blob: bf7312941c4a9dced6495312df7feeae714c5509 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "gtest/gtest.h"
#include "src/ast/binary_expression.h"
#include "src/ast/float_literal.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/int_literal.h"
#include "src/ast/scalar_constructor_expression.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/u32_type.h"
#include "src/ast/type/vector_type.h"
#include "src/ast/type_constructor_expression.h"
#include "src/context.h"
#include "src/type_determiner.h"
#include "src/writer/spirv/builder.h"
#include "src/writer/spirv/spv_dump.h"
namespace tint {
namespace writer {
namespace spirv {
namespace {
using BuilderTest = testing::Test;
struct BinaryData {
ast::BinaryOp op;
std::string name;
};
inline std::ostream& operator<<(std::ostream& out, BinaryData data) {
out << data.op;
return out;
}
using BinaryArithSignedIntegerTest = testing::TestWithParam<BinaryData>;
TEST_P(BinaryArithSignedIntegerTest, Scalar) {
auto param = GetParam();
ast::type::I32Type i32;
auto lhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 3));
auto rhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 4));
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 4u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%1 = OpTypeInt 32 1
%2 = OpConstant %1 3
%3 = OpConstant %1 4
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%4 = " + param.name + " %1 %2 %3\n");
}
TEST_P(BinaryArithSignedIntegerTest, Vector) {
auto param = GetParam();
ast::type::I32Type i32;
ast::type::VectorType vec3(&i32, 3);
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
auto lhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
auto rhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 5u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%2 = OpTypeInt 32 1
%1 = OpTypeVector %2 3
%3 = OpConstant %2 1
%4 = OpConstantComposite %1 %3 %3 %3
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%5 = " + param.name + " %1 %4 %4\n");
}
INSTANTIATE_TEST_SUITE_P(
BuilderTest,
BinaryArithSignedIntegerTest,
testing::Values(
BinaryData{ast::BinaryOp::kAdd, "OpIAdd"},
BinaryData{ast::BinaryOp::kAnd, "OpBitwiseAnd"},
BinaryData{ast::BinaryOp::kDivide, "OpSDiv"},
BinaryData{ast::BinaryOp::kModulo, "OpSMod"},
BinaryData{ast::BinaryOp::kMultiply, "OpIMul"},
BinaryData{ast::BinaryOp::kOr, "OpBitwiseOr"},
BinaryData{ast::BinaryOp::kShiftLeft, "OpShiftLeftLogical"},
BinaryData{ast::BinaryOp::kShiftRight, "OpShiftRightLogical"},
BinaryData{ast::BinaryOp::kShiftRightArith, "OpShiftRightArithmetic"},
BinaryData{ast::BinaryOp::kSubtract, "OpISub"},
BinaryData{ast::BinaryOp::kXor, "OpBitwiseXor"}));
using BinaryArithUnsignedIntegerTest = testing::TestWithParam<BinaryData>;
TEST_P(BinaryArithUnsignedIntegerTest, Scalar) {
auto param = GetParam();
ast::type::U32Type u32;
auto lhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 3));
auto rhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 4));
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 4u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%1 = OpTypeInt 32 0
%2 = OpConstant %1 3
%3 = OpConstant %1 4
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%4 = " + param.name + " %1 %2 %3\n");
}
TEST_P(BinaryArithUnsignedIntegerTest, Vector) {
auto param = GetParam();
ast::type::U32Type u32;
ast::type::VectorType vec3(&u32, 3);
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
auto lhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
auto rhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 5u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%2 = OpTypeInt 32 0
%1 = OpTypeVector %2 3
%3 = OpConstant %2 1
%4 = OpConstantComposite %1 %3 %3 %3
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%5 = " + param.name + " %1 %4 %4\n");
}
INSTANTIATE_TEST_SUITE_P(
BuilderTest,
BinaryArithUnsignedIntegerTest,
testing::Values(
BinaryData{ast::BinaryOp::kAdd, "OpIAdd"},
BinaryData{ast::BinaryOp::kAnd, "OpBitwiseAnd"},
BinaryData{ast::BinaryOp::kDivide, "OpUDiv"},
BinaryData{ast::BinaryOp::kModulo, "OpUMod"},
BinaryData{ast::BinaryOp::kMultiply, "OpIMul"},
BinaryData{ast::BinaryOp::kOr, "OpBitwiseOr"},
BinaryData{ast::BinaryOp::kShiftLeft, "OpShiftLeftLogical"},
BinaryData{ast::BinaryOp::kShiftRight, "OpShiftRightLogical"},
BinaryData{ast::BinaryOp::kShiftRightArith, "OpShiftRightArithmetic"},
BinaryData{ast::BinaryOp::kSubtract, "OpISub"},
BinaryData{ast::BinaryOp::kXor, "OpBitwiseXor"}));
using BinaryArithFloatTest = testing::TestWithParam<BinaryData>;
TEST_P(BinaryArithFloatTest, Scalar) {
auto param = GetParam();
ast::type::F32Type f32;
auto lhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 3.2f));
auto rhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 4.5f));
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 4u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%1 = OpTypeFloat 32
%2 = OpConstant %1 3.20000005
%3 = OpConstant %1 4.5
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%4 = " + param.name + " %1 %2 %3\n");
}
TEST_P(BinaryArithFloatTest, Vector) {
auto param = GetParam();
ast::type::F32Type f32;
ast::type::VectorType vec3(&f32, 3);
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
auto lhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
auto rhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 5u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%2 = OpTypeFloat 32
%1 = OpTypeVector %2 3
%3 = OpConstant %2 1
%4 = OpConstantComposite %1 %3 %3 %3
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%5 = " + param.name + " %1 %4 %4\n");
}
INSTANTIATE_TEST_SUITE_P(
BuilderTest,
BinaryArithFloatTest,
testing::Values(BinaryData{ast::BinaryOp::kAdd, "OpFAdd"},
BinaryData{ast::BinaryOp::kDivide, "OpFDiv"},
BinaryData{ast::BinaryOp::kModulo, "OpFMod"},
BinaryData{ast::BinaryOp::kMultiply, "OpFMul"},
BinaryData{ast::BinaryOp::kSubtract, "OpFSub"}));
using BinaryCompareUnsignedIntegerTest = testing::TestWithParam<BinaryData>;
TEST_P(BinaryCompareUnsignedIntegerTest, Scalar) {
auto param = GetParam();
ast::type::U32Type u32;
auto lhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 3));
auto rhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 4));
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 4u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%1 = OpTypeInt 32 0
%2 = OpConstant %1 3
%3 = OpConstant %1 4
%5 = OpTypeBool
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%4 = " + param.name + " %5 %2 %3\n");
}
TEST_P(BinaryCompareUnsignedIntegerTest, Vector) {
auto param = GetParam();
ast::type::U32Type u32;
ast::type::VectorType vec3(&u32, 3);
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
auto lhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&u32, 1)));
auto rhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 5u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%2 = OpTypeInt 32 0
%1 = OpTypeVector %2 3
%3 = OpConstant %2 1
%4 = OpConstantComposite %1 %3 %3 %3
%7 = OpTypeBool
%6 = OpTypeVector %7 3
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%5 = " + param.name + " %6 %4 %4\n");
}
INSTANTIATE_TEST_SUITE_P(
BuilderTest,
BinaryCompareUnsignedIntegerTest,
testing::Values(
BinaryData{ast::BinaryOp::kEqual, "OpIEqual"},
BinaryData{ast::BinaryOp::kGreaterThan, "OpUGreaterThan"},
BinaryData{ast::BinaryOp::kGreaterThanEqual, "OpUGreaterThanEqual"},
BinaryData{ast::BinaryOp::kLessThan, "OpULessThan"},
BinaryData{ast::BinaryOp::kLessThanEqual, "OpULessThanEqual"},
BinaryData{ast::BinaryOp::kNotEqual, "OpINotEqual"}));
using BinaryCompareSignedIntegerTest = testing::TestWithParam<BinaryData>;
TEST_P(BinaryCompareSignedIntegerTest, Scalar) {
auto param = GetParam();
ast::type::I32Type i32;
auto lhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 3));
auto rhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 4));
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 4u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%1 = OpTypeInt 32 1
%2 = OpConstant %1 3
%3 = OpConstant %1 4
%5 = OpTypeBool
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%4 = " + param.name + " %5 %2 %3\n");
}
TEST_P(BinaryCompareSignedIntegerTest, Vector) {
auto param = GetParam();
ast::type::I32Type i32;
ast::type::VectorType vec3(&i32, 3);
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
auto lhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::IntLiteral>(&i32, 1)));
auto rhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 5u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%2 = OpTypeInt 32 1
%1 = OpTypeVector %2 3
%3 = OpConstant %2 1
%4 = OpConstantComposite %1 %3 %3 %3
%7 = OpTypeBool
%6 = OpTypeVector %7 3
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%5 = " + param.name + " %6 %4 %4\n");
}
INSTANTIATE_TEST_SUITE_P(
BuilderTest,
BinaryCompareSignedIntegerTest,
testing::Values(
BinaryData{ast::BinaryOp::kEqual, "OpIEqual"},
BinaryData{ast::BinaryOp::kGreaterThan, "OpSGreaterThan"},
BinaryData{ast::BinaryOp::kGreaterThanEqual, "OpSGreaterThanEqual"},
BinaryData{ast::BinaryOp::kLessThan, "OpSLessThan"},
BinaryData{ast::BinaryOp::kLessThanEqual, "OpSLessThanEqual"},
BinaryData{ast::BinaryOp::kNotEqual, "OpINotEqual"}));
using BinaryCompareFloatTest = testing::TestWithParam<BinaryData>;
TEST_P(BinaryCompareFloatTest, Scalar) {
auto param = GetParam();
ast::type::F32Type f32;
auto lhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 3.2f));
auto rhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 4.5f));
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 4u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%1 = OpTypeFloat 32
%2 = OpConstant %1 3.20000005
%3 = OpConstant %1 4.5
%5 = OpTypeBool
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%4 = " + param.name + " %5 %2 %3\n");
}
TEST_P(BinaryCompareFloatTest, Vector) {
auto param = GetParam();
ast::type::F32Type f32;
ast::type::VectorType vec3(&f32, 3);
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
auto lhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
auto rhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ast::BinaryExpression expr(param.op, std::move(lhs), std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 5u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%2 = OpTypeFloat 32
%1 = OpTypeVector %2 3
%3 = OpConstant %2 1
%4 = OpConstantComposite %1 %3 %3 %3
%7 = OpTypeBool
%6 = OpTypeVector %7 3
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%5 = " + param.name + " %6 %4 %4\n");
}
INSTANTIATE_TEST_SUITE_P(
BuilderTest,
BinaryCompareFloatTest,
testing::Values(
BinaryData{ast::BinaryOp::kEqual, "OpFOrdEqual"},
BinaryData{ast::BinaryOp::kGreaterThan, "OpFOrdGreaterThan"},
BinaryData{ast::BinaryOp::kGreaterThanEqual, "OpFOrdGreaterThanEqual"},
BinaryData{ast::BinaryOp::kLessThan, "OpFOrdLessThan"},
BinaryData{ast::BinaryOp::kLessThanEqual, "OpFOrdLessThanEqual"},
BinaryData{ast::BinaryOp::kNotEqual, "OpFOrdNotEqual"}));
TEST_F(BuilderTest, Binary_Multiply_VectorScalar) {
ast::type::F32Type f32;
ast::type::VectorType vec3(&f32, 3);
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
auto lhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
auto rhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, std::move(lhs),
std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 5u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%2 = OpTypeFloat 32
%1 = OpTypeVector %2 3
%3 = OpConstant %2 1
%4 = OpConstantComposite %1 %3 %3 %3
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%5 = OpVectorTimesScalar %1 %4 %3\n");
}
TEST_F(BuilderTest, Binary_Multiply_ScalarVector) {
ast::type::F32Type f32;
ast::type::VectorType vec3(&f32, 3);
auto lhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f));
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
auto rhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, std::move(lhs),
std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 5u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%1 = OpTypeFloat 32
%2 = OpConstant %1 1
%3 = OpTypeVector %1 3
%4 = OpConstantComposite %3 %2 %2 %2
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
"%5 = OpVectorTimesScalar %3 %4 %2\n");
}
TEST_F(BuilderTest, Binary_Multiply_MatrixScalar) {
ast::type::F32Type f32;
ast::type::MatrixType mat3(&f32, 3, 3);
auto var = std::make_unique<ast::Variable>(
"mat", ast::StorageClass::kFunction, &mat3);
auto lhs = std::make_unique<ast::IdentifierExpression>("mat");
auto rhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
td.RegisterVariableForTesting(var.get());
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, std::move(lhs),
std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
ASSERT_TRUE(b.GenerateGlobalVariable(var.get())) << b.error();
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 8u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%5 = OpTypeFloat 32
%4 = OpTypeVector %5 3
%3 = OpTypeMatrix %4 3
%2 = OpTypePointer Function %3
%1 = OpVariable %2 Function
%7 = OpConstant %5 1
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
R"(%6 = OpLoad %3 %1
%8 = OpMatrixTimesScalar %3 %6 %7
)");
}
TEST_F(BuilderTest, Binary_Multiply_ScalarMatrix) {
ast::type::F32Type f32;
ast::type::MatrixType mat3(&f32, 3, 3);
auto var = std::make_unique<ast::Variable>(
"mat", ast::StorageClass::kFunction, &mat3);
auto lhs = std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f));
auto rhs = std::make_unique<ast::IdentifierExpression>("mat");
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
td.RegisterVariableForTesting(var.get());
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, std::move(lhs),
std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
ASSERT_TRUE(b.GenerateGlobalVariable(var.get())) << b.error();
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 8u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%5 = OpTypeFloat 32
%4 = OpTypeVector %5 3
%3 = OpTypeMatrix %4 3
%2 = OpTypePointer Function %3
%1 = OpVariable %2 Function
%6 = OpConstant %5 1
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
R"(%7 = OpLoad %3 %1
%8 = OpMatrixTimesScalar %3 %7 %6
)");
}
TEST_F(BuilderTest, Binary_Multiply_MatrixVector) {
ast::type::F32Type f32;
ast::type::VectorType vec3(&f32, 3);
ast::type::MatrixType mat3(&f32, 3, 3);
auto var = std::make_unique<ast::Variable>(
"mat", ast::StorageClass::kFunction, &mat3);
auto lhs = std::make_unique<ast::IdentifierExpression>("mat");
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
auto rhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
td.RegisterVariableForTesting(var.get());
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, std::move(lhs),
std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
ASSERT_TRUE(b.GenerateGlobalVariable(var.get())) << b.error();
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 9u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%5 = OpTypeFloat 32
%4 = OpTypeVector %5 3
%3 = OpTypeMatrix %4 3
%2 = OpTypePointer Function %3
%1 = OpVariable %2 Function
%7 = OpConstant %5 1
%8 = OpConstantComposite %4 %7 %7 %7
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
R"(%6 = OpLoad %3 %1
%9 = OpMatrixTimesVector %4 %6 %8
)");
}
TEST_F(BuilderTest, Binary_Multiply_VectorMatrix) {
ast::type::F32Type f32;
ast::type::VectorType vec3(&f32, 3);
ast::type::MatrixType mat3(&f32, 3, 3);
auto var = std::make_unique<ast::Variable>(
"mat", ast::StorageClass::kFunction, &mat3);
ast::ExpressionList vals;
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::FloatLiteral>(&f32, 1.f)));
auto lhs =
std::make_unique<ast::TypeConstructorExpression>(&vec3, std::move(vals));
auto rhs = std::make_unique<ast::IdentifierExpression>("mat");
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
td.RegisterVariableForTesting(var.get());
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, std::move(lhs),
std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
ASSERT_TRUE(b.GenerateGlobalVariable(var.get())) << b.error();
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 9u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%5 = OpTypeFloat 32
%4 = OpTypeVector %5 3
%3 = OpTypeMatrix %4 3
%2 = OpTypePointer Function %3
%1 = OpVariable %2 Function
%6 = OpConstant %5 1
%7 = OpConstantComposite %4 %6 %6 %6
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
R"(%8 = OpLoad %3 %1
%9 = OpVectorTimesMatrix %4 %7 %8
)");
}
TEST_F(BuilderTest, Binary_Multiply_MatrixMatrix) {
ast::type::F32Type f32;
ast::type::VectorType vec3(&f32, 3);
ast::type::MatrixType mat3(&f32, 3, 3);
auto var = std::make_unique<ast::Variable>(
"mat", ast::StorageClass::kFunction, &mat3);
auto lhs = std::make_unique<ast::IdentifierExpression>("mat");
auto rhs = std::make_unique<ast::IdentifierExpression>("mat");
Context ctx;
ast::Module mod;
TypeDeterminer td(&ctx, &mod);
td.RegisterVariableForTesting(var.get());
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, std::move(lhs),
std::move(rhs));
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
Builder b(&mod);
b.push_function(Function{});
ASSERT_TRUE(b.GenerateGlobalVariable(var.get())) << b.error();
EXPECT_EQ(b.GenerateBinaryExpression(&expr), 8u) << b.error();
EXPECT_EQ(DumpInstructions(b.types()), R"(%5 = OpTypeFloat 32
%4 = OpTypeVector %5 3
%3 = OpTypeMatrix %4 3
%2 = OpTypePointer Function %3
%1 = OpVariable %2 Function
)");
EXPECT_EQ(DumpInstructions(b.functions()[0].instructions()),
R"(%6 = OpLoad %3 %1
%7 = OpLoad %3 %1
%8 = OpMatrixTimesMatrix %3 %6 %7
)");
}
} // namespace
} // namespace spirv
} // namespace writer
} // namespace tint