blob: 85ac938d502aa10a56594c15bf6dc07cbc3ae429 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "src/reader/spirv/function.h"
#include "src/reader/spirv/parser_impl.h"
#include "src/reader/spirv/parser_impl_test_helper.h"
#include "src/reader/spirv/spirv_tools_helpers_test.h"
namespace tint {
namespace reader {
namespace spirv {
namespace {
using ::testing::Eq;
using ::testing::HasSubstr;
/// @returns a SPIR-V assembly segment which assigns debug names
/// to particular IDs.
std::string Names(std::vector<std::string> ids) {
std::ostringstream outs;
for (auto& id : ids) {
outs << " OpName %" << id << " \"" << id << "\"\n";
}
return outs.str();
}
std::string Preamble() {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%bool = OpTypeBool
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_bool = OpTypePointer Function %bool
%ptr_float = OpTypePointer Function %float
%ptr_uint = OpTypePointer Function %uint
%ptr_int = OpTypePointer Function %int
%true = OpConstantTrue %bool
%false = OpConstantFalse %bool
%float_0 = OpConstant %float 0.0
%float_1p5 = OpConstant %float 1.5
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%int_m1 = OpConstant %int -1
%uint_2 = OpConstant %uint 2
%uint_3 = OpConstant %uint 3
%uint_4 = OpConstant %uint 4
%uint_5 = OpConstant %uint 5
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%arr2uint = OpTypeArray %uint %uint_2
%strct = OpTypeStruct %uint %float %arr2uint
)";
}
TEST_F(SpvParserTest, EmitFunctionVariables_AnonymousVars) {
auto* p = parser(test::Assemble(Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpVariable %ptr_uint Function
%2 = OpVariable %ptr_uint Function
%3 = OpVariable %ptr_uint Function
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
x_1
function
__u32
}
}
VariableDeclStatement{
Variable{
x_2
function
__u32
}
}
VariableDeclStatement{
Variable{
x_3
function
__u32
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_NamedVars) {
auto* p = parser(test::Assemble(Names({"a", "b", "c"}) + Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_uint Function
%b = OpVariable %ptr_uint Function
%c = OpVariable %ptr_uint Function
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
a
function
__u32
}
}
VariableDeclStatement{
Variable{
b
function
__u32
}
}
VariableDeclStatement{
Variable{
c
function
__u32
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_MixedTypes) {
auto* p = parser(test::Assemble(Names({"a", "b", "c"}) + Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_uint Function
%b = OpVariable %ptr_int Function
%c = OpVariable %ptr_float Function
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
a
function
__u32
}
}
VariableDeclStatement{
Variable{
b
function
__i32
}
}
VariableDeclStatement{
Variable{
c
function
__f32
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_ScalarInitializers) {
auto* p =
parser(test::Assemble(Names({"a", "b", "c", "d", "e"}) + Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_bool Function %true
%b = OpVariable %ptr_bool Function %false
%c = OpVariable %ptr_int Function %int_m1
%d = OpVariable %ptr_uint Function %uint_1
%e = OpVariable %ptr_float Function %float_1p5
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
a
function
__bool
{
ScalarConstructor{true}
}
}
}
VariableDeclStatement{
Variable{
b
function
__bool
{
ScalarConstructor{false}
}
}
}
VariableDeclStatement{
Variable{
c
function
__i32
{
ScalarConstructor{-1}
}
}
}
VariableDeclStatement{
Variable{
d
function
__u32
{
ScalarConstructor{1}
}
}
}
VariableDeclStatement{
Variable{
e
function
__f32
{
ScalarConstructor{1.500000}
}
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_ScalarNullInitializers) {
auto* p = parser(test::Assemble(Names({"a", "b", "c", "d"}) + Preamble() + R"(
%null_bool = OpConstantNull %bool
%null_int = OpConstantNull %int
%null_uint = OpConstantNull %uint
%null_float = OpConstantNull %float
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_bool Function %null_bool
%b = OpVariable %ptr_int Function %null_int
%c = OpVariable %ptr_uint Function %null_uint
%d = OpVariable %ptr_float Function %null_float
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
a
function
__bool
{
ScalarConstructor{false}
}
}
}
VariableDeclStatement{
Variable{
b
function
__i32
{
ScalarConstructor{0}
}
}
}
VariableDeclStatement{
Variable{
c
function
__u32
{
ScalarConstructor{0}
}
}
}
VariableDeclStatement{
Variable{
d
function
__f32
{
ScalarConstructor{0.000000}
}
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_VectorInitializer) {
auto* p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %v2float
%two = OpConstant %float 2.0
%const = OpConstantComposite %v2float %float_1p5 %two
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__vec_2__f32
{
TypeConstructor{
__vec_2__f32
ScalarConstructor{1.500000}
ScalarConstructor{2.000000}
}
}
}
}
)")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_MatrixInitializer) {
auto* p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %m3v2float
%two = OpConstant %float 2.0
%three = OpConstant %float 3.0
%four = OpConstant %float 4.0
%v0 = OpConstantComposite %v2float %float_1p5 %two
%v1 = OpConstantComposite %v2float %two %three
%v2 = OpConstantComposite %v2float %three %four
%const = OpConstantComposite %m3v2float %v0 %v1 %v2
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__mat_2_3__f32
{
TypeConstructor{
__mat_2_3__f32
TypeConstructor{
__vec_2__f32
ScalarConstructor{1.500000}
ScalarConstructor{2.000000}
}
TypeConstructor{
__vec_2__f32
ScalarConstructor{2.000000}
ScalarConstructor{3.000000}
}
TypeConstructor{
__vec_2__f32
ScalarConstructor{3.000000}
ScalarConstructor{4.000000}
}
}
}
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_ArrayInitializer) {
auto* p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantComposite %arr2uint %uint_1 %two
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__array__u32_2
{
TypeConstructor{
__array__u32_2
ScalarConstructor{1}
ScalarConstructor{2}
}
}
}
}
)")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_ArrayInitializer_AliasType) {
auto* p = parser(test::Assemble(
std::string("OpDecorate %arr2uint ArrayStride 16\n") + Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantComposite %arr2uint %uint_1 %two
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__alias_Arr__array__u32_2_16
{
TypeConstructor{
__alias_Arr__array__u32_2_16
ScalarConstructor{1}
ScalarConstructor{2}
}
}
}
}
)")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_ArrayInitializer_Null) {
auto* p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantNull %arr2uint
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__array__u32_2
{
TypeConstructor{
__array__u32_2
ScalarConstructor{0}
ScalarConstructor{0}
}
}
}
}
)")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_ArrayInitializer_AliasType_Null) {
auto* p = parser(test::Assemble(
std::string("OpDecorate %arr2uint ArrayStride 16\n") + Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantNull %arr2uint
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__alias_Arr__array__u32_2_16
{
TypeConstructor{
__alias_Arr__array__u32_2_16
ScalarConstructor{0}
ScalarConstructor{0}
}
}
}
}
)")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_StructInitializer) {
auto* p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %strct
%two = OpConstant %uint 2
%arrconst = OpConstantComposite %arr2uint %uint_1 %two
%const = OpConstantComposite %strct %uint_1 %float_1p5 %arrconst
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__alias_S__struct_S
{
TypeConstructor{
__alias_S__struct_S
ScalarConstructor{1}
ScalarConstructor{1.500000}
TypeConstructor{
__array__u32_2
ScalarConstructor{1}
ScalarConstructor{2}
}
}
}
}
}
)")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_StructInitializer_Null) {
auto* p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %strct
%two = OpConstant %uint 2
%arrconst = OpConstantComposite %arr2uint %uint_1 %two
%const = OpConstantNull %strct
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__alias_S__struct_S
{
TypeConstructor{
__alias_S__struct_S
ScalarConstructor{0}
ScalarConstructor{0.000000}
TypeConstructor{
__array__u32_2
ScalarConstructor{0}
ScalarConstructor{0}
}
}
}
}
}
)")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest,
EmitStatement_CombinatorialValue_Defer_UsedOnceSameConstruct) {
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%25 = OpVariable %ptr_uint Function
%2 = OpIAdd %uint %uint_1 %uint_1
OpStore %25 %uint_1 ; Do initial store to mark source location
OpBranch %20
%20 = OpLabel
OpStore %25 %2 ; defer emission of the addition until here.
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), Eq(R"(VariableDeclStatement{
Variable{
x_25
function
__u32
}
}
Assignment{
Identifier{x_25}
ScalarConstructor{1}
}
Assignment{
Identifier{x_25}
Binary{
ScalarConstructor{1}
add
ScalarConstructor{1}
}
}
Return{}
)")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest, EmitStatement_CombinatorialValue_Immediate_UsedTwice) {
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%25 = OpVariable %ptr_uint Function
%2 = OpIAdd %uint %uint_1 %uint_1
OpStore %25 %uint_1 ; Do initial store to mark source location
OpBranch %20
%20 = OpLabel
OpStore %25 %2
OpStore %25 %2
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), Eq(R"(VariableDeclStatement{
Variable{
x_25
function
__u32
}
}
VariableDeclStatement{
Variable{
x_2
none
__u32
{
Binary{
ScalarConstructor{1}
add
ScalarConstructor{1}
}
}
}
}
Assignment{
Identifier{x_25}
ScalarConstructor{1}
}
Assignment{
Identifier{x_25}
Identifier{x_2}
}
Assignment{
Identifier{x_25}
Identifier{x_2}
}
Return{}
)")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest,
EmitStatement_CombinatorialValue_Immediate_UsedOnceDifferentConstruct) {
// Translation should not sink expensive operations into or out of control
// flow. As a simple heuristic, don't move *any* combinatorial operation
// across any constrol flow.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%25 = OpVariable %ptr_uint Function
%2 = OpIAdd %uint %uint_1 %uint_1
OpStore %25 %uint_1 ; Do initial store to mark source location
OpBranch %20
%20 = OpLabel ; Introduce a new construct
OpLoopMerge %99 %80 None
OpBranch %80
%80 = OpLabel
OpStore %25 %2 ; store combinatorial value %2, inside the loop
OpBranch %20
%99 = OpLabel ; merge block
OpStore %25 %uint_2
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), Eq(R"(VariableDeclStatement{
Variable{
x_25
function
__u32
}
}
VariableDeclStatement{
Variable{
x_2
none
__u32
{
Binary{
ScalarConstructor{1}
add
ScalarConstructor{1}
}
}
}
}
Assignment{
Identifier{x_25}
ScalarConstructor{1}
}
Loop{
continuing {
Assignment{
Identifier{x_25}
Identifier{x_2}
}
}
}
Assignment{
Identifier{x_25}
ScalarConstructor{2}
}
Return{}
)")) << ToString(fe.ast_body());
}
TEST_F(
SpvParserTest,
EmitStatement_CombinatorialNonPointer_DefConstruct_DoesNotEncloseAllUses) {
// Compensate for the difference between dominance and scoping.
// Exercise hoisting of the constant definition to before its natural
// location.
//
// The definition of %2 should be hoisted
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%100 = OpFunction %void None %voidfn
%3 = OpLabel
OpStore %1 %uint_0
OpBranch %5
%5 = OpLabel
OpStore %1 %uint_1
OpLoopMerge %99 %80 None
OpBranchConditional %false %99 %20
%20 = OpLabel
OpStore %1 %uint_3
OpSelectionMerge %50 None
OpBranchConditional %true %30 %40
%30 = OpLabel
; This combinatorial definition in nested control flow dominates
; the use in the merge block in %50
%2 = OpIAdd %uint %uint_1 %uint_1
OpBranch %50
%40 = OpLabel
OpReturn
%50 = OpLabel ; merge block for if-selection
OpStore %1 %2
OpBranch %80
%80 = OpLabel ; merge block
OpStore %1 %uint_4
OpBranchConditional %false %99 %5 ; loop backedge
%99 = OpLabel
OpStore %1 %uint_5
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), Eq(R"(Assignment{
Identifier{x_1}
ScalarConstructor{0}
}
Loop{
VariableDeclStatement{
Variable{
x_2
function
__u32
}
}
Assignment{
Identifier{x_1}
ScalarConstructor{1}
}
If{
(
ScalarConstructor{false}
)
{
Break{}
}
}
Assignment{
Identifier{x_1}
ScalarConstructor{3}
}
If{
(
ScalarConstructor{true}
)
{
Assignment{
Identifier{x_2}
Binary{
ScalarConstructor{1}
add
ScalarConstructor{1}
}
}
}
}
Else{
{
Return{}
}
}
Assignment{
Identifier{x_1}
Identifier{x_2}
}
continuing {
Assignment{
Identifier{x_1}
ScalarConstructor{4}
}
If{
(
ScalarConstructor{false}
)
{
Break{}
}
}
}
}
Assignment{
Identifier{x_1}
ScalarConstructor{5}
}
Return{}
)")) << ToString(fe.ast_body());
}
} // namespace
} // namespace spirv
} // namespace reader
} // namespace tint