = data.first;
// TODO(dsinclair): We're using the binding to make up the buffer number but
// we should instead be using a provided mapping that uses both buffer and
// set. https://bugs.chromium.org/p/tint/issues/detail?id=104
auto* binding = data.second.binding;
if (binding == nullptr) {
error_ = "unable to find binding information for uniform: " + var->name();
return false;
}
// auto* set = data.second.set;
// If the global has already been emitted we skip it, it's been emitted by
// a previous entry point.
if (emitted_globals.count(var->name()) != 0) {
continue;
}
emitted_globals.insert(var->name());
auto* type = var->type()->UnwrapIfNeeded();
if (type->IsStruct()) {
auto* strct = type->AsStruct();
out << "ConstantBuffer<" << strct->name() << "> " << var->name()
<< " : register(b" << binding->value() << ");" << std::endl;
} else {
// TODO(dsinclair): There is outstanding spec work to require all uniform
// buffers to be [[block]] decorated, which means structs. This is
// currently not the case, so this code handles the cases where the data
// is not a block.
// Relevant: https://github.com/gpuweb/gpuweb/issues/1004
// https://github.com/gpuweb/gpuweb/issues/1008
out << "cbuffer : register(b" << binding->value() << ") {" << std::endl;
increment_indent();
make_indent(out);
if (!EmitType(out, type, "")) {
return false;
}
out << " " << var->name() << ";" << std::endl;
decrement_indent();
out << "};" << std::endl;
}
emitted_uniform = true;
}
if (emitted_uniform) {
out << std::endl;
}
bool emitted_storagebuffer = false;
for (auto data : func->referenced_storagebuffer_variables()) {
auto* var = data.first;
auto* binding = data.second.binding;
// If the global has already been emitted we skip it, it's been emitted by
// a previous entry point.
if (emitted_globals.count(var->name()) != 0) {
continue;
}
emitted_globals.insert(var->name());
if (!var->type()->IsAccessControl()) {
error_ = "access control type required for storage buffer";
return false;
}
auto* ac = var->type()->AsAccessControl();
if (ac->IsReadWrite()) {
out << "RW";
}
out << "ByteAddressBuffer " << var->name() << " : register(u"
<< binding->value() << ");" << std::endl;
emitted_storagebuffer = true;
}
if (emitted_storagebuffer) {
out << std::endl;
}
if (!in_variables.empty()) {
auto in_struct_name =
generate_name(func->name() + "_" + kInStructNameSuffix);
auto in_var_name = generate_name(kTintStructInVarPrefix);
ep_name_to_in_data_[func->name()] = {in_struct_name, in_var_name};
make_indent(out);
out << "struct " << in_struct_name << " {" << std::endl;
increment_indent();
for (auto& data : in_variables) {
auto* var = data.first;
auto* deco = data.second;
make_indent(out);
if (!EmitType(out, var->type(), var->name())) {
return false;
}
out << " " << var->name() << " : ";
if (deco->IsLocation()) {
if (func->pipeline_stage() == ast::PipelineStage::kCompute) {
error_ = "invalid location variable for pipeline stage";
return false;
}
out << "TEXCOORD" << deco->AsLocation()->value();
} else if (deco->IsBuiltin()) {
auto attr = builtin_to_attribute(deco->AsBuiltin()->value());
if (attr.empty()) {
error_ = "unsupported builtin";
return false;
}
out << attr;
} else {
error_ = "unsupported variable decoration for entry point output";
return false;
}
out << ";" << std::endl;
}
decrement_indent();
make_indent(out);
out << "};" << std::endl << std::endl;
}
if (!outvariables.empty()) {
auto outstruct_name =
generate_name(func->name() + "_" + kOutStructNameSuffix);
auto outvar_name = generate_name(kTintStructOutVarPrefix);
ep_name_to_out_data_[func->name()] = {outstruct_name, outvar_name};
make_indent(out);
out << "struct " << outstruct_name << " {" << std::endl;
increment_indent();
for (auto& data : outvariables) {
auto* var = data.first;
auto* deco = data.second;
make_indent(out);
if (!EmitType(out, var->type(), var->name())) {
return false;
}
out << " " << var->name() << " : ";
if (deco->IsLocation()) {
auto loc = deco->AsLocation()->value();
if (func->pipeline_stage() == ast::PipelineStage::kVertex) {
out << "TEXCOORD" << loc;
} else if (func->pipeline_stage() == ast::PipelineStage::kFragment) {
out << "SV_Target" << loc << "";
} else {
error_ = "invalid location variable for pipeline stage";
return false;
}
} else if (deco->IsBuiltin()) {
auto attr = builtin_to_attribute(deco->AsBuiltin()->value());
if (attr.empty()) {
error_ = "unsupported builtin";
return false;
}
out << attr;
} else {
error_ = "unsupported variable decoration for entry point output";
return false;
}
out << ";" << std::endl;
}
decrement_indent();
make_indent(out);
out << "};" << std::endl << std::endl;
}
return true;
}
std::string GeneratorImpl::builtin_to_attribute(ast::Builtin builtin) const {
switch (builtin) {
case ast::Builtin::kPosition:
return "SV_Position";
case ast::Builtin::kVertexIdx:
return "SV_VertexID";
case ast::Builtin::kInstanceIdx:
return "SV_InstanceID";
case ast::Builtin::kFrontFacing:
return "SV_IsFrontFacing";
case ast::Builtin::kFragCoord:
return "SV_Position";
case ast::Builtin::kFragDepth:
return "SV_Depth";
case ast::Builtin::kLocalInvocationId:
return "SV_GroupThreadID";
case ast::Builtin::kLocalInvocationIdx:
return "SV_GroupIndex";
case ast::Builtin::kGlobalInvocationId:
return "SV_DispatchThreadID";
default:
break;
}
return "";
}
bool GeneratorImpl::EmitEntryPointFunction(std::ostream& out,
ast::Function* func) {
make_indent(out);
current_ep_name_ = func->name();
if (func->pipeline_stage() == ast::PipelineStage::kCompute) {
uint32_t x = 0;
uint32_t y = 0;
uint32_t z = 0;
std::tie(x, y, z) = func->workgroup_size();
out << "[numthreads(" << std::to_string(x) << ", " << std::to_string(y)
<< ", " << std::to_string(z) << ")]" << std::endl;
make_indent(out);
}
auto outdata = ep_name_to_out_data_.find(current_ep_name_);
bool has_outdata = outdata != ep_name_to_out_data_.end();
if (has_outdata) {
out << outdata->second.struct_name;
} else {
out << "void";
}
out << " " << namer_.NameFor(current_ep_name_) << "(";
auto in_data = ep_name_to_in_data_.find(current_ep_name_);
if (in_data != ep_name_to_in_data_.end()) {
out << in_data->second.struct_name << " " << in_data->second.var_name;
}
out << ") {" << std::endl;
increment_indent();
if (has_outdata) {
make_indent(out);
out << outdata->second.struct_name << " " << outdata->second.var_name << ";"
<< std::endl;
}
generating_entry_point_ = true;
for (auto* s : *func->body()) {
if (!EmitStatement(out, s)) {
return false;
}
}
generating_entry_point_ = false;
decrement_indent();
make_indent(out);
out << "}" << std::endl;
current_ep_name_ = "";
return true;
}
bool GeneratorImpl::EmitLiteral(std::ostream& out, ast::Literal* lit) {
if (lit->IsBool()) {
out << (lit->AsBool()->IsTrue() ? "true" : "false");
} else if (lit->IsFloat()) {
out << FloatToString(lit->AsFloat()->value()) << "f";
} else if (lit->IsSint()) {
out << lit->AsSint()->value();
} else if (lit->IsUint()) {
out << lit->AsUint()->value() << "u";
} else {
error_ = "unknown literal type";
return false;
}
return true;
}
bool GeneratorImpl::EmitZeroValue(std::ostream& out, ast::type::Type* type) {
if (type->IsBool()) {
out << "false";
} else if (type->IsF32()) {
out << "0.0f";
} else if (type->IsI32()) {
out << "0";
} else if (type->IsU32()) {
out << "0u";
} else if (type->IsVector()) {
return EmitZeroValue(out, type->AsVector()->type());
} else if (type->IsMatrix()) {
auto* mat = type->AsMatrix();
for (uint32_t i = 0; i < (mat->rows() * mat->columns()); i++) {
if (i != 0) {
out << ", ";
}
if (!EmitZeroValue(out, mat->type())) {
return false;
}
}
} else {
error_ = "Invalid type for zero emission: " + type->type_name();
return false;
}
return true;
}
bool GeneratorImpl::EmitLoop(std::ostream& out, ast::LoopStatement* stmt) {
loop_emission_counter_++;
std::string guard = namer_.NameFor("tint_hlsl_is_first_" +
std::to_string(loop_emission_counter_));
if (stmt->has_continuing()) {
make_indent(out);
// Continuing variables get their own scope.
out << "{" << std::endl;
increment_indent();
make_indent(out);
out << "bool " << guard << " = true;" << std::endl;
// A continuing block may use variables declared in the method body. As a
// first pass, if we have a continuing, we pull all declarations outside
// the for loop into the continuing scope. Then, the variable declarations
// will be turned into assignments.
for (auto* s : *stmt->body()) {
if (!s->IsVariableDecl()) {
continue;
}
if (!EmitVariable(out, s->AsVariableDecl()->variable(), true)) {
return false;
}
}
}
make_indent(out);
out << "for(;;) {" << std::endl;
increment_indent();
if (stmt->has_continuing()) {
make_indent(out);
out << "if (!" << guard << ") ";
if (!EmitBlockAndNewline(out, stmt->continuing())) {
return false;
}
make_indent(out);
out << guard << " = false;" << std::endl;
out << std::endl;
}
for (auto* s : *(stmt->body())) {
// If we have a continuing block we've already emitted the variable
// declaration before the loop, so treat it as an assignment.
if (s->IsVariableDecl() && stmt->has_continuing()) {
make_indent(out);
auto* var = s->AsVariableDecl()->variable();
std::ostringstream pre;
std::ostringstream constructor_out;
if (var->constructor() != nullptr) {
if (!EmitExpression(pre, constructor_out, var->constructor())) {
return false;
}
}
out << pre.str();
out << var->name() << " = ";
if (var->constructor() != nullptr) {
out << constructor_out.str();
} else {
if (!EmitZeroValue(out, var->type())) {
return false;
}
}
out << ";" << std::endl;
continue;
}
if (!EmitStatement(out, s)) {
return false;
}
}
decrement_indent();
make_indent(out);
out << "}" << std::endl;
// Close the scope for any continuing variables.
if (stmt->has_continuing()) {
decrement_indent();
make_indent(out);
out << "}" << std::endl;
}
return true;
}
std::string GeneratorImpl::generate_storage_buffer_index_expression(
std::ostream& pre,
ast::Expression* expr) {
std::ostringstream out;
bool first = true;
for (;;) {
if (expr->IsIdentifier()) {
break;
}
if (!first) {
out << " + ";
}
first = false;
if (expr->IsMemberAccessor()) {
auto* mem = expr->AsMemberAccessor();
auto* res_type = mem->structure()->result_type()->UnwrapAll();
if (res_type->IsStruct()) {
auto* str_type = res_type->AsStruct()->impl();
auto* str_member = str_type->get_member(mem->member()->name());
if (!str_member->has_offset_decoration()) {
error_ = "missing offset decoration for struct member";
return "";
}
out << str_member->offset();
} else if (res_type->IsVector()) {
// This must be a single element swizzle if we've got a vector at this
// point.
if (mem->member()->name().size() != 1) {
error_ =
"Encountered multi-element swizzle when should have only one "
"level";
return "";
}
// TODO(dsinclair): All our types are currently 4 bytes (f32, i32, u32)
// so this is assuming 4. This will need to be fixed when we get f16 or
// f64 types.
out << "(4 * " << convert_swizzle_to_index(mem->member()->name())
<< ")";
} else {
error_ =
"Invalid result type for member accessor: " + res_type->type_name();
return "";
}
expr = mem->structure();
} else if (expr->IsArrayAccessor()) {
auto* ary = expr->AsArrayAccessor();
auto* ary_type = ary->array()->result_type()->UnwrapAll();
out << "(";
if (ary_type->IsArray()) {
out << ary_type->AsArray()->array_stride();
} else if (ary_type->IsVector()) {
// TODO(dsinclair): This is a hack. Our vectors can only be f32, i32
// or u32 which are all 4 bytes. When we get f16 or other types we'll
// have to ask the type for the byte size.
out << "4";
} else if (ary_type->IsMatrix()) {
auto* mat = ary_type->AsMatrix();
if (mat->columns() == 2) {
out << "8";
} else {
out << "16";
}
} else {
error_ = "Invalid array type in storage buffer access";
return "";
}
out << " * ";
if (!EmitExpression(pre, out, ary->idx_expr())) {
return "";
}
out << ")";
expr = ary->array();
} else {
error_ = "error emitting storage buffer access";
return "";
}
}
return out.str();
}
// TODO(dsinclair): This currently only handles loading of 4, 8, 12 or 16 byte
// members. If we need to support larger we'll need to do the loading into
// chunks.
//
// TODO(dsinclair): Need to support loading through a pointer. The pointer is
// just a memory address in the storage buffer, so need to do the correct
// calculation.
bool GeneratorImpl::EmitStorageBufferAccessor(std::ostream& pre,
std::ostream& out,
ast::Expression* expr,
ast::Expression* rhs) {
auto* result_type = expr->result_type()->UnwrapAll();
bool is_store = rhs != nullptr;
std::string access_method = is_store ? "Store" : "Load";
if (result_type->IsVector()) {
access_method += std::to_string(result_type->AsVector()->size());
} else if (result_type->IsMatrix()) {
access_method += std::to_string(result_type->AsMatrix()->rows());
}
// If we aren't storing then we need to put in the outer cast.
if (!is_store) {
if (result_type->is_float_scalar_or_vector() || result_type->IsMatrix()) {
out << "asfloat(";
} else if (result_type->is_signed_scalar_or_vector()) {
out << "asint(";
} else if (result_type->is_unsigned_scalar_or_vector()) {
out << "asuint(";
}
}
auto buffer_name = get_buffer_name(expr);
if (buffer_name.empty()) {
error_ = "error emitting storage buffer access";
return false;
}
auto idx = generate_storage_buffer_index_expression(pre, expr);
if (idx.empty()) {
return false;
}
if (result_type->IsMatrix()) {
auto* mat = result_type->AsMatrix();
// TODO(dsinclair): This is assuming 4 byte elements. Will need to be fixed
// if we get matrixes of f16 or f64.
uint32_t stride = mat->rows() == 2 ? 8 : 16;
if (is_store) {
if (!EmitType(out, mat, "")) {
return false;
}
auto name = generate_name(kTempNamePrefix);
out << " " << name << " = ";
if (!EmitExpression(pre, out, rhs)) {
return false;
}
out << ";" << std::endl;
for (uint32_t i = 0; i < mat->columns(); i++) {
if (i > 0) {
out << ";" << std::endl;
}
make_indent(out);
out << buffer_name << "." << access_method << "(" << idx << " + "
<< (i * stride) << ", asuint(" << name << "[" << i << "]))";
}
return true;
}
out << "uint" << mat->rows() << "x" << mat->columns() << "(";
for (uint32_t i = 0; i < mat->columns(); i++) {
if (i != 0) {
out << ", ";
}
out << buffer_name << "." << access_method << "(" << idx << " + "
<< (i * stride) << ")";
}
// Close the matrix type and outer cast
out << "))";
return true;
}
out << buffer_name << "." << access_method << "(" << idx;
if (is_store) {
out << ", asuint(";
if (!EmitExpression(pre, out, rhs)) {
return false;
}
out << ")";
}
out << ")";
// Close the outer cast.
if (!is_store) {
out << ")";
}
return true;
}
bool GeneratorImpl::is_storage_buffer_access(
ast::ArrayAccessorExpression* expr) {
// We only care about array so we can get to the next part of the expression.
// If it isn't an array or a member accessor we can stop looking as it won't
// be a storage buffer.
auto* ary = expr->array();
if (ary->IsMemberAccessor()) {
return is_storage_buffer_access(ary->AsMemberAccessor());
} else if (ary->IsArrayAccessor()) {
return is_storage_buffer_access(ary->AsArrayAccessor());
}
return false;
}
bool GeneratorImpl::is_storage_buffer_access(
ast::MemberAccessorExpression* expr) {
auto* structure = expr->structure();
auto* data_type = structure->result_type()->UnwrapAll();
// If the data is a multi-element swizzle then we will not load the swizzle
// portion through the Load command.
if (data_type->IsVector() && expr->member()->name().size() > 1) {
return false;
}
// Check if this is a storage buffer variable
if (structure->IsIdentifier()) {
auto* ident = expr->structure()->AsIdentifier();
ast::Variable* var = nullptr;
if (!global_variables_.get(ident->name(), &var)) {
return false;
}
return var->storage_class() == ast::StorageClass::kStorageBuffer;
} else if (structure->IsMemberAccessor()) {
return is_storage_buffer_access(structure->AsMemberAccessor());
} else if (structure->IsArrayAccessor()) {
return is_storage_buffer_access(structure->AsArrayAccessor());
}
// Technically I don't think this is possible, but if we don't have a struct
// or array accessor then we can't have a storage buffer I believe.
return false;
}
bool GeneratorImpl::EmitMemberAccessor(std::ostream& pre,
std::ostream& out,
ast::MemberAccessorExpression* expr) {
// Look for storage buffer accesses as we have to convert them into Load
// expressions. Stores will be identified in the assignment emission and a
// member accessor store of a storage buffer will not get here.
if (is_storage_buffer_access(expr)) {
return EmitStorageBufferAccessor(pre, out, expr, nullptr);
}
if (!EmitExpression(pre, out, expr->structure())) {
return false;
}
out << ".";
return EmitExpression(pre, out, expr->member());
}
bool GeneratorImpl::EmitReturn(std::ostream& out, ast::ReturnStatement* stmt) {
make_indent(out);
if (generating_entry_point_) {
out << "return";
auto outdata = ep_name_to_out_data_.find(current_ep_name_);
if (outdata != ep_name_to_out_data_.end()) {
out << " " << outdata->second.var_name;
}
} else if (stmt->has_value()) {
std::ostringstream pre;
std::ostringstream ret_out;
if (!EmitExpression(pre, ret_out, stmt->value())) {
return false;
}
out << pre.str();
out << "return " << ret_out.str();
} else {
out << "return";
}
out << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitStatement(std::ostream& out, ast::Statement* stmt) {
if (stmt->IsAssign()) {
return EmitAssign(out, stmt->AsAssign());
}
if (stmt->IsBlock()) {
return EmitIndentedBlockAndNewline(out, stmt->AsBlock());
}
if (stmt->IsBreak()) {
return EmitBreak(out, stmt->AsBreak());
}
if (stmt->IsCall()) {
make_indent(out);
std::ostringstream pre;
std::ostringstream call_out;
if (!EmitCall(pre, call_out, stmt->AsCall()->expr())) {
return false;
}
out << pre.str();
out << call_out.str() << ";" << std::endl;
return true;
}
if (stmt->IsContinue()) {
return EmitContinue(out, stmt->AsContinue());
}
if (stmt->IsDiscard()) {
return EmitDiscard(out, stmt->AsDiscard());
}
if (stmt->IsFallthrough()) {
make_indent(out);
out << "/* fallthrough */" << std::endl;
return true;
}
if (stmt->IsIf()) {
return EmitIf(out, stmt->AsIf());
}
if (stmt->IsLoop()) {
return EmitLoop(out, stmt->AsLoop());
}
if (stmt->IsReturn()) {
return EmitReturn(out, stmt->AsReturn());
}
if (stmt->IsSwitch()) {
return EmitSwitch(out, stmt->AsSwitch());
}
if (stmt->IsVariableDecl()) {
return EmitVariable(out, stmt->AsVariableDecl()->variable(), false);
}
error_ = "unknown statement type: " + stmt->str();
return false;
}
bool GeneratorImpl::EmitSwitch(std::ostream& out, ast::SwitchStatement* stmt) {
make_indent(out);
std::ostringstream pre;
std::ostringstream cond;
if (!EmitExpression(pre, cond, stmt->condition())) {
return false;
}
out << pre.str();
out << "switch(" << cond.str() << ") {" << std::endl;
increment_indent();
for (auto* s : stmt->body()) {
if (!EmitCase(out, s)) {
return false;
}
}
decrement_indent();
make_indent(out);
out << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitType(std::ostream& out,
ast::type::Type* type,
const std::string& name) {
if (type->IsAlias()) {
auto* alias = type->AsAlias();
out << namer_.NameFor(alias->name());
} else if (type->IsArray()) {
auto* ary = type->AsArray();
ast::type::Type* base_type = ary;
std::vector<uint32_t> sizes;
while (base_type->IsArray()) {
if (base_type->AsArray()->IsRuntimeArray()) {
// TODO(dsinclair): Support runtime arrays
// https://bugs.chromium.org/p/tint/issues/detail?id=185
error_ = "runtime array not supported yet.";
return false;
} else {
sizes.push_back(base_type->AsArray()->size());
}
base_type = base_type->AsArray()->type();
}
if (!EmitType(out, base_type, "")) {
return false;
}
if (!name.empty()) {
out << " " << namer_.NameFor(name);
}
for (uint32_t size : sizes) {
out << "[" << size << "]";
}
} else if (type->IsBool()) {
out << "bool";
} else if (type->IsF32()) {
out << "float";
} else if (type->IsI32()) {
out << "int";
} else if (type->IsMatrix()) {
auto* mat = type->AsMatrix();
if (!EmitType(out, mat->type(), "")) {
return false;
}
out << mat->rows() << "x" << mat->columns();
} else if (type->IsPointer()) {
// TODO(dsinclair): What do we do with pointers in HLSL?
// https://bugs.chromium.org/p/tint/issues/detail?id=183
error_ = "pointers not supported in HLSL";
return false;
} else if (type->IsSampler()) {
auto* sampler = type->AsSampler();
out << "Sampler";
if (sampler->IsComparison()) {
out << "Comparison";
}
out << "State";
} else if (type->IsStruct()) {
out << type->AsStruct()->name();
} else if (type->IsTexture()) {
auto* tex = type->AsTexture();
if (tex->IsStorage()) {
out << "RW";
}
out << "Texture";
switch (tex->dim()) {
case ast::type::TextureDimension::k1d:
out << "1D";
break;
case ast::type::TextureDimension::k1dArray:
out << "1DArray";
break;
case ast::type::TextureDimension::k2d:
out << "2D";
break;
case ast::type::TextureDimension::k2dArray:
out << "2DArray";
break;
case ast::type::TextureDimension::k3d:
out << "3D";
break;
case ast::type::TextureDimension::kCube:
out << "Cube";
break;
case ast::type::TextureDimension::kCubeArray:
out << "CubeArray";
break;
default:
error_ = "Invalid texture dimensions";
return false;
}
} else if (type->IsU32()) {
out << "uint";
} else if (type->IsVector()) {
auto* vec = type->AsVector();
auto size = vec->size();
if (vec->type()->IsF32() && size >= 1 && size <= 4) {
out << "float" << size;
} else if (vec->type()->IsI32() && size >= 1 && size <= 4) {
out << "int" << size;
} else if (vec->type()->IsU32() && size >= 1 && size <= 4) {
out << "uint" << size;
} else {
out << "vector<";
if (!EmitType(out, vec->type(), "")) {
return false;
}
out << ", " << size << ">";
}
} else if (type->IsVoid()) {
out << "void";
} else {
error_ = "unknown type in EmitType";
return false;
}
return true;
}
bool GeneratorImpl::EmitStructType(std::ostream& out,
const ast::type::StructType* str,
const std::string& name) {
// TODO(dsinclair): Block decoration?
// if (str->impl()->decoration() != ast::StructDecoration::kNone) {
// }
out << "struct " << name << " {" << std::endl;
increment_indent();
for (auto* mem : str->impl()->members()) {
make_indent(out);
// TODO(dsinclair): Handle [[offset]] annotation on structs
// https://bugs.chromium.org/p/tint/issues/detail?id=184
if (!EmitType(out, mem->type(), mem->name())) {
return false;
}
// Array member name will be output with the type
if (!mem->type()->IsArray()) {
out << " " << namer_.NameFor(mem->name());
}
out << ";" << std::endl;
}
decrement_indent();
make_indent(out);
out << "};" << std::endl;
return true;
}
bool GeneratorImpl::EmitUnaryOp(std::ostream& pre,
std::ostream& out,
ast::UnaryOpExpression* expr) {
switch (expr->op()) {
case ast::UnaryOp::kNot:
out << "!";
break;
case ast::UnaryOp::kNegation:
out << "-";
break;
}
out << "(";
if (!EmitExpression(pre, out, expr->expr())) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitVariable(std::ostream& out,
ast::Variable* var,
bool skip_constructor) {
make_indent(out);
// TODO(dsinclair): Handle variable decorations
if (var->IsDecorated()) {
error_ = "Variable decorations are not handled yet";
return false;
}
std::ostringstream constructor_out;
if (!skip_constructor && var->constructor() != nullptr) {
constructor_out << " = ";
std::ostringstream pre;
if (!EmitExpression(pre, constructor_out, var->constructor())) {
return false;
}
out << pre.str();
}
if (var->is_const()) {
out << "const ";
}
if (!EmitType(out, var->type(), var->name())) {
return false;
}
if (!var->type()->IsArray()) {
out << " " << var->name();
}
out << constructor_out.str() << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitProgramConstVariable(std::ostream& out,
const ast::Variable* var) {
make_indent(out);
if (var->IsDecorated() && !var->AsDecorated()->HasConstantIdDecoration()) {
error_ = "Decorated const values not valid";
return false;
}
if (!var->is_const()) {
error_ = "Expected a const value";
return false;
}
std::ostringstream constructor_out;
if (var->constructor() != nullptr) {
std::ostringstream pre;
if (!EmitExpression(pre, constructor_out, var->constructor())) {
return false;
}
out << pre.str();
}
if (var->IsDecorated() && var->AsDecorated()->HasConstantIdDecoration()) {
auto const_id = var->AsDecorated()->constant_id();
out << "#ifndef WGSL_SPEC_CONSTANT_" << const_id << std::endl;
if (var->constructor() != nullptr) {
out << "#define WGSL_SPEC_CONSTANT_" << const_id << " "
<< constructor_out.str() << std::endl;
} else {
out << "#error spec constant required for constant id " << const_id
<< std::endl;
}
out << "#endif" << std::endl;
out << "static const ";
if (!EmitType(out, var->type(), var->name())) {
return false;
}
out << " " << var->name() << " = WGSL_SPEC_CONSTANT_" << const_id << ";"
<< std::endl;
out << "#undef WGSL_SPEC_CONSTANT_" << const_id << std::endl;
} else {
out << "static const ";
if (!EmitType(out, var->type(), var->name())) {
return false;
}
if (!var->type()->IsArray()) {
out << " " << var->name();
}
if (var->constructor() != nullptr) {
out << " = " << constructor_out.str();
}
out << ";" << std::endl;
}
return true;
}
} // namespace hlsl
} // namespace writer
} // namespace tint