blob: df03435317d2716d5cc92dc26ed57d09757f3844 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gmock/gmock.h"
#include "src/reader/spirv/function.h"
#include "src/reader/spirv/parser_impl_test_helper.h"
#include "src/reader/spirv/spirv_tools_helpers_test.h"
#include "src/utils/string.h"
namespace tint {
namespace reader {
namespace spirv {
namespace {
using SpvModuleScopeVarParserTest = SpvParserTest;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::HasSubstr;
using ::testing::Not;
std::string Preamble() {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
)";
}
std::string FragMain() {
return R"(
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
)";
}
std::string MainBody() {
return R"(
%main = OpFunction %void None %voidfn
%main_entry = OpLabel
OpReturn
OpFunctionEnd
)";
}
std::string CommonCapabilities() {
return R"(
OpCapability Shader
OpCapability SampleRateShading
OpMemoryModel Logical Simple
)";
}
std::string CommonTypes() {
return R"(
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%bool = OpTypeBool
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_bool = OpTypePointer Private %bool
%ptr_float = OpTypePointer Private %float
%ptr_uint = OpTypePointer Private %uint
%ptr_int = OpTypePointer Private %int
%true = OpConstantTrue %bool
%false = OpConstantFalse %bool
%float_0 = OpConstant %float 0.0
%float_1p5 = OpConstant %float 1.5
%uint_1 = OpConstant %uint 1
%int_m1 = OpConstant %int -1
%int_14 = OpConstant %int 14
%uint_2 = OpConstant %uint 2
%v2bool = OpTypeVector %bool 2
%v2uint = OpTypeVector %uint 2
%v2int = OpTypeVector %int 2
%v2float = OpTypeVector %float 2
%v4float = OpTypeVector %float 4
%m3v2float = OpTypeMatrix %v2float 3
%arr2uint = OpTypeArray %uint %uint_2
)";
}
std::string StructTypes() {
return R"(
%strct = OpTypeStruct %uint %float %arr2uint
)";
}
// Returns layout annotations for types in StructTypes()
std::string CommonLayout() {
return R"(
OpMemberDecorate %strct 0 Offset 0
OpMemberDecorate %strct 1 Offset 4
OpMemberDecorate %strct 2 Offset 8
OpDecorate %arr2uint ArrayStride 4
)";
}
TEST_F(SpvModuleScopeVarParserTest, NoVar) {
auto assembly = Preamble() + FragMain() + CommonTypes() + MainBody();
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule()) << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_ast = test::ToString(p->program());
EXPECT_THAT(module_ast, Not(HasSubstr("Variable"))) << module_ast;
}
TEST_F(SpvModuleScopeVarParserTest, BadStorageClass_NotAWebGPUStorageClass) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%ptr = OpTypePointer CrossWorkgroup %float
%52 = OpVariable %ptr CrossWorkgroup
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildInternalModule());
// Normally we should run ParserImpl::RegisterTypes before emitting
// variables. But defensive coding in EmitModuleScopeVariables lets
// us catch this error.
EXPECT_FALSE(p->EmitModuleScopeVariables()) << p->error();
EXPECT_THAT(p->error(), HasSubstr("unknown SPIR-V storage class: 5"));
}
TEST_F(SpvModuleScopeVarParserTest, BadStorageClass_Function) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%ptr = OpTypePointer Function %float
%52 = OpVariable %ptr Function
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildInternalModule());
// Normally we should run ParserImpl::RegisterTypes before emitting
// variables. But defensive coding in EmitModuleScopeVariables lets
// us catch this error.
EXPECT_FALSE(p->EmitModuleScopeVariables()) << p->error();
EXPECT_THAT(p->error(),
HasSubstr("invalid SPIR-V storage class 7 for module scope "
"variable: %52 = OpVariable %3 Function"));
}
TEST_F(SpvModuleScopeVarParserTest, BadPointerType) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%fn_ty = OpTypeFunction %float
%3 = OpTypePointer Private %fn_ty
%52 = OpVariable %3 Private
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildInternalModule());
// Normally we should run ParserImpl::RegisterTypes before emitting
// variables. But defensive coding in EmitModuleScopeVariables lets
// us catch this error.
EXPECT_FALSE(p->EmitModuleScopeVariables());
EXPECT_THAT(p->error(), HasSubstr("internal error: failed to register Tint "
"AST type for SPIR-V type with ID: 3"));
}
TEST_F(SpvModuleScopeVarParserTest, NonPointerType) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%5 = OpTypeFunction %float
%3 = OpTypePointer Private %5
%52 = OpVariable %float Private
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildInternalModule());
EXPECT_FALSE(p->RegisterTypes());
EXPECT_THAT(
p->error(),
HasSubstr("SPIR-V pointer type with ID 3 has invalid pointee type 5"));
}
TEST_F(SpvModuleScopeVarParserTest, AnonWorkgroupVar) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%ptr = OpTypePointer Workgroup %float
%52 = OpVariable %ptr Workgroup
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<workgroup> x_52 : f32;"));
}
TEST_F(SpvModuleScopeVarParserTest, NamedWorkgroupVar) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %52 "the_counter"
%float = OpTypeFloat 32
%ptr = OpTypePointer Workgroup %float
%52 = OpVariable %ptr Workgroup
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<workgroup> the_counter : f32;"));
}
TEST_F(SpvModuleScopeVarParserTest, PrivateVar) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %52 "my_own_private_idaho"
%float = OpTypeFloat 32
%ptr = OpTypePointer Private %float
%52 = OpVariable %ptr Private
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> my_own_private_idaho : f32;"));
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinVertexIndex) {
// This is the simple case for the vertex_index builtin,
// where the SPIR-V uses the same store type as in WGSL.
// See later for tests where the SPIR-V store type is signed
// integer, as in GLSL.
auto p = parser(test::Assemble(Preamble() + R"(
OpEntryPoint Vertex %main "main" %52 %position
OpName %position "position"
OpDecorate %position BuiltIn Position
OpDecorate %52 BuiltIn VertexIndex
%uint = OpTypeInt 32 0
%ptr = OpTypePointer Input %uint
%52 = OpVariable %ptr Input
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%posty = OpTypePointer Output %v4float
%position = OpVariable %posty Output
)" + MainBody()));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_52 : u32;"));
}
std::string PerVertexPreamble() {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1
OpDecorate %10 Block
OpMemberDecorate %10 0 BuiltIn Position
OpMemberDecorate %10 1 BuiltIn PointSize
OpMemberDecorate %10 2 BuiltIn ClipDistance
OpMemberDecorate %10 3 BuiltIn CullDistance
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%12 = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%arr = OpTypeArray %float %uint_1
%10 = OpTypeStruct %12 %float %arr %arr
%11 = OpTypePointer Output %10
%1 = OpVariable %11 Output
)";
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPosition_StoreWholeStruct_NotSupported) {
// Glslang does not generate this code pattern.
const std::string assembly = PerVertexPreamble() + R"(
%nil = OpConstantNull %10 ; the whole struct
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpStore %1 %nil ; store the whole struct
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule()) << assembly;
EXPECT_THAT(p->error(), Eq("storing to the whole per-vertex structure is not "
"supported: OpStore %1 %13"))
<< p->error();
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPosition_IntermediateWholeStruct_NotSupported) {
const std::string assembly = PerVertexPreamble() + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%1000 = OpUndef %10
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule()) << assembly;
EXPECT_THAT(p->error(), Eq("operations producing a per-vertex structure are "
"not supported: %1000 = OpUndef %10"))
<< p->error();
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPosition_IntermediatePtrWholeStruct_NotSupported) {
const std::string assembly = PerVertexPreamble() + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%1000 = OpCopyObject %11 %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(),
Eq("operations producing a pointer to a per-vertex structure are "
"not supported: %1000 = OpCopyObject %11 %1"))
<< p->error();
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPosition_StorePosition) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_v4float = OpTypePointer Output %12
%nil = OpConstantNull %12
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr_v4float %1 %uint_0 ; address of the Position member
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("gl_Position = vec4<f32>(0.0, 0.0, 0.0, 0.0);"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPosition_StorePosition_PerVertexStructOutOfOrderDecl) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1
; scramble the member indices
OpMemberDecorate %10 0 BuiltIn ClipDistance
OpMemberDecorate %10 1 BuiltIn CullDistance
OpMemberDecorate %10 2 BuiltIn Position
OpMemberDecorate %10 3 BuiltIn PointSize
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%12 = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%uint_2 = OpConstant %uint 2
%arr = OpTypeArray %float %uint_1
%10 = OpTypeStruct %arr %arr %12 %float
%11 = OpTypePointer Output %10
%1 = OpVariable %11 Output
%ptr_v4float = OpTypePointer Output %12
%nil = OpConstantNull %12
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr_v4float %1 %uint_2 ; address of the Position member
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("gl_Position = vec4<f32>(0.0, 0.0, 0.0, 0.0);"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPosition_StorePositionMember_OneAccessChain) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr_float %1 %uint_0 %uint_1 ; address of the Position.y member
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("gl_Position.y = 0.0;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPosition_StorePositionMember_TwoAccessChain) {
// The algorithm is smart enough to collapse it down.
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %12
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_0 ; address of the Position member
%101 = OpAccessChain %ptr_float %100 %uint_1 ; address of the Position.y member
OpStore %101 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("gl_Position.y = 0.0;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_Write1_IsErased) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%one = OpConstant %float 1.0
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_1 ; address of the PointSize member
OpStore %100 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> gl_Position : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
gl_Position : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(gl_Position);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_WriteNon1_IsError) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%999 = OpConstant %float 2.0
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_1 ; address of the PointSize member
OpStore %100 %999
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(),
HasSubstr("cannot store a value other than constant 1.0 to "
"PointSize builtin: OpStore %100 %999"));
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_ReadReplaced) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%nil = OpConstantNull %12
%private_ptr = OpTypePointer Private %float
%900 = OpVariable %private_ptr Private
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_1 ; address of the PointSize member
%99 = OpLoad %float %100
OpStore %900 %99
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_900 : f32;
var<private> gl_Position : vec4<f32>;
fn main_1() {
x_900 = 1.0;
return;
}
struct main_out {
[[builtin(position)]]
gl_Position : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(gl_Position);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPointSize_WriteViaCopyObjectPriorAccess_Unsupported) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%nil = OpConstantNull %12
%main = OpFunction %void None %voidfn
%entry = OpLabel
%20 = OpCopyObject %11 %1
%100 = OpAccessChain %20 %1 %uint_1 ; address of the PointSize member
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule()) << p->error();
EXPECT_THAT(
p->error(),
HasSubstr("operations producing a pointer to a per-vertex structure are "
"not supported: %20 = OpCopyObject %11 %1"));
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPointSize_WriteViaCopyObjectPostAccessChainErased) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%one = OpConstant %float 1.0
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_1 ; address of the PointSize member
%101 = OpCopyObject %ptr %100
OpStore %101 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> gl_Position : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
gl_Position : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(gl_Position);
}
)") << module_str;
}
std::string LoosePointSizePreamble(std::string stage = "Vertex") {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint )" +
stage + R"( %500 "main" %1
)" + (stage == "Vertex" ? " %2 " : "") +
+(stage == "Fragment" ? "OpExecutionMode %500 OriginUpperLeft" : "") +
+(stage == "Vertex" ? " OpDecorate %2 BuiltIn Position " : "") +
R"(
OpDecorate %1 BuiltIn PointSize
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%11 = OpTypePointer Output %float
%1 = OpVariable %11 Output
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
)";
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_Loose_Write1_IsErased) {
const std::string assembly = LoosePointSizePreamble() + R"(
%ptr = OpTypePointer Output %float
%one = OpConstant %float 1.0
%500 = OpFunction %void None %voidfn
%entry = OpLabel
OpStore %1 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(x_2);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_Loose_WriteNon1_IsError) {
const std::string assembly = LoosePointSizePreamble() + R"(
%ptr = OpTypePointer Output %float
%999 = OpConstant %float 2.0
%500 = OpFunction %void None %voidfn
%entry = OpLabel
OpStore %1 %999
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(),
HasSubstr("cannot store a value other than constant 1.0 to "
"PointSize builtin: OpStore %1 %999"));
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPointSize_Loose_ReadReplaced_Vertex) {
const std::string assembly = LoosePointSizePreamble() + R"(
%ptr = OpTypePointer Private %float
%900 = OpVariable %ptr Private
%500 = OpFunction %void None %voidfn
%entry = OpLabel
%99 = OpLoad %float %1
OpStore %900 %99
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_2 : vec4<f32>;
var<private> x_900 : f32;
fn main_1() {
x_900 = 1.0;
return;
}
struct main_out {
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(x_2);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPointSize_Loose_ReadReplaced_Fragment) {
const std::string assembly = LoosePointSizePreamble("Fragment") + R"(
%ptr = OpTypePointer Private %float
%900 = OpVariable %ptr Private
%500 = OpFunction %void None %voidfn
%entry = OpLabel
%99 = OpLoad %float %1
OpStore %900 %99
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
// This example is invalid because you PointSize is not valid in Vulkan
// Fragment shaders.
EXPECT_FALSE(p->Parse());
EXPECT_FALSE(p->success());
EXPECT_THAT(p->error(), HasSubstr("VUID-PointSize-PointSize-04314"));
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPointSize_Loose_WriteViaCopyObjectPriorAccess_Erased) {
const std::string assembly = LoosePointSizePreamble() + R"(
%one = OpConstant %float 1.0
%500 = OpFunction %void None %voidfn
%entry = OpLabel
%20 = OpCopyObject %11 %1
%100 = OpAccessChain %11 %20
OpStore %100 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(x_2);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPointSize_Loose_WriteViaCopyObjectPostAccessChainErased) {
const std::string assembly = LoosePointSizePreamble() + R"(
%one = OpConstant %float 1.0
%500 = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %11 %1
%101 = OpCopyObject %11 %100
OpStore %101 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule()) << p->error();
EXPECT_TRUE(p->error().empty()) << p->error();
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(x_2);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinClipDistance_NotSupported) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%uint_2 = OpConstant %uint 2
%main = OpFunction %void None %voidfn
%entry = OpLabel
; address of the first entry in ClipDistance
%100 = OpAccessChain %ptr_float %1 %uint_2 %uint_0
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_EQ(p->error(),
"accessing per-vertex member 2 is not supported. Only Position is "
"supported, and PointSize is ignored");
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinCullDistance_NotSupported) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%uint_3 = OpConstant %uint 3
%main = OpFunction %void None %voidfn
%entry = OpLabel
; address of the first entry in CullDistance
%100 = OpAccessChain %ptr_float %1 %uint_3 %uint_0
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_EQ(p->error(),
"accessing per-vertex member 3 is not supported. Only Position is "
"supported, and PointSize is ignored");
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPerVertex_MemberIndex_NotConstant) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%main = OpFunction %void None %voidfn
%entry = OpLabel
%sum = OpIAdd %uint %uint_0 %uint_0
%100 = OpAccessChain %ptr_float %1 %sum
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(),
Eq("first index of access chain into per-vertex structure is not "
"a constant: %100 = OpAccessChain %13 %1 %16"));
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPerVertex_MemberIndex_NotConstantInteger) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%main = OpFunction %void None %voidfn
%entry = OpLabel
; nil is bad here!
%100 = OpAccessChain %ptr_float %1 %nil
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(),
Eq("first index of access chain into per-vertex structure is not "
"a constant integer: %100 = OpAccessChain %13 %1 %14"));
}
TEST_F(SpvModuleScopeVarParserTest, ScalarInitializers) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%1 = OpVariable %ptr_bool Private %true
%2 = OpVariable %ptr_bool Private %false
%3 = OpVariable %ptr_int Private %int_m1
%4 = OpVariable %ptr_uint Private %uint_1
%5 = OpVariable %ptr_float Private %float_1p5
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(var<private> x_1 : bool = true;
var<private> x_2 : bool = false;
var<private> x_3 : i32 = -1;
var<private> x_4 : u32 = 1u;
var<private> x_5 : f32 = 1.5;
)"));
}
TEST_F(SpvModuleScopeVarParserTest, ScalarNullInitializers) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%null_bool = OpConstantNull %bool
%null_int = OpConstantNull %int
%null_uint = OpConstantNull %uint
%null_float = OpConstantNull %float
%1 = OpVariable %ptr_bool Private %null_bool
%2 = OpVariable %ptr_int Private %null_int
%3 = OpVariable %ptr_uint Private %null_uint
%4 = OpVariable %ptr_float Private %null_float
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(var<private> x_1 : bool = false;
var<private> x_2 : i32 = 0;
var<private> x_3 : u32 = 0u;
var<private> x_4 : f32 = 0.0;
)"));
}
TEST_F(SpvModuleScopeVarParserTest, ScalarUndefInitializers) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%undef_bool = OpUndef %bool
%undef_int = OpUndef %int
%undef_uint = OpUndef %uint
%undef_float = OpUndef %float
%1 = OpVariable %ptr_bool Private %undef_bool
%2 = OpVariable %ptr_int Private %undef_int
%3 = OpVariable %ptr_uint Private %undef_uint
%4 = OpVariable %ptr_float Private %undef_float
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(var<private> x_1 : bool = false;
var<private> x_2 : i32 = 0;
var<private> x_3 : u32 = 0u;
var<private> x_4 : f32 = 0.0;
)"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, VectorInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2float
%two = OpConstant %float 2.0
%const = OpConstantComposite %v2float %float_1p5 %two
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("var<private> x_200 : vec2<f32> = vec2<f32>(1.5, 2.0);"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorBoolNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2bool
%const = OpConstantNull %v2bool
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("var<private> x_200 : vec2<bool> = vec2<bool>(false, false);"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorBoolUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2bool
%const = OpUndef %v2bool
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("var<private> x_200 : vec2<bool> = vec2<bool>(false, false);"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, VectorUintNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2uint
%const = OpConstantNull %v2uint
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> x_200 : vec2<u32> = vec2<u32>(0u, 0u);"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorUintUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2uint
%const = OpUndef %v2uint
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> x_200 : vec2<u32> = vec2<u32>(0u, 0u);"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, VectorIntNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2int
%const = OpConstantNull %v2int
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> x_200 : vec2<i32> = vec2<i32>(0, 0);"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorIntUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2int
%const = OpUndef %v2int
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> x_200 : vec2<i32> = vec2<i32>(0, 0);"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, VectorFloatNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2float
%const = OpConstantNull %v2float
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("var<private> x_200 : vec2<f32> = vec2<f32>(0.0, 0.0);"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorFloatUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2float
%const = OpUndef %v2float
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("var<private> x_200 : vec2<f32> = vec2<f32>(0.0, 0.0);"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, MatrixInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %m3v2float
%two = OpConstant %float 2.0
%three = OpConstant %float 3.0
%four = OpConstant %float 4.0
%v0 = OpConstantComposite %v2float %float_1p5 %two
%v1 = OpConstantComposite %v2float %two %three
%v2 = OpConstantComposite %v2float %three %four
%const = OpConstantComposite %m3v2float %v0 %v1 %v2
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> x_200 : mat3x2<f32> = mat3x2<f32>("
"vec2<f32>(1.5, 2.0), "
"vec2<f32>(2.0, 3.0), "
"vec2<f32>(3.0, 4.0));"));
}
TEST_F(SpvModuleScopeVarParserTest, MatrixNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %m3v2float
%const = OpConstantNull %m3v2float
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> x_200 : mat3x2<f32> = mat3x2<f32>("
"vec2<f32>(0.0, 0.0), "
"vec2<f32>(0.0, 0.0), "
"vec2<f32>(0.0, 0.0));"));
}
TEST_F(SpvModuleScopeVarParserTest, MatrixUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %m3v2float
%const = OpUndef %m3v2float
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> x_200 : mat3x2<f32> = mat3x2<f32>("
"vec2<f32>(0.0, 0.0), "
"vec2<f32>(0.0, 0.0), "
"vec2<f32>(0.0, 0.0));"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, ArrayInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %arr2uint
%two = OpConstant %uint 2
%const = OpConstantComposite %arr2uint %uint_1 %two
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr(
"var<private> x_200 : array<u32, 2u> = array<u32, 2u>(1u, 2u);"));
}
TEST_F(SpvModuleScopeVarParserTest, ArrayNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %arr2uint
%const = OpConstantNull %arr2uint
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr(
"var<private> x_200 : array<u32, 2u> = array<u32, 2u>(0u, 0u);"));
}
TEST_F(SpvModuleScopeVarParserTest, ArrayUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %arr2uint
%const = OpUndef %arr2uint
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr(
"var<private> x_200 : array<u32, 2u> = array<u32, 2u>(0u, 0u);"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, StructInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() +
StructTypes() + R"(
%ptr = OpTypePointer Private %strct
%two = OpConstant %uint 2
%arrconst = OpConstantComposite %arr2uint %uint_1 %two
%const = OpConstantComposite %strct %uint_1 %float_1p5 %arrconst
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("var<private> x_200 : S = S(1u, 1.5, array<u32, 2u>(1u, 2u));"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, StructNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() +
StructTypes() + R"(
%ptr = OpTypePointer Private %strct
%const = OpConstantNull %strct
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("var<private> x_200 : S = S(0u, 0.0, array<u32, 2u>(0u, 0u));"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, StructUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() +
StructTypes() + R"(
%ptr = OpTypePointer Private %strct
%const = OpUndef %strct
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("var<private> x_200 : S = S(0u, 0.0, array<u32, 2u>(0u, 0u));"))
<< module_str;
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest,
LocationDecoration_MissingOperandWontAssemble) {
const auto assembly = Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar Location
)" + CommonTypes() + R"(
%ptr = OpTypePointer Input %uint
%myvar = OpVariable %ptr Input
)" + MainBody();
EXPECT_THAT(test::AssembleFailure(assembly),
Eq("10:4: Expected operand, found next instruction instead."));
}
TEST_F(SpvModuleScopeVarParserTest,
LocationDecoration_TwoOperandsWontAssemble) {
const auto assembly = Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar Location 3 4
)" + CommonTypes() + R"(
%ptr = OpTypePointer Input %uint
%myvar = OpVariable %ptr Input
)" + MainBody();
EXPECT_THAT(
test::AssembleFailure(assembly),
Eq("8:34: Expected <opcode> or <result-id> at the beginning of an "
"instruction, found '4'."));
}
TEST_F(SpvModuleScopeVarParserTest, DescriptorGroupDecoration_Valid) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonLayout() + R"(
OpDecorate %1 DescriptorSet 3
OpDecorate %1 Binding 9 ; Required to pass WGSL validation
OpDecorate %strct Block
)" + CommonTypes() + StructTypes() +
R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%1 = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("[[group(3), binding(9)]] var<storage, read_write> x_1 : S;"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
DescriptorGroupDecoration_MissingOperandWontAssemble) {
const auto assembly = Preamble() + FragMain() + CommonLayout() + R"(
OpDecorate %1 DescriptorSet
OpDecorate %strct Block
)" + CommonTypes() + StructTypes() +
R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%1 = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody();
EXPECT_THAT(test::AssembleFailure(assembly),
Eq("13:5: Expected operand, found next instruction instead."));
}
TEST_F(SpvModuleScopeVarParserTest,
DescriptorGroupDecoration_TwoOperandsWontAssemble) {
const auto assembly = Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar DescriptorSet 3 4
OpDecorate %strct Block
)" + CommonTypes() + StructTypes() +
R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%myvar = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody();
EXPECT_THAT(
test::AssembleFailure(assembly),
Eq("8:39: Expected <opcode> or <result-id> at the beginning of an "
"instruction, found '4'."));
}
TEST_F(SpvModuleScopeVarParserTest, BindingDecoration_Valid) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 DescriptorSet 0 ; WGSL validation requires this already
OpDecorate %1 Binding 3
OpDecorate %strct Block
)" + CommonLayout() + CommonTypes() +
StructTypes() +
R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%1 = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(
module_str,
HasSubstr("[[group(0), binding(3)]] var<storage, read_write> x_1 : S;"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
BindingDecoration_MissingOperandWontAssemble) {
const auto assembly = Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar Binding
OpDecorate %strct Block
)" + CommonTypes() + StructTypes() +
R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%myvar = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody();
EXPECT_THAT(test::AssembleFailure(assembly),
Eq("9:5: Expected operand, found next instruction instead."));
}
TEST_F(SpvModuleScopeVarParserTest, BindingDecoration_TwoOperandsWontAssemble) {
const auto assembly = Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar Binding 3 4
OpDecorate %strct Block
)" + CommonTypes() + StructTypes() +
R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%myvar = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody();
EXPECT_THAT(
test::AssembleFailure(assembly),
Eq("8:33: Expected <opcode> or <result-id> at the beginning of an "
"instruction, found '4'."));
}
TEST_F(SpvModuleScopeVarParserTest,
StructMember_NonReadableDecoration_Dropped) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 DescriptorSet 0
OpDecorate %1 Binding 0
OpDecorate %strct Block
OpMemberDecorate %strct 0 NonReadable
)" + CommonLayout() + CommonTypes() +
StructTypes() + R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%1 = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(type Arr = [[stride(4)]] array<u32, 2u>;
struct S {
field0 : u32;
field1 : f32;
field2 : Arr;
};
[[group(0), binding(0)]] var<storage, read_write> x_1 : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ColMajorDecoration_Dropped) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar DescriptorSet 0
OpDecorate %myvar Binding 0
OpDecorate %s Block
OpMemberDecorate %s 0 ColMajor
OpMemberDecorate %s 0 Offset 0
OpMemberDecorate %s 0 MatrixStride 8
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%s = OpTypeStruct %m3v2float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%myvar = OpVariable %ptr_sb_s StorageBuffer
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : mat3x2<f32>;
};
[[group(0), binding(0)]] var<storage, read_write> myvar : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, MatrixStrideDecoration_Natural_Dropped) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar DescriptorSet 0
OpDecorate %myvar Binding 0
OpDecorate %s Block
OpMemberDecorate %s 0 MatrixStride 8
OpMemberDecorate %s 0 Offset 0
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%s = OpTypeStruct %m3v2float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%myvar = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : mat3x2<f32>;
};
[[group(0), binding(0)]] var<storage, read_write> myvar : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, MatrixStrideDecoration) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar DescriptorSet 0
OpDecorate %myvar Binding 0
OpDecorate %s Block
OpMemberDecorate %s 0 MatrixStride 64
OpMemberDecorate %s 0 Offset 0
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%s = OpTypeStruct %m3v2float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%myvar = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
[[stride(64), internal(disable_validation__ignore_stride)]]
field0 : mat3x2<f32>;
};
[[group(0), binding(0)]] var<storage, read_write> myvar : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, RowMajorDecoration_IsError) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %s Block
OpMemberDecorate %s 0 RowMajor
OpMemberDecorate %s 0 Offset 0
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%s = OpTypeStruct %m3v2float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%myvar = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
EXPECT_FALSE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_THAT(
p->error(),
Eq(R"(WGSL does not support row-major matrices: can't translate member 0 of %3 = OpTypeStruct %8)"))
<< p->error();
}
TEST_F(SpvModuleScopeVarParserTest, StorageBuffer_NonWritable_AllMembers) {
// Variable should have access(read)
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %s Block
OpDecorate %1 DescriptorSet 0
OpDecorate %1 Binding 0
OpMemberDecorate %s 0 NonWritable
OpMemberDecorate %s 1 NonWritable
OpMemberDecorate %s 0 Offset 0
OpMemberDecorate %s 1 Offset 4
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%s = OpTypeStruct %float %float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%1 = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : f32;
field1 : f32;
};
[[group(0), binding(0)]] var<storage, read> x_1 : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, StorageBuffer_NonWritable_NotAllMembers) {
// Variable should have access(read_write)
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 DescriptorSet 0
OpDecorate %1 Binding 0
OpDecorate %s Block
OpMemberDecorate %s 0 NonWritable
OpMemberDecorate %s 0 Offset 0
OpMemberDecorate %s 1 Offset 4
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%s = OpTypeStruct %float %float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%1 = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : f32;
field1 : f32;
};
[[group(0), binding(0)]] var<storage, read_write> x_1 : S;
)")) << module_str;
}
TEST_F(
SpvModuleScopeVarParserTest,
StorageBuffer_NonWritable_NotAllMembers_DuplicatedOnSameMember) { // NOLINT
// Variable should have access(read_write)
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %s Block
OpDecorate %1 DescriptorSet 0
OpDecorate %1 Binding 0
OpMemberDecorate %s 0 NonWritable
OpMemberDecorate %s 0 NonWritable ; same member. Don't double-count it
OpMemberDecorate %s 0 Offset 0
OpMemberDecorate %s 1 Offset 4
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%s = OpTypeStruct %float %float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%1 = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : f32;
field1 : f32;
};
[[group(0), binding(0)]] var<storage, read_write> x_1 : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_Id_TooBig) {
// Override IDs must be between 0 and 65535
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 SpecId 65536
%bool = OpTypeBool
%1 = OpSpecConstantTrue %bool
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_FALSE(p->Parse());
EXPECT_EQ(p->error(),
"SpecId too large. WGSL override IDs must be between 0 and 65535: "
"ID %1 has SpecId 65536");
}
TEST_F(SpvModuleScopeVarParserTest,
ScalarSpecConstant_DeclareConst_Id_MaxValid) {
// Override IDs must be between 0 and 65535
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 SpecId 65535
%bool = OpTypeBool
%1 = OpSpecConstantTrue %bool
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->Parse());
EXPECT_EQ(p->error(), "");
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_True) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%bool = OpTypeBool
%c = OpSpecConstantTrue %bool
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("[[override(12)]] let myconst : bool = true;"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_False) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%bool = OpTypeBool
%c = OpSpecConstantFalse %bool
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("[[override(12)]] let myconst : bool = false;"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_U32) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%uint = OpTypeInt 32 0
%c = OpSpecConstant %uint 42
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("[[override(12)]] let myconst : u32 = 42u;"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_I32) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%int = OpTypeInt 32 1
%c = OpSpecConstant %int 42
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("[[override(12)]] let myconst : i32 = 42;"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_F32) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%float = OpTypeFloat 32
%c = OpSpecConstant %float 2.5
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("[[override(12)]] let myconst : f32 = 2.5;"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
ScalarSpecConstant_DeclareConst_F32_WithoutSpecId) {
// When we don't have a spec ID, declare an undecorated module-scope constant.
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
%float = OpTypeFloat 32
%c = OpSpecConstant %float 2.5
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("let myconst : f32 = 2.5;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_UsedInFunction) {
const auto assembly = Preamble() + FragMain() + R"(
OpName %c "myconst"
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%c = OpSpecConstant %float 2.5
%floatfn = OpTypeFunction %float
%100 = OpFunction %float None %floatfn
%entry = OpLabel
%1 = OpFAdd %float %c %c
OpReturnValue %1
OpFunctionEnd
)" + MainBody();
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_TRUE(p->error().empty());
Program program = p->program();
const auto got = test::ToString(program, fe.ast_body());
EXPECT_THAT(got, HasSubstr("return (myconst + myconst);")) << got;
}
// Returns the start of a shader for testing SampleId,
// parameterized by store type of %int or %uint
std::string SampleIdPreamble(std::string store_type) {
return R"(
OpCapability Shader
OpCapability SampleRateShading
OpMemoryModel Logical Simple
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 BuiltIn SampleId
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_ty = OpTypePointer Input )" +
store_type + R"(
%1 = OpVariable %ptr_ty Input
)";
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_I32_Load_Direct) {
const std::string assembly = SampleIdPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %int %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected =
R"(var<private> x_1 : i32;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_index)]] x_1_param : u32) {
x_1 = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_I32_Load_CopyObject) {
const std::string assembly = SampleIdPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpCopyObject %ptr_ty %1
%2 = OpLoad %int %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected =
R"(Module{
Variable{
x_1
private
undefined
__i32
}
Function main_1 -> __void
()
{
VariableDeclStatement{
VariableConst{
x_11
none
undefined
__ptr_private__i32
{
UnaryOp[not set]{
address-of
Identifier[not set]{x_1}
}
}
}
}
VariableDeclStatement{
VariableConst{
x_2
none
undefined
__i32
{
UnaryOp[not set]{
indirection
Identifier[not set]{x_14}
}
}
}
}
Return{}
}
Function main -> __void
StageDecoration{fragment}
(
VariableConst{
Decorations{
BuiltinDecoration{sample_index}
}
x_1_param
none
undefined
__u32
}
)
{
Assignment{
Identifier[not set]{x_1}
Bitcast[not set]<__i32>{
Identifier[not set]{x_1_param}
}
}
Call[not set]{
Identifier[not set]{main_1}
(
)
}
}
}
)";
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_I32_Load_AccessChain) {
const std::string assembly = SampleIdPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpAccessChain %ptr_ty %1
%2 = OpLoad %int %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_index)]] x_1_param : u32) {
x_1 = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_I32_FunctParam) {
const std::string assembly = SampleIdPreamble("%int") + R"(
%helper_ty = OpTypeFunction %int %ptr_ty
%helper = OpFunction %int None %helper_ty
%param = OpFunctionParameter %ptr_ty
%helper_entry = OpLabel
%3 = OpLoad %int %param
OpReturnValue %3
OpFunctionEnd
%main = OpFunction %void None %voidfn
%entry = OpLabel
%result = OpFunctionCall %int %helper %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
// This example is invalid because you can't pass pointer-to-Input
// as a function parameter.
EXPECT_FALSE(p->Parse());
EXPECT_FALSE(p->success());
EXPECT_THAT(p->error(),
HasSubstr("Invalid storage class for pointer operand 1"));
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_U32_Load_Direct) {
const std::string assembly = SampleIdPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %uint %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
fn main_1() {
let x_2 : u32 = x_1;
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_index)]] x_1_param : u32) {
x_1 = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_U32_Load_CopyObject) {
const std::string assembly = SampleIdPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpCopyObject %ptr_ty %1
%2 = OpLoad %uint %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
fn main_1() {
let x_11 : ptr<private, u32> = &(x_1);
let x_2 : u32 = *(x_11);
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_index)]] x_1_param : u32) {
x_1 = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_U32_Load_AccessChain) {
const std::string assembly = SampleIdPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpAccessChain %ptr_ty %1
%2 = OpLoad %uint %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
fn main_1() {
let x_2 : u32 = x_1;
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_index)]] x_1_param : u32) {
x_1 = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_U32_FunctParam) {
const std::string assembly = SampleIdPreamble("%uint") + R"(
%helper_ty = OpTypeFunction %uint %ptr_ty
%helper = OpFunction %uint None %helper_ty
%param = OpFunctionParameter %ptr_ty
%helper_entry = OpLabel
%3 = OpLoad %uint %param
OpReturnValue %3
OpFunctionEnd
%main = OpFunction %void None %voidfn
%entry = OpLabel
%result = OpFunctionCall %uint %helper %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
// This example is invalid because you can't pass pointer-to-Input
// as a function parameter.
EXPECT_FALSE(p->Parse());
EXPECT_THAT(p->error(),
HasSubstr("Invalid storage class for pointer operand 1"));
}
// Returns the start of a shader for testing SampleMask
// parameterized by store type.
std::string SampleMaskPreamble(std::string store_type, uint32_t stride = 0u) {
return std::string(R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 BuiltIn SampleMask
)") +
(stride > 0u ? R"(
OpDecorate %uarr1 ArrayStride 4
OpDecorate %uarr2 ArrayStride 4
OpDecorate %iarr1 ArrayStride 4
OpDecorate %iarr2 ArrayStride 4
)"
: "") +
R"(
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%int_12 = OpConstant %int 12
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%uint_2 = OpConstant %uint 2
%uarr1 = OpTypeArray %uint %uint_1
%uarr2 = OpTypeArray %uint %uint_2
%iarr1 = OpTypeArray %int %uint_1
%iarr2 = OpTypeArray %int %uint_2
%iptr_in_ty = OpTypePointer Input %int
%uptr_in_ty = OpTypePointer Input %uint
%iptr_out_ty = OpTypePointer Output %int
%uptr_out_ty = OpTypePointer Output %uint
%in_ty = OpTypePointer Input )" +
store_type + R"(
%out_ty = OpTypePointer Output )" +
store_type + R"(
)";
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_ArraySize2_Error) {
const std::string assembly = SampleMaskPreamble("%uarr2") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpLoad %int %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(),
HasSubstr("WGSL supports a sample mask of at most 32 bits. "
"SampleMask must be an array of 1 element"))
<< p->error() << assembly;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_U32_Direct) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpLoad %uint %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
let x_3 : u32 = x_1[0];
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_mask)]] x_1_param : u32) {
x_1[0] = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_U32_CopyObject) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpCopyObject %uptr_in_ty %2
%4 = OpLoad %uint %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
let x_4 : u32 = x_1[0];
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_mask)]] x_1_param : u32) {
x_1[0] = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_U32_AccessChain) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpAccessChain %uptr_in_ty %2
%4 = OpLoad %uint %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
let x_4 : u32 = x_1[0];
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_mask)]] x_1_param : u32) {
x_1[0] = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_I32_Direct) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_in_ty %1 %uint_0
%3 = OpLoad %int %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
let x_3 : i32 = x_1[0];
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_mask)]] x_1_param : u32) {
x_1[0] = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_I32_CopyObject) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_in_ty %1 %uint_0
%3 = OpCopyObject %iptr_in_ty %2
%4 = OpLoad %int %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
let x_4 : i32 = x_1[0];
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_mask)]] x_1_param : u32) {
x_1[0] = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_I32_AccessChain) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_in_ty %1 %uint_0
%3 = OpAccessChain %iptr_in_ty %2
%4 = OpLoad %int %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
let x_4 : i32 = x_1[0];
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_mask)]] x_1_param : u32) {
x_1[0] = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_ArraySize2_Error) {
const std::string assembly = SampleMaskPreamble("%uarr2") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(),
HasSubstr("WGSL supports a sample mask of at most 32 bits. "
"SampleMask must be an array of 1 element"))
<< p->error() << assembly;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_U32_Direct) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
x_1[0] = 0u;
return;
}
struct main_out {
[[builtin(sample_mask)]]
x_1_1 : u32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(x_1[0]);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_U32_CopyObject) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
%3 = OpCopyObject %uptr_out_ty %2
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
x_1[0] = 0u;
return;
}
struct main_out {
[[builtin(sample_mask)]]
x_1_1 : u32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(x_1[0]);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_U32_AccessChain) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
%3 = OpAccessChain %uptr_out_ty %2
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
x_1[0] = 0u;
return;
}
struct main_out {
[[builtin(sample_mask)]]
x_1_1 : u32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(x_1[0]);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_I32_Direct) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_out_ty %1 %uint_0
OpStore %2 %int_12
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
x_1[0] = 12;
return;
}
struct main_out {
[[builtin(sample_mask)]]
x_1_1 : u32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(bitcast<u32>(x_1[0]));
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_I32_CopyObject) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_out_ty %1 %uint_0
%3 = OpCopyObject %iptr_out_ty %2
OpStore %2 %int_12
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
x_1[0] = 12;
return;
}
struct main_out {
[[builtin(sample_mask)]]
x_1_1 : u32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(bitcast<u32>(x_1[0]));
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_I32_AccessChain) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_out_ty %1 %uint_0
%3 = OpAccessChain %iptr_out_ty %2
OpStore %2 %int_12
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
x_1[0] = 12;
return;
}
struct main_out {
[[builtin(sample_mask)]]
x_1_1 : u32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(bitcast<u32>(x_1[0]));
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_WithStride) {
const std::string assembly = SampleMaskPreamble("%uarr1", 4u) + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpLoad %uint %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(type Arr = [[stride(4)]] array<u32, 1u>;
type Arr_1 = [[stride(4)]] array<u32, 2u>;
type Arr_2 = [[stride(4)]] array<i32, 1u>;
type Arr_3 = [[stride(4)]] array<i32, 2u>;
var<private> x_1 : Arr;
fn main_1() {
let x_3 : u32 = x_1[0];
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_mask)]] x_1_param : u32) {
x_1[0] = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_WithStride) {
const std::string assembly = SampleMaskPreamble("%uarr1", 4u) + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(type Arr = [[stride(4)]] array<u32, 1u>;
type Arr_1 = [[stride(4)]] array<u32, 2u>;
type Arr_2 = [[stride(4)]] array<i32, 1u>;
type Arr_3 = [[stride(4)]] array<i32, 2u>;
var<private> x_1 : Arr;
fn main_1() {
x_1[0] = 0u;
return;
}
struct main_out {
[[builtin(sample_mask)]]
x_1_1 : u32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(x_1[0]);
}
)";
EXPECT_EQ(module_str, expected);
}
// Returns the start of a shader for testing VertexIndex,
// parameterized by store type of %int or %uint
std::string VertexIndexPreamble(std::string store_type) {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %position %1
OpDecorate %position BuiltIn Position
OpDecorate %1 BuiltIn VertexIndex
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_ty = OpTypePointer Input )" +
store_type + R"(
%1 = OpVariable %ptr_ty Input
%v4float = OpTypeVector %float 4
%posty = OpTypePointer Output %v4float
%position = OpVariable %posty Output
)";
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_I32_Load_Direct) {
const std::string assembly = VertexIndexPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %int %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
x_4_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(vertex_index)]] x_1_param : u32) -> main_out {
x_1 = bitcast<i32>(x_1_param);
main_1();
return main_out(x_4);
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_I32_Load_CopyObject) {
const std::string assembly = VertexIndexPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpCopyObject %ptr_ty %1
%2 = OpLoad %int %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_14 : ptr<private, i32> = &(x_1);
let x_2 : i32 = *(x_14);
return;
}
struct main_out {
[[builtin(position)]]
x_4_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(vertex_index)]] x_1_param : u32) -> main_out {
x_1 = bitcast<i32>(x_1_param);
main_1();
return main_out(x_4);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_I32_Load_AccessChain) {
const std::string assembly = VertexIndexPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpAccessChain %ptr_ty %1
%2 = OpLoad %int %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
x_4_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(vertex_index)]] x_1_param : u32) -> main_out {
x_1 = bitcast<i32>(x_1_param);
main_1();
return main_out(x_4);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_U32_Load_Direct) {
const std::string assembly = VertexIndexPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %uint %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_2 : u32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
x_4_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(vertex_index)]] x_1_param : u32) -> main_out {
x_1 = x_1_param;
main_1();
return main_out(x_4);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_U32_Load_CopyObject) {
const std::string assembly = VertexIndexPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpCopyObject %ptr_ty %1
%2 = OpLoad %uint %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_14 : ptr<private, u32> = &(x_1);
let x_2 : u32 = *(x_14);
return;
}
struct main_out {
[[builtin(position)]]
x_4_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(vertex_index)]] x_1_param : u32) -> main_out {
x_1 = x_1_param;
main_1();
return main_out(x_4);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_U32_Load_AccessChain) {
const std::string assembly = VertexIndexPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpAccessChain %ptr_ty %1
%2 = OpLoad %uint %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_2 : u32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
x_4_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(vertex_index)]] x_1_param : u32) -> main_out {
x_1 = x_1_param;
main_1();
return main_out(x_4);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_U32_FunctParam) {
const std::string assembly = VertexIndexPreamble("%uint") + R"(
%helper_ty = OpTypeFunction %uint %ptr_ty
%helper = OpFunction %uint None %helper_ty
%param = OpFunctionParameter %ptr_ty
%helper_entry = OpLabel
%3 = OpLoad %uint %param
OpReturnValue %3
OpFunctionEnd
%main = OpFunction %void None %voidfn
%entry = OpLabel
%result = OpFunctionCall %uint %helper %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
// This example is invalid because you can't pass pointer-to-Input
// as a function parameter.
EXPECT_FALSE(p->Parse());
EXPECT_THAT(p->error(),
HasSubstr("Invalid storage class for pointer operand 1"));
}
// Returns the start of a shader for testing InstanceIndex,
// parameterized by store type of %int or %uint
std::string InstanceIndexPreamble(std::string store_type) {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %position %1
OpName %position "position"
OpDecorate %position BuiltIn Position
OpDecorate %1 BuiltIn InstanceIndex
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_ty = OpTypePointer Input )" +
store_type + R"(
%1 = OpVariable %ptr_ty Input
%v4float = OpTypeVector %float 4
%posty = OpTypePointer Output %v4float
%position = OpVariable %posty Output
)";
}
TEST_F(SpvModuleScopeVarParserTest, InstanceIndex_I32_Load_Direct) {
const std::string assembly = InstanceIndexPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %int %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
var<private> position : vec4<f32>;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
position_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(instance_index)]] x_1_param : u32) -> main_out {
x_1 = bitcast<i32>(x_1_param);
main_1();
return main_out(position);
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, InstanceIndex_I32_Load_CopyObject) {
const std::string assembly = InstanceIndexPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpCopyObject %ptr_ty %1
%2 = OpLoad %int %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
var<private> position : vec4<f32>;
fn main_1() {
let x_14 : ptr<private, i32> = &(x_1);
let x_2 : i32 = *(x_14);
return;
}
struct main_out {
[[builtin(position)]]
position_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(instance_index)]] x_1_param : u32) -> main_out {
x_1 = bitcast<i32>(x_1_param);
main_1();
return main_out(position);
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, InstanceIndex_I32_Load_AccessChain) {
const std::string assembly = InstanceIndexPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpAccessChain %ptr_ty %1
%2 = OpLoad %int %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
var<private> position : vec4<f32>;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
position_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(instance_index)]] x_1_param : u32) -> main_out {
x_1 = bitcast<i32>(x_1_param);
main_1();
return main_out(position);
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, InstanceIndex_I32_FunctParam) {
const std::string assembly = InstanceIndexPreamble("%int") + R"(
%helper_ty = OpTypeFunction %int %ptr_ty
%helper = OpFunction %int None %helper_ty
%param = OpFunctionParameter %ptr_ty
%helper_entry = OpLabel
%3 = OpLoad %int %param
OpReturnValue %3
OpFunctionEnd
%main = OpFunction %void None %voidfn
%entry = OpLabel
%result = OpFunctionCall %int %helper %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
// This example is invalid because you can't pass pointer-to-Input
// as a function parameter.
EXPECT_FALSE(p->Parse());
EXPECT_THAT(p->error(),
HasSubstr("Invalid storage class for pointer operand 1"));
}
TEST_F(SpvModuleScopeVarParserTest, InstanceIndex_U32_Load_Direct) {
const std::string assembly = InstanceIndexPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %uint %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
var<private> position : vec4<f32>;
fn main_1() {
let x_2 : u32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
position_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(instance_index)]] x_1_param : u32) -> main_out {
x_1 = x_1_param;
main_1();
return main_out(position);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, InstanceIndex_U32_Load_CopyObject) {
const std::string assembly = InstanceIndexPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpCopyObject %ptr_ty %1
%2 = OpLoad %uint %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
var<private> position : vec4<f32>;
fn main_1() {
let x_14 : ptr<private, u32> = &(x_1);
let x_2 : u32 = *(x_14);
return;
}
struct main_out {
[[builtin(position)]]
position_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(instance_index)]] x_1_param : u32) -> main_out {
x_1 = x_1_param;
main_1();
return main_out(position);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, InstanceIndex_U32_Load_AccessChain) {
const std::string assembly = InstanceIndexPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpAccessChain %ptr_ty %1
%2 = OpLoad %uint %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
var<private> position : vec4<f32>;
fn main_1() {
let x_2 : u32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
position_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(instance_index)]] x_1_param : u32) -> main_out {
x_1 = x_1_param;
main_1();
return main_out(position);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, InstanceIndex_U32_FunctParam) {
const std::string assembly = InstanceIndexPreamble("%uint") + R"(
%helper_ty = OpTypeFunction %uint %ptr_ty
%helper = OpFunction %uint None %helper_ty
%param = OpFunctionParameter %ptr_ty
%helper_entry = OpLabel
%3 = OpLoad %uint %param
OpReturnValue %3
OpFunctionEnd
%main = OpFunction %void None %voidfn
%entry = OpLabel
%result = OpFunctionCall %uint %helper %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
// This example is invalid because you can't pass pointer-to-Input
// as a function parameter.
EXPECT_FALSE(p->Parse());
EXPECT_THAT(p->error(),
HasSubstr("Invalid storage class for pointer operand 1"));
}
// Returns the start of a shader for testing LocalInvocationIndex,
// parameterized by store type of %int or %uint
std::string ComputeBuiltinInputPreamble(std::string builtin,
std::string store_type) {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint GLCompute %main "main" %1
OpExecutionMode %main LocalSize 1 1 1
OpDecorate %1 BuiltIn )" +
builtin + R"(
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%v3uint = OpTypeVector %uint 3
%v3int = OpTypeVector %int 3
%ptr_ty = OpTypePointer Input )" +
store_type + R"(
%1 = OpVariable %ptr_ty Input
)";
}
struct ComputeBuiltinInputCase {
std::string spirv_builtin;
std::string spirv_store_type;
std::string wgsl_builtin;
};
inline std::ostream& operator<<(std::ostream& o, ComputeBuiltinInputCase c) {
return o << "ComputeBuiltinInputCase(" << c.spirv_builtin << " "
<< c.spirv_store_type << " " << c.wgsl_builtin << ")";
}
std::string WgslType(std::string spirv_type) {
if (spirv_type == "%uint") {
return "u32";
}
if (spirv_type == "%int") {
return "i32";
}
if (spirv_type == "%v3uint") {
return "vec3<u32>";
}
if (spirv_type == "%v3int") {
return "vec3<i32>";
}
return "error";
}
std::string UnsignedWgslType(std::string wgsl_type) {
if (wgsl_type == "u32") {
return "u32";
}
if (wgsl_type == "i32") {
return "u32";
}
if (wgsl_type == "vec3<u32>") {
return "vec3<u32>";
}
if (wgsl_type == "vec3<i32>") {
return "vec3<u32>";
}
return "error";
}
std::string SignedWgslType(std::string wgsl_type) {
if (wgsl_type == "u32") {
return "i32";
}
if (wgsl_type == "i32") {
return "i32";
}
if (wgsl_type == "vec3<u32>") {
return "vec3<i32>";
}
if (wgsl_type == "vec3<i32>") {
return "vec3<i32>";
}
return "error";
}
using SpvModuleScopeVarParserTest_ComputeBuiltin =
SpvParserTestBase<::testing::TestWithParam<ComputeBuiltinInputCase>>;
TEST_P(SpvModuleScopeVarParserTest_ComputeBuiltin, Load_Direct) {
const auto wgsl_type = WgslType(GetParam().spirv_store_type);
const auto wgsl_builtin = GetParam().wgsl_builtin;
const auto unsigned_wgsl_type = UnsignedWgslType(wgsl_type);
const auto signed_wgsl_type = SignedWgslType(wgsl_type);
const std::string assembly =
ComputeBuiltinInputPreamble(GetParam().spirv_builtin,
GetParam().spirv_store_type) +
R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad )" +
GetParam().spirv_store_type + R"( %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
std::string expected = R"(var<private> x_1 : ${wgsl_type};
fn main_1() {
let x_2 : ${wgsl_type} = x_1;
return;
}
[[stage(compute), workgroup_size(1, 1, 1)]]
fn main([[builtin(${wgsl_builtin})]] x_1_param : ${unsigned_wgsl_type}) {
x_1 = ${assignment_value};
main_1();
}
)";
expected = utils::ReplaceAll(expected, "${wgsl_type}", wgsl_type);
expected =
utils::ReplaceAll(expected, "${unsigned_wgsl_type}", unsigned_wgsl_type);
expected = utils::ReplaceAll(expected, "${wgsl_builtin}", wgsl_builtin);
expected =
utils::ReplaceAll(expected, "${assignment_value}",
(wgsl_type == unsigned_wgsl_type)
? "x_1_param"
: "bitcast<" + signed_wgsl_type + ">(x_1_param)");
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_P(SpvModuleScopeVarParserTest_ComputeBuiltin, Load_CopyObject) {
const auto wgsl_type = WgslType(GetParam().spirv_store_type);
const auto wgsl_builtin = GetParam().wgsl_builtin;
const auto unsigned_wgsl_type = UnsignedWgslType(wgsl_type);
const auto signed_wgsl_type = SignedWgslType(wgsl_type);
const std::string assembly =
ComputeBuiltinInputPreamble(GetParam().spirv_builtin,
GetParam().spirv_store_type) +
R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%13 = OpCopyObject %ptr_ty %1
%2 = OpLoad )" +
GetParam().spirv_store_type + R"( %13
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
std::string expected = R"(var<private> x_1 : ${wgsl_type};
fn main_1() {
let x_13 : ptr<private, ${wgsl_type}> = &(x_1);
let x_2 : ${wgsl_type} = *(x_13);
return;
}
[[stage(compute), workgroup_size(1, 1, 1)]]
fn main([[builtin(${wgsl_builtin})]] x_1_param : ${unsigned_wgsl_type}) {
x_1 = ${assignment_value};
main_1();
}
)";
expected = utils::ReplaceAll(expected, "${wgsl_type}", wgsl_type);
expected =
utils::ReplaceAll(expected, "${unsigned_wgsl_type}", unsigned_wgsl_type);
expected = utils::ReplaceAll(expected, "${wgsl_builtin}", wgsl_builtin);
expected =
utils::ReplaceAll(expected, "${assignment_value}",
(wgsl_type == unsigned_wgsl_type)
? "x_1_param"
: "bitcast<" + signed_wgsl_type + ">(x_1_param)");
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_P(SpvModuleScopeVarParserTest_ComputeBuiltin, Load_AccessChain) {
const auto wgsl_type = WgslType(GetParam().spirv_store_type);
const auto wgsl_builtin = GetParam().wgsl_builtin;
const auto unsigned_wgsl_type = UnsignedWgslType(wgsl_type);
const auto signed_wgsl_type = SignedWgslType(wgsl_type);
const std::string assembly =
ComputeBuiltinInputPreamble(GetParam().spirv_builtin,
GetParam().spirv_store_type) +
R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%13 = OpAccessChain %ptr_ty %1
%2 = OpLoad )" +
GetParam().spirv_store_type + R"( %13
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
std::string expected = R"(var<private> x_1 : ${wgsl_type};
fn main_1() {
let x_2 : ${wgsl_type} = x_1;
return;
}
[[stage(compute), workgroup_size(1, 1, 1)]]
fn main([[builtin(${wgsl_builtin})]] x_1_param : ${unsigned_wgsl_type}) {
x_1 = ${assignment_value};
main_1();
}
)";
expected = utils::ReplaceAll(expected, "${wgsl_type}", wgsl_type);
expected =
utils::ReplaceAll(expected, "${unsigned_wgsl_type}", unsigned_wgsl_type);
expected = utils::ReplaceAll(expected, "${wgsl_builtin}", wgsl_builtin);
expected =
utils::ReplaceAll(expected, "${assignment_value}",
(wgsl_type == unsigned_wgsl_type)
? "x_1_param"
: "bitcast<" + signed_wgsl_type + ">(x_1_param)");
EXPECT_EQ(module_str, expected) << module_str;
}
INSTANTIATE_TEST_SUITE_P(
Samples,
SpvModuleScopeVarParserTest_ComputeBuiltin,
::testing::ValuesIn(std::vector<ComputeBuiltinInputCase>{
{"LocalInvocationIndex", "%uint", "local_invocation_index"},
{"LocalInvocationIndex", "%int", "local_invocation_index"},
{"LocalInvocationId", "%v3uint", "local_invocation_id"},
{"LocalInvocationId", "%v3int", "local_invocation_id"},
{"GlobalInvocationId", "%v3uint", "global_invocation_id"},
{"GlobalInvocationId", "%v3int", "global_invocation_id"},
{"WorkgroupId", "%v3uint", "workgroup_id"},
{"WorkgroupId", "%v3int", "workgroup_id"}}));
// TODO(dneto): crbug.com/tint/752
// NumWorkgroups support is blocked by crbug.com/tint/752
// When the AST supports NumWorkgroups, add these cases:
// {"NumWorkgroups", "%uint", "num_workgroups"}
// {"NumWorkgroups", "%int", "num_workgroups"}
TEST_F(SpvModuleScopeVarParserTest, RegisterInputOutputVars) {
const std::string assembly =
R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %1000 "w1000"
OpEntryPoint Fragment %1100 "w1100" %1
OpEntryPoint Fragment %1200 "w1200" %2 %15
; duplication is tolerated prior to SPIR-V 1.4
OpEntryPoint Fragment %1300 "w1300" %1 %15 %2 %1
OpExecutionMode %1000 OriginUpperLeft
OpExecutionMode %1100 OriginUpperLeft
OpExecutionMode %1200 OriginUpperLeft
OpExecutionMode %1300 OriginUpperLeft
OpDecorate %1 Location 1
OpDecorate %2 Location 2
OpDecorate %5 Location 5
OpDecorate %11 Location 1
OpDecorate %12 Location 2
OpDecorate %15 Location 5
)" + CommonTypes() +
R"(
%ptr_in_uint = OpTypePointer Input %uint
%ptr_out_uint = OpTypePointer Output %uint
%1 = OpVariable %ptr_in_uint Input
%2 = OpVariable %ptr_in_uint Input
%5 = OpVariable %ptr_in_uint Input
%11 = OpVariable %ptr_out_uint Output
%12 = OpVariable %ptr_out_uint Output
%15 = OpVariable %ptr_out_uint Output
%100 = OpFunction %void None %voidfn
%entry_100 = OpLabel
%load_100 = OpLoad %uint %1
OpReturn
OpFunctionEnd
%200 = OpFunction %void None %voidfn
%entry_200 = OpLabel
%load_200 = OpLoad %uint %2
OpStore %15 %load_200
OpStore %15 %load_200
OpReturn
OpFunctionEnd
%300 = OpFunction %void None %voidfn
%entry_300 = OpLabel
%dummy_300_1 = OpFunctionCall %void %100
%dummy_300_2 = OpFunctionCall %void %200
OpReturn
OpFunctionEnd
; Call nothing
%1000 = OpFunction %void None %voidfn
%entry_1000 = OpLabel
OpReturn
OpFunctionEnd
; Call %100
%1100 = OpFunction %void None %voidfn
%entry_1100 = OpLabel
%dummy_1100_1 = OpFunctionCall %void %100
OpReturn
OpFunctionEnd
; Call %200
%1200 = OpFunction %void None %voidfn
%entry_1200 = OpLabel
%dummy_1200_1 = OpFunctionCall %void %200
OpReturn
OpFunctionEnd
; Call %300
%1300 = OpFunction %void None %voidfn
%entry_1300 = OpLabel
%dummy_1300_1 = OpFunctionCall %void %300
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto& info_1000 = p->GetEntryPointInfo(1000);
EXPECT_EQ(1u, info_1000.size());
EXPECT_TRUE(info_1000[0].inputs.empty());
EXPECT_TRUE(info_1000[0].outputs.empty());
const auto& info_1100 = p->GetEntryPointInfo(1100);
EXPECT_EQ(1u, info_1100.size());
EXPECT_THAT(info_1100[0].inputs, ElementsAre(1));
EXPECT_TRUE(info_1100[0].outputs.empty());
const auto& info_1200 = p->GetEntryPointInfo(1200);
EXPECT_EQ(1u, info_1200.size());
EXPECT_THAT(info_1200[0].inputs, ElementsAre(2));
EXPECT_THAT(info_1200[0].outputs, ElementsAre(15));
const auto& info_1300 = p->GetEntryPointInfo(1300);
EXPECT_EQ(1u, info_1300.size());
EXPECT_THAT(info_1300[0].inputs, ElementsAre(1, 2));
EXPECT_THAT(info_1300[0].outputs, ElementsAre(15));
// Validation incorrectly reports an overlap for the duplicated variable %1 on
// shader %1300
p->SkipDumpingPending(
"https://github.com/KhronosGroup/SPIRV-Tools/issues/4403");
}
TEST_F(SpvModuleScopeVarParserTest, InputVarsConvertedToPrivate) {
const auto assembly = Preamble() + FragMain() + CommonTypes() + R"(
%ptr_in_uint = OpTypePointer Input %uint
%1 = OpVariable %ptr_in_uint Input
)" + MainBody();
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = "var<private> x_1 : u32;";
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvModuleScopeVarParserTest, OutputVarsConvertedToPrivate) {
const auto assembly = Preamble() + FragMain() + CommonTypes() + R"(
%ptr_out_uint = OpTypePointer Output %uint
%1 = OpVariable %ptr_out_uint Output
)" + MainBody();
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = "var<private> x_1 : u32;";
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
OutputVarsConvertedToPrivate_WithInitializer) {
const auto assembly = Preamble() + FragMain() + CommonTypes() + R"(
%ptr_out_uint = OpTypePointer Output %uint
%1 = OpVariable %ptr_out_uint Output %uint_1
)" + MainBody();
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = "var<private> x_1 : u32 = 1u;";
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
Builtin_Output_Initializer_SameSignednessAsWGSL) {
// Only outputs can have initializers.
// WGSL sample_mask store type is u32.
const auto assembly = Preamble() + FragMain() + R"(
OpDecorate %1 BuiltIn SampleMask
)" + CommonTypes() + R"(
%arr_ty = OpTypeArray %uint %uint_1
%ptr_ty = OpTypePointer Output %arr_ty
%arr_init = OpConstantComposite %arr_ty %uint_2
%1 = OpVariable %ptr_ty Output %arr_init
)" + MainBody();
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
"var<private> x_1 : array<u32, 1u> = array<u32, 1u>(2u);";
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
Builtin_Output_Initializer_OppositeSignednessAsWGSL) {
// Only outputs can have initializers.
// WGSL sample_mask store type is u32. Use i32 in SPIR-V
const auto assembly = Preamble() + FragMain() + R"(
OpDecorate %1 BuiltIn SampleMask
)" + CommonTypes() + R"(
%arr_ty = OpTypeArray %int %uint_1
%ptr_ty = OpTypePointer Output %arr_ty
%arr_init = OpConstantComposite %arr_ty %int_14
%1 = OpVariable %ptr_ty Output %arr_init
)" + MainBody();
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
"var<private> x_1 : array<i32, 1u> = array<i32, 1u>(14);";
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Builtin_Input_SameSignednessAsWGSL) {
// WGSL vertex_index store type is u32.
const auto assembly = Preamble() + FragMain() + R"(
OpDecorate %1 BuiltIn VertexIndex
)" + CommonTypes() + R"(
%ptr_ty = OpTypePointer Input %uint
%1 = OpVariable %ptr_ty Input
)" + MainBody();
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = "var<private> x_1 : u32;";
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Builtin_Input_OppositeSignednessAsWGSL) {
// WGSL vertex_index store type is u32. Use i32 in SPIR-V.
const auto assembly = Preamble() + FragMain() + R"(
OpDecorate %1 BuiltIn VertexIndex
)" + CommonTypes() + R"(
%ptr_ty = OpTypePointer Input %int
%1 = OpVariable %ptr_ty Input
)" + MainBody();
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = "var<private> x_1 : i32;";
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvModuleScopeVarParserTest, EntryPointWrapping_IOLocations) {
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1 %2 %3 %4
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 Location 0
OpDecorate %2 Location 0
OpDecorate %3 Location 30
OpDecorate %4 Location 6
)" + CommonTypes() +
R"(
%ptr_in_uint = OpTypePointer Input %uint
%ptr_out_uint = OpTypePointer Output %uint
%1 = OpVariable %ptr_in_uint Input
%2 = OpVariable %ptr_out_uint Output
%3 = OpVariable %ptr_in_uint Input
%4 = OpVariable %ptr_out_uint Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(var<private> x_1 : u32;
var<private> x_2 : u32;
var<private> x_3 : u32;
var<private> x_4 : u32;
fn main_1() {
return;
}
struct main_out {
[[location(0)]]
x_2_1 : u32;
[[location(6)]]
x_4_1 : u32;
};
[[stage(fragment)]]
fn main([[location(0)]] x_1_param : u32, [[location(30)]] x_3_param : u32) -> main_out {
x_1 = x_1_param;
x_3 = x_3_param;
main_1();
return main_out(x_2, x_4);
}
)";
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_BuiltinVar_Input_SameSignedness) {
// instance_index is u32 in WGSL. Use uint in SPIR-V.
// No bitcasts are used for parameter formation or return value.
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Vertex %main "main" %1 %position
OpDecorate %position BuiltIn Position
OpDecorate %1 BuiltIn InstanceIndex
)" + CommonTypes() +
R"(
%ptr_in_uint = OpTypePointer Input %uint
%1 = OpVariable %ptr_in_uint Input
%posty = OpTypePointer Output %v4float
%position = OpVariable %posty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %uint %1 ; load same signedness
;;;; %3 = OpLoad %int %1 ; loading different signedness is invalid.
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_2 : u32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
x_4_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(instance_index)]] x_1_param : u32) -> main_out {
x_1 = x_1_param;
main_1();
return main_out(x_4);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_BuiltinVar_Input_OppositeSignedness) {
// instance_index is u32 in WGSL. Use int in SPIR-V.
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Vertex %main "main" %position %1
OpDecorate %position BuiltIn Position
OpDecorate %1 BuiltIn InstanceIndex
)" + CommonTypes() +
R"(
%ptr_in_int = OpTypePointer Input %int
%1 = OpVariable %ptr_in_int Input
%posty = OpTypePointer Output %v4float
%position = OpVariable %posty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %int %1 ; load same signedness
;;; %3 = OpLoad %uint %1 ; loading different signedness is invalid
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
struct main_out {
[[builtin(position)]]
x_4_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[builtin(instance_index)]] x_1_param : u32) -> main_out {
x_1 = bitcast<i32>(x_1_param);
main_1();
return main_out(x_4);
}
)";
EXPECT_EQ(got, expected) << got;
}
// SampleMask is an array in Vulkan SPIR-V, but a scalar in WGSL.
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_BuiltinVar_SampleMask_In_Unsigned) {
// SampleMask is u32 in WGSL.
// Use unsigned array element in Vulkan.
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 BuiltIn SampleMask
)" + CommonTypes() +
R"(
%arr = OpTypeArray %uint %uint_1
%ptr_ty = OpTypePointer Input %arr
%1 = OpVariable %ptr_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_mask)]] x_1_param : u32) {
x_1[0] = x_1_param;
main_1();
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_BuiltinVar_SampleMask_In_Signed) {
// SampleMask is u32 in WGSL.
// Use signed array element in Vulkan.
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 BuiltIn SampleMask
)" + CommonTypes() +
R"(
%arr = OpTypeArray %int %uint_1
%ptr_ty = OpTypePointer Input %arr
%1 = OpVariable %ptr_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
return;
}
[[stage(fragment)]]
fn main([[builtin(sample_mask)]] x_1_param : u32) {
x_1[0] = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_BuiltinVar_SampleMask_Out_Unsigned_Initializer) {
// SampleMask is u32 in WGSL.
// Use unsigned array element in Vulkan.
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 BuiltIn SampleMask
)" + CommonTypes() +
R"(
%arr = OpTypeArray %uint %uint_1
%ptr_ty = OpTypePointer Output %arr
%zero = OpConstantNull %arr
%1 = OpVariable %ptr_ty Output %zero
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(var<private> x_1 : array<u32, 1u> = array<u32, 1u>(0u);
fn main_1() {
return;
}
struct main_out {
[[builtin(sample_mask)]]
x_1_1 : u32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(x_1[0]);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_BuiltinVar_SampleMask_Out_Signed_Initializer) {
// SampleMask is u32 in WGSL.
// Use signed array element in Vulkan.
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 BuiltIn SampleMask
)" + CommonTypes() +
R"(
%arr = OpTypeArray %int %uint_1
%ptr_ty = OpTypePointer Output %arr
%zero = OpConstantNull %arr
%1 = OpVariable %ptr_ty Output %zero
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(var<private> x_1 : array<i32, 1u> = array<i32, 1u>(0);
fn main_1() {
return;
}
struct main_out {
[[builtin(sample_mask)]]
x_1_1 : u32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(bitcast<u32>(x_1[0]));
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_BuiltinVar_FragDepth_Out_Initializer) {
// FragDepth does not require conversion, because it's f32.
// The member of the return type is just the identifier corresponding
// to the module-scope private variable.
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 BuiltIn FragDepth
)" + CommonTypes() +
R"(
%ptr_ty = OpTypePointer Output %float
%1 = OpVariable %ptr_ty Output %float_0
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : f32 = 0.0;
fn main_1() {
return;
}
struct main_out {
[[builtin(frag_depth)]]
x_1_1 : f32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(x_1);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPosition_BuiltIn_Position) {
// In Vulkan SPIR-V, Position is the first member of gl_PerVertex
const std::string assembly = PerVertexPreamble() + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> gl_Position : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
gl_Position : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(gl_Position);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPosition_BuiltIn_Position_Initializer) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1
OpDecorate %10 Block
OpMemberDecorate %10 0 BuiltIn Position
OpMemberDecorate %10 1 BuiltIn PointSize
OpMemberDecorate %10 2 BuiltIn ClipDistance
OpMemberDecorate %10 3 BuiltIn CullDistance
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%arr = OpTypeArray %float %uint_1
%10 = OpTypeStruct %v4float %float %arr %arr
%11 = OpTypePointer Output %10
%float_1 = OpConstant %float 1
%float_2 = OpConstant %float 2
%float_3 = OpConstant %float 3
%float_4 = OpConstant %float 4
%float_5 = OpConstant %float 5
%float_6 = OpConstant %float 6
%float_7 = OpConstant %float 7
%init_pos = OpConstantComposite %v4float %float_1 %float_2 %float_3 %float_4
%init_clip = OpConstantComposite %arr %float_6
%init_cull = OpConstantComposite %arr %float_7
%init_per_vertex = OpConstantComposite %10 %init_pos %float_5 %init_clip %init_cull
%1 = OpVariable %11 Output %init_per_vertex
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(var<private> gl_Position : vec4<f32> = vec4<f32>(1.0, 2.0, 3.0, 4.0);
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
gl_Position : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(gl_Position);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Input_FlattenArray_OneLevel) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpDecorate %1 Location 4
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%uint_3 = OpConstant %uint 3
%arr = OpTypeArray %float %uint_3
%11 = OpTypePointer Input %arr
%1 = OpVariable %11 Input
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<f32, 3u>;
var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[location(4)]] x_1_param : f32, [[location(5)]] x_1_param_1 : f32, [[location(6)]] x_1_param_2 : f32) -> main_out {
x_1[0] = x_1_param;
x_1[1] = x_1_param_1;
x_1[2] = x_1_param_2;
main_1();
return main_out(x_2);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Input_FlattenMatrix) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpDecorate %1 Location 9
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%m2v4float = OpTypeMatrix %v4float 2
%uint = OpTypeInt 32 0
%11 = OpTypePointer Input %m2v4float
%1 = OpVariable %11 Input
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : mat2x4<f32>;
var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[location(9)]] x_1_param : vec4<f32>, [[location(10)]] x_1_param_1 : vec4<f32>) -> main_out {
x_1[0] = x_1_param;
x_1[1] = x_1_param_1;
main_1();
return main_out(x_2);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Input_FlattenStruct_LocOnVariable) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpName %strct "Communicators"
OpMemberName %strct 0 "alice"
OpMemberName %strct 1 "bob"
OpDecorate %1 Location 9
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%strct = OpTypeStruct %float %v4float
%11 = OpTypePointer Input %strct
%1 = OpVariable %11 Input
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(struct Communicators {
alice : f32;
bob : vec4<f32>;
};
var<private> x_1 : Communicators;
var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[location(9)]] x_1_param : f32, [[location(10)]] x_1_param_1 : vec4<f32>) -> main_out {
x_1.alice = x_1_param;
x_1.bob = x_1_param_1;
main_1();
return main_out(x_2);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Input_FlattenNested) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpDecorate %1 Location 7
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%m2v4float = OpTypeMatrix %v4float 2
%uint = OpTypeInt 32 0
%uint_2 = OpConstant %uint 2
%arr = OpTypeArray %m2v4float %uint_2
%11 = OpTypePointer Input %arr
%1 = OpVariable %11 Input
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<mat2x4<f32>, 2u>;
var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[location(7)]] x_1_param : vec4<f32>, [[location(8)]] x_1_param_1 : vec4<f32>, [[location(9)]] x_1_param_2 : vec4<f32>, [[location(10)]] x_1_param_3 : vec4<f32>) -> main_out {
x_1[0][0] = x_1_param;
x_1[0][1] = x_1_param_1;
x_1[1][0] = x_1_param_2;
x_1[1][1] = x_1_param_3;
main_1();
return main_out(x_2);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Output_FlattenArray_OneLevel) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpDecorate %1 Location 4
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%uint_3 = OpConstant %uint 3
%arr = OpTypeArray %float %uint_3
%11 = OpTypePointer Output %arr
%1 = OpVariable %11 Output
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<f32, 3u>;
var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[location(4)]]
x_1_1 : f32;
[[location(5)]]
x_1_2 : f32;
[[location(6)]]
x_1_3 : f32;
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(x_1[0], x_1[1], x_1[2], x_2);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Output_FlattenMatrix) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpDecorate %1 Location 9
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%m2v4float = OpTypeMatrix %v4float 2
%uint = OpTypeInt 32 0
%11 = OpTypePointer Output %m2v4float
%1 = OpVariable %11 Output
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : mat2x4<f32>;
var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[location(9)]]
x_1_1 : vec4<f32>;
[[location(10)]]
x_1_2 : vec4<f32>;
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(x_1[0], x_1[1], x_2);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Output_FlattenStruct_LocOnVariable) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpName %strct "Communicators"
OpMemberName %strct 0 "alice"
OpMemberName %strct 1 "bob"
OpDecorate %1 Location 9
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%strct = OpTypeStruct %float %v4float
%11 = OpTypePointer Output %strct
%1 = OpVariable %11 Output
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(struct Communicators {
alice : f32;
bob : vec4<f32>;
};
var<private> x_1 : Communicators;
var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[location(9)]]
x_1_1 : f32;
[[location(10)]]
x_1_2 : vec4<f32>;
[[builtin(position)]]
x_2_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(x_1.alice, x_1.bob, x_2);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, FlattenStruct_LocOnMembers) {
// Block-decorated struct may have its members decorated with Location.
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2 %3
OpName %strct "Communicators"
OpMemberName %strct 0 "alice"
OpMemberName %strct 1 "bob"
OpMemberDecorate %strct 0 Location 9
OpMemberDecorate %strct 1 Location 11
OpDecorate %strct Block
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%strct = OpTypeStruct %float %v4float
%11 = OpTypePointer Input %strct
%13 = OpTypePointer Output %strct
%1 = OpVariable %11 Input
%3 = OpVariable %13 Output
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected = R"(struct Communicators {
alice : f32;
bob : vec4<f32>;
};
var<private> x_1 : Communicators;
var<private> x_3 : Communicators;
var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
x_2_1 : vec4<f32>;
[[location(9)]]
x_3_1 : f32;
[[location(11)]]
x_3_2 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[location(9)]] x_1_param : f32, [[location(11)]] x_1_param_1 : vec4<f32>) -> main_out {
x_1.alice = x_1_param;
x_1.bob = x_1_param_1;
main_1();
return main_out(x_2, x_3.alice, x_3.bob);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_Interpolation_Flat_Vertex_In) {
// Flat decorations are dropped for integral
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Vertex %main "main" %1 %2 %3 %4 %5 %6 %10
OpDecorate %1 Location 1
OpDecorate %2 Location 2
OpDecorate %3 Location 3
OpDecorate %4 Location 4
OpDecorate %5 Location 5
OpDecorate %6 Location 6
OpDecorate %1 Flat
OpDecorate %2 Flat
OpDecorate %3 Flat
OpDecorate %4 Flat
OpDecorate %5 Flat
OpDecorate %6 Flat
OpDecorate %10 BuiltIn Position
)" + CommonTypes() +
R"(
%ptr_in_uint = OpTypePointer Input %uint
%ptr_in_v2uint = OpTypePointer Input %v2uint
%ptr_in_int = OpTypePointer Input %int
%ptr_in_v2int = OpTypePointer Input %v2int
%ptr_in_float = OpTypePointer Input %float
%ptr_in_v2float = OpTypePointer Input %v2float
%1 = OpVariable %ptr_in_uint Input
%2 = OpVariable %ptr_in_v2uint Input
%3 = OpVariable %ptr_in_int Input
%4 = OpVariable %ptr_in_v2int Input
%5 = OpVariable %ptr_in_float Input
%6 = OpVariable %ptr_in_v2float Input
%ptr_out_v4float = OpTypePointer Output %v4float
%10 = OpVariable %ptr_out_v4float Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(var<private> x_1 : u32;
var<private> x_2 : vec2<u32>;
var<private> x_3 : i32;
var<private> x_4 : vec2<i32>;
var<private> x_5 : f32;
var<private> x_6 : vec2<f32>;
var<private> x_10 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[builtin(position)]]
x_10_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main([[location(1), interpolate(flat)]] x_1_param : u32, [[location(2), interpolate(flat)]] x_2_param : vec2<u32>, [[location(3), interpolate(flat)]] x_3_param : i32, [[location(4), interpolate(flat)]] x_4_param : vec2<i32>, [[location(5), interpolate(flat)]] x_5_param : f32, [[location(6), interpolate(flat)]] x_6_param : vec2<f32>) -> main_out {
x_1 = x_1_param;
x_2 = x_2_param;
x_3 = x_3_param;
x_4 = x_4_param;
x_5 = x_5_param;
x_6 = x_6_param;
main_1();
return main_out(x_10);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_Interpolation_Flat_Vertex_Output) {
// Flat decorations are dropped for integral
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Vertex %main "main" %1 %2 %3 %4 %5 %6 %10
OpDecorate %1 Location 1
OpDecorate %2 Location 2
OpDecorate %3 Location 3
OpDecorate %4 Location 4
OpDecorate %5 Location 5
OpDecorate %6 Location 6
OpDecorate %1 Flat
OpDecorate %2 Flat
OpDecorate %3 Flat
OpDecorate %4 Flat
OpDecorate %5 Flat
OpDecorate %6 Flat
OpDecorate %10 BuiltIn Position
)" + CommonTypes() +
R"(
%ptr_out_uint = OpTypePointer Output %uint
%ptr_out_v2uint = OpTypePointer Output %v2uint
%ptr_out_int = OpTypePointer Output %int
%ptr_out_v2int = OpTypePointer Output %v2int
%ptr_out_float = OpTypePointer Output %float
%ptr_out_v2float = OpTypePointer Output %v2float
%1 = OpVariable %ptr_out_uint Output
%2 = OpVariable %ptr_out_v2uint Output
%3 = OpVariable %ptr_out_int Output
%4 = OpVariable %ptr_out_v2int Output
%5 = OpVariable %ptr_out_float Output
%6 = OpVariable %ptr_out_v2float Output
%ptr_out_v4float = OpTypePointer Output %v4float
%10 = OpVariable %ptr_out_v4float Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(var<private> x_1 : u32;
var<private> x_2 : vec2<u32>;
var<private> x_3 : i32;
var<private> x_4 : vec2<i32>;
var<private> x_5 : f32;
var<private> x_6 : vec2<f32>;
var<private> x_10 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
[[location(1), interpolate(flat)]]
x_1_1 : u32;
[[location(2), interpolate(flat)]]
x_2_1 : vec2<u32>;
[[location(3), interpolate(flat)]]
x_3_1 : i32;
[[location(4), interpolate(flat)]]
x_4_1 : vec2<i32>;
[[location(5), interpolate(flat)]]
x_5_1 : f32;
[[location(6), interpolate(flat)]]
x_6_1 : vec2<f32>;
[[builtin(position)]]
x_10_1 : vec4<f32>;
};
[[stage(vertex)]]
fn main() -> main_out {
main_1();
return main_out(x_1, x_2, x_3, x_4, x_5, x_6, x_10);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_Flatten_Interpolation_Flat_Fragment_In) {
// Flat decorations are dropped for integral
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1 %2
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 Location 1
OpDecorate %2 Location 5
OpDecorate %1 Flat
OpDecorate %2 Flat
)" + CommonTypes() +
R"(
%arr = OpTypeArray %float %uint_2
%strct = OpTypeStruct %float %float
%ptr_in_arr = OpTypePointer Input %arr
%ptr_in_strct = OpTypePointer Input %strct
%1 = OpVariable %ptr_in_arr Input
%2 = OpVariable %ptr_in_strct Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(struct S {
field0 : f32;
field1 : f32;
};
var<private> x_1 : array<f32, 2u>;
var<private> x_2 : S;
fn main_1() {
return;
}
[[stage(fragment)]]
fn main([[location(1), interpolate(flat)]] x_1_param : f32, [[location(2), interpolate(flat)]] x_1_param_1 : f32, [[location(5), interpolate(flat)]] x_2_param : f32, [[location(6), interpolate(flat)]] x_2_param_1 : f32) {
x_1[0] = x_1_param;
x_1[1] = x_1_param_1;
x_2.field0 = x_2_param;
x_2.field1 = x_2_param_1;
main_1();
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_Interpolation_Floating_Fragment_In) {
// Flat decorations are dropped for integral
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1 %2 %3 %4 %5 %6
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 Location 1
OpDecorate %2 Location 2
OpDecorate %3 Location 3
OpDecorate %4 Location 4
OpDecorate %5 Location 5
OpDecorate %6 Location 6
; %1 perspective center
OpDecorate %2 Centroid ; perspective centroid
OpDecorate %3 Sample ; perspective sample
OpDecorate %4 NoPerspective; linear center
OpDecorate %5 NoPerspective ; linear centroid
OpDecorate %5 Centroid
OpDecorate %6 NoPerspective ; linear sample
OpDecorate %6 Sample
)" + CommonTypes() +
R"(
%ptr_in_float = OpTypePointer Input %float
%1 = OpVariable %ptr_in_float Input
%2 = OpVariable %ptr_in_float Input
%3 = OpVariable %ptr_in_float Input
%4 = OpVariable %ptr_in_float Input
%5 = OpVariable %ptr_in_float Input
%6 = OpVariable %ptr_in_float Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(var<private> x_1 : f32;
var<private> x_2 : f32;
var<private> x_3 : f32;
var<private> x_4 : f32;
var<private> x_5 : f32;
var<private> x_6 : f32;
fn main_1() {
return;
}
[[stage(fragment)]]
fn main([[location(1)]] x_1_param : f32, [[location(2), interpolate(perspective, centroid)]] x_2_param : f32, [[location(3), interpolate(perspective, sample)]] x_3_param : f32, [[location(4), interpolate(linear)]] x_4_param : f32, [[location(5), interpolate(linear, centroid)]] x_5_param : f32, [[location(6), interpolate(linear, sample)]] x_6_param : f32) {
x_1 = x_1_param;
x_2 = x_2_param;
x_3 = x_3_param;
x_4 = x_4_param;
x_5 = x_5_param;
x_6 = x_6_param;
main_1();
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_Flatten_Interpolation_Floating_Fragment_In) {
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 Location 1
; member 0 perspective center
OpMemberDecorate %10 1 Centroid ; perspective centroid
OpMemberDecorate %10 2 Sample ; perspective sample
OpMemberDecorate %10 3 NoPerspective; linear center
OpMemberDecorate %10 4 NoPerspective ; linear centroid
OpMemberDecorate %10 4 Centroid
OpMemberDecorate %10 5 NoPerspective ; linear sample
OpMemberDecorate %10 5 Sample
)" + CommonTypes() +
R"(
%10 = OpTypeStruct %float %float %float %float %float %float
%ptr_in_strct = OpTypePointer Input %10
%1 = OpVariable %ptr_in_strct Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << assembly << p->error();
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(struct S {
field0 : f32;
field1 : f32;
field2 : f32;
field3 : f32;
field4 : f32;
field5 : f32;
};
var<private> x_1 : S;
fn main_1() {
return;
}
[[stage(fragment)]]
fn main([[location(1)]] x_1_param : f32, [[location(2), interpolate(perspective, centroid)]] x_1_param_1 : f32, [[location(3), interpolate(perspective, sample)]] x_1_param_2 : f32, [[location(4), interpolate(linear)]] x_1_param_3 : f32, [[location(5), interpolate(linear, centroid)]] x_1_param_4 : f32, [[location(6), interpolate(linear, sample)]] x_1_param_5 : f32) {
x_1.field0 = x_1_param;
x_1.field1 = x_1_param_1;
x_1.field2 = x_1_param_2;
x_1.field3 = x_1_param_3;
x_1.field4 = x_1_param_4;
x_1.field5 = x_1_param_5;
main_1();
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_Interpolation_Floating_Fragment_Out) {
// Flat decorations are dropped for integral
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1 %2 %3 %4 %5 %6
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 Location 1
OpDecorate %2 Location 2
OpDecorate %3 Location 3
OpDecorate %4 Location 4
OpDecorate %5 Location 5
OpDecorate %6 Location 6
; %1 perspective center
OpDecorate %2 Centroid ; perspective centroid
OpDecorate %3 Sample ; perspective sample
OpDecorate %4 NoPerspective; linear center
OpDecorate %5 NoPerspective ; linear centroid
OpDecorate %5 Centroid
OpDecorate %6 NoPerspective ; linear sample
OpDecorate %6 Sample
)" + CommonTypes() +
R"(
%ptr_out_float = OpTypePointer Output %float
%1 = OpVariable %ptr_out_float Output
%2 = OpVariable %ptr_out_float Output
%3 = OpVariable %ptr_out_float Output
%4 = OpVariable %ptr_out_float Output
%5 = OpVariable %ptr_out_float Output
%6 = OpVariable %ptr_out_float Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(var<private> x_1 : f32;
var<private> x_2 : f32;
var<private> x_3 : f32;
var<private> x_4 : f32;
var<private> x_5 : f32;
var<private> x_6 : f32;
fn main_1() {
return;
}
struct main_out {
[[location(1)]]
x_1_1 : f32;
[[location(2), interpolate(perspective, centroid)]]
x_2_1 : f32;
[[location(3), interpolate(perspective, sample)]]
x_3_1 : f32;
[[location(4), interpolate(linear)]]
x_4_1 : f32;
[[location(5), interpolate(linear, centroid)]]
x_5_1 : f32;
[[location(6), interpolate(linear, sample)]]
x_6_1 : f32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(x_1, x_2, x_3, x_4, x_5, x_6);
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest,
EntryPointWrapping_Flatten_Interpolation_Floating_Fragment_Out) {
const auto assembly = CommonCapabilities() + R"(
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 Location 1
; member 0 perspective center
OpMemberDecorate %10 1 Centroid ; perspective centroid
OpMemberDecorate %10 2 Sample ; perspective sample
OpMemberDecorate %10 3 NoPerspective; linear center
OpMemberDecorate %10 4 NoPerspective ; linear centroid
OpMemberDecorate %10 4 Centroid
OpMemberDecorate %10 5 NoPerspective ; linear sample
OpMemberDecorate %10 5 Sample
)" + CommonTypes() +
R"(
%10 = OpTypeStruct %float %float %float %float %float %float
%ptr_in_strct = OpTypePointer Output %10
%1 = OpVariable %ptr_in_strct Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto got = test::ToString(p->program());
const std::string expected =
R"(struct S {
field0 : f32;
field1 : f32;
field2 : f32;
field3 : f32;
field4 : f32;
field5 : f32;
};
var<private> x_1 : S;
fn main_1() {
return;
}
struct main_out {
[[location(1)]]
x_1_1 : f32;
[[location(2), interpolate(perspective, centroid)]]
x_1_2 : f32;
[[location(3), interpolate(perspective, sample)]]
x_1_3 : f32;
[[location(4), interpolate(linear)]]
x_1_4 : f32;
[[location(5), interpolate(linear, centroid)]]
x_1_5 : f32;
[[location(6), interpolate(linear, sample)]]
x_1_6 : f32;
};
[[stage(fragment)]]
fn main() -> main_out {
main_1();
return main_out(x_1.field0, x_1.field1, x_1.field2, x_1.field3, x_1.field4, x_1.field5);
}
)";
EXPECT_EQ(got, expected) << got;
}
} // namespace
} // namespace spirv
} // namespace reader
} // namespace tint