blob: d7cae0b994002585f5036cb61532415008057e34 [file] [log] [blame]
// Copyright 2020 The Tint Authors. //
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gmock/gmock.h"
#include "src/reader/spirv/function.h"
#include "src/reader/spirv/parser_impl_test_helper.h"
#include "src/reader/spirv/spirv_tools_helpers_test.h"
namespace tint {
namespace reader {
namespace spirv {
namespace {
using ::testing::HasSubstr;
std::string CommonTypes() {
return R"(
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%float = OpTypeFloat 32
%uint_10 = OpConstant %uint 10
%uint_20 = OpConstant %uint 20
%int_30 = OpConstant %int 30
%int_40 = OpConstant %int 40
%float_50 = OpConstant %float 50
%float_60 = OpConstant %float 60
%ptr_uint = OpTypePointer Function %uint
%ptr_int = OpTypePointer Function %int
%ptr_float = OpTypePointer Function %float
%v2uint = OpTypeVector %uint 2
%v2int = OpTypeVector %int 2
%v2float = OpTypeVector %float 2
%v2uint_10_20 = OpConstantComposite %v2uint %uint_10 %uint_20
%v2uint_20_10 = OpConstantComposite %v2uint %uint_20 %uint_10
%v2int_30_40 = OpConstantComposite %v2int %int_30 %int_40
%v2int_40_30 = OpConstantComposite %v2int %int_40 %int_30
%v2float_50_60 = OpConstantComposite %v2float %float_50 %float_60
%v2float_60_50 = OpConstantComposite %v2float %float_60 %float_50
)";
}
std::string SimplePreamble() {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %100 "main"
OpExecutionMode %100 OriginUpperLeft
)" + CommonTypes();
}
// Returns the AST dump for a given SPIR-V assembly constant.
std::string AstFor(std::string assembly) {
if (assembly == "v2uint_10_20") {
return "vec2<u32>(10u, 20u)";
}
if (assembly == "v2uint_20_10") {
return "vec2<u32>(20u, 10u)";
}
if (assembly == "v2int_30_40") {
return "vec2<i32>(30, 40)";
}
if (assembly == "v2int_40_30") {
return "vec2<i32>(40, 30)";
}
if (assembly == "cast_int_v2uint_10_20") {
return "bitcast<vec2<i32>(vec2<u32>(10u, 20u))";
}
if (assembly == "v2float_50_60") {
return "vec2<f32>(50.0, 60.0))";
}
if (assembly == "v2float_60_50") {
return "vec2<f32>(60.0, 50.0))";
}
return "bad case";
}
using SpvUnaryBitTest = SpvParserTestBase<::testing::Test>;
struct BinaryData {
const std::string res_type;
const std::string lhs;
const std::string op;
const std::string rhs;
const std::string ast_type;
const std::string ast_lhs;
const std::string ast_op;
const std::string ast_rhs;
};
inline std::ostream& operator<<(std::ostream& out, BinaryData data) {
out << "BinaryData{" << data.res_type << "," << data.lhs << "," << data.op
<< "," << data.rhs << "," << data.ast_type << "," << data.ast_lhs << ","
<< data.ast_op << "," << data.ast_rhs << "}";
return out;
}
using SpvBinaryBitTest =
SpvParserTestBase<::testing::TestWithParam<BinaryData>>;
using SpvBinaryBitTestBasic = SpvParserTestBase<::testing::Test>;
TEST_P(SpvBinaryBitTest, EmitExpression) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = )" + GetParam().op +
" %" + GetParam().res_type + " %" + GetParam().lhs +
" %" + GetParam().rhs + R"(
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
std::ostringstream ss;
ss << "let x_1 : " << GetParam().ast_type << " = (" << GetParam().ast_lhs
<< " " << GetParam().ast_op << " " << GetParam().ast_rhs << ");";
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr(ss.str()))
<< assembly;
}
// Use this when the result might have extra bitcasts on the outside.
struct BinaryDataGeneral {
const std::string res_type;
const std::string lhs;
const std::string op;
const std::string rhs;
const std::string wgsl_type;
const std::string expected;
};
inline std::ostream& operator<<(std::ostream& out, BinaryDataGeneral data) {
out << "BinaryDataGeneral{" << data.res_type << "," << data.lhs << ","
<< data.op << "," << data.rhs << "," << data.wgsl_type << ","
<< data.expected << "}";
return out;
}
using SpvBinaryBitGeneralTest =
SpvParserTestBase<::testing::TestWithParam<BinaryDataGeneral>>;
TEST_P(SpvBinaryBitGeneralTest, EmitExpression) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = )" + GetParam().op +
" %" + GetParam().res_type + " %" + GetParam().lhs +
" %" + GetParam().rhs + R"(
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error() << assembly;
std::ostringstream ss;
ss << "let x_1 : " << GetParam().wgsl_type << " = " << GetParam().expected
<< ";\nreturn;\n";
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
EXPECT_THAT(got, HasSubstr(ss.str())) << "got:\n" << got << assembly;
}
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ShiftLeftLogical_Arg2Unsigned,
SpvBinaryBitTest,
::testing::Values(
// uint uint -> uint
BinaryData{"uint", "uint_10", "OpShiftLeftLogical", "uint_20", "u32",
"10u", "<<", "20u"},
// int, uint -> int
BinaryData{"int", "int_30", "OpShiftLeftLogical", "uint_20", "i32",
"30", "<<", "20u"},
// v2uint v2uint -> v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpShiftLeftLogical",
"v2uint_20_10", "vec2<u32>", AstFor("v2uint_10_20"), "<<",
AstFor("v2uint_20_10")},
// v2int, v2uint -> v2int
BinaryData{"v2int", "v2int_30_40", "OpShiftLeftLogical", "v2uint_20_10",
"vec2<i32>", AstFor("v2int_30_40"), "<<",
AstFor("v2uint_20_10")}));
INSTANTIATE_TEST_SUITE_P(
// WGSL requires second operand to be unsigned, so insert bitcasts
SpvParserTest_ShiftLeftLogical_Arg2Signed,
SpvBinaryBitGeneralTest,
::testing::Values(
// int, int -> int
BinaryDataGeneral{"int", "int_30", "OpShiftLeftLogical", "int_40",
"i32", "(30 << bitcast<u32>(40))"},
// uint, int -> uint
BinaryDataGeneral{"uint", "uint_10", "OpShiftLeftLogical", "int_40",
"u32", "(10u << bitcast<u32>(40))"},
// v2uint, v2int -> v2uint
BinaryDataGeneral{"v2uint", "v2uint_10_20", "OpShiftLeftLogical",
"v2uint_20_10", "vec2<u32>",
"(vec2<u32>(10u, 20u) << vec2<u32>(20u, 10u))"},
// v2int, v2int -> v2int
BinaryDataGeneral{
"v2int", "v2int_30_40", "OpShiftLeftLogical", "v2int_40_30",
"vec2<i32>",
"(vec2<i32>(30, 40) << bitcast<vec2<u32>>(vec2<i32>(40, 30)))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ShiftLeftLogical_BitcastResult,
SpvBinaryBitGeneralTest,
::testing::Values(
// int, int -> uint
BinaryDataGeneral{"uint", "int_30", "OpShiftLeftLogical", "uint_10",
"u32", "bitcast<u32>((30 << 10u))"},
// v2uint, v2int -> v2uint
BinaryDataGeneral{
"v2uint", "v2int_30_40", "OpShiftLeftLogical", "v2uint_20_10",
"vec2<u32>",
"bitcast<vec2<u32>>((vec2<i32>(30, 40) << vec2<u32>(20u, 10u)))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ShiftRightLogical_Arg2Unsigned,
SpvBinaryBitGeneralTest,
::testing::Values(
// uint, uint -> uint
BinaryDataGeneral{"uint", "uint_10", "OpShiftRightLogical", "uint_20",
"u32", "(10u >> 20u)"},
// int, uint -> int
BinaryDataGeneral{"int", "int_30", "OpShiftRightLogical", "uint_20",
"i32", "bitcast<i32>((bitcast<u32>(30) >> 20u))"},
// v2uint, v2uint -> v2uint
BinaryDataGeneral{"v2uint", "v2uint_10_20", "OpShiftRightLogical",
"v2uint_20_10", "vec2<u32>",
"(vec2<u32>(10u, 20u) >> vec2<u32>(20u, 10u))"},
// v2int, v2uint -> v2int
BinaryDataGeneral{
"v2int", "v2int_30_40", "OpShiftRightLogical", "v2uint_10_20",
"vec2<i32>",
R"(bitcast<vec2<i32>>((bitcast<vec2<u32>>(vec2<i32>(30, 40)) >> vec2<u32>(10u, 20u))))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ShiftRightLogical_Arg2Signed,
SpvBinaryBitGeneralTest,
::testing::Values(
// uint, int -> uint
BinaryDataGeneral{"uint", "uint_10", "OpShiftRightLogical", "int_30",
"u32", "(10u >> bitcast<u32>(30))"},
// int, int -> int
BinaryDataGeneral{
"int", "int_30", "OpShiftRightLogical", "int_40", "i32",
"bitcast<i32>((bitcast<u32>(30) >> bitcast<u32>(40)))"},
// v2uint, v2int -> v2uint
BinaryDataGeneral{
"v2uint", "v2uint_10_20", "OpShiftRightLogical", "v2int_30_40",
"vec2<u32>",
"(vec2<u32>(10u, 20u) >> bitcast<vec2<u32>>(vec2<i32>(30, 40)))"},
// v2int, v2int -> v2int
BinaryDataGeneral{
"v2int", "v2int_40_30", "OpShiftRightLogical", "v2int_30_40",
"vec2<i32>",
R"(bitcast<vec2<i32>>((bitcast<vec2<u32>>(vec2<i32>(40, 30)) >> bitcast<vec2<u32>>(vec2<i32>(30, 40)))))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ShiftRightLogical_BitcastResult,
SpvBinaryBitGeneralTest,
::testing::Values(
// uint, uint -> int
BinaryDataGeneral{"int", "uint_20", "OpShiftRightLogical", "uint_10",
"i32", "bitcast<i32>((20u >> 10u))"},
// v2uint, v2uint -> v2int
BinaryDataGeneral{
"v2int", "v2uint_10_20", "OpShiftRightLogical", "v2uint_20_10",
"vec2<i32>",
R"(bitcast<vec2<i32>>((vec2<u32>(10u, 20u) >> vec2<u32>(20u, 10u))))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ShiftRightArithmetic_Arg2Unsigned,
SpvBinaryBitGeneralTest,
::testing::Values(
// uint, uint -> uint
BinaryDataGeneral{"uint", "uint_10", "OpShiftRightArithmetic",
"uint_20", "u32",
"bitcast<u32>((bitcast<i32>(10u) >> 20u))"},
// int, uint -> int
BinaryDataGeneral{"int", "int_30", "OpShiftRightArithmetic", "uint_10",
"i32", "(30 >> 10u)"},
// v2uint, v2uint -> v2uint
BinaryDataGeneral{
"v2uint", "v2uint_10_20", "OpShiftRightArithmetic", "v2uint_20_10",
"vec2<u32>",
R"(bitcast<vec2<u32>>((bitcast<vec2<i32>>(vec2<u32>(10u, 20u)) >> vec2<u32>(20u, 10u))))"},
// v2int, v2uint -> v2int
BinaryDataGeneral{"v2int", "v2int_40_30", "OpShiftRightArithmetic",
"v2uint_20_10", "vec2<i32>",
"(vec2<i32>(40, 30) >> vec2<u32>(20u, 10u))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ShiftRightArithmetic_Arg2Signed,
SpvBinaryBitGeneralTest,
::testing::Values(
// uint, int -> uint
BinaryDataGeneral{
"uint", "uint_10", "OpShiftRightArithmetic", "int_30", "u32",
"bitcast<u32>((bitcast<i32>(10u) >> bitcast<u32>(30)))"},
// int, int -> int
BinaryDataGeneral{"int", "int_30", "OpShiftRightArithmetic", "int_40",
"i32", "(30 >> bitcast<u32>(40))"},
// v2uint, v2int -> v2uint
BinaryDataGeneral{
"v2uint", "v2uint_10_20", "OpShiftRightArithmetic", "v2int_30_40",
"vec2<u32>",
R"(bitcast<vec2<u32>>((bitcast<vec2<i32>>(vec2<u32>(10u, 20u)) >> bitcast<vec2<u32>>(vec2<i32>(30, 40)))))"},
// v2int, v2int -> v2int
BinaryDataGeneral{
"v2int", "v2int_40_30", "OpShiftRightArithmetic", "v2int_30_40",
"vec2<i32>",
"(vec2<i32>(40, 30) >> bitcast<vec2<u32>>(vec2<i32>(30, 40)))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ShiftRightArithmetic_BitcastResult,
SpvBinaryBitGeneralTest,
::testing::Values(
// int, uint -> uint
BinaryDataGeneral{"uint", "int_30", "OpShiftRightArithmetic", "uint_10",
"u32", "bitcast<u32>((30 >> 10u))"},
// v2int, v2uint -> v2uint
BinaryDataGeneral{
"v2uint", "v2int_30_40", "OpShiftRightArithmetic", "v2uint_20_10",
"vec2<u32>",
"bitcast<vec2<u32>>((vec2<i32>(30, 40) >> vec2<u32>(20u, 10u)))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_BitwiseAnd,
SpvBinaryBitTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpBitwiseAnd", "uint_20", "u32", "10u",
"&", "20u"},
// Both int
BinaryData{"int", "int_30", "OpBitwiseAnd", "int_40", "i32", "30", "&",
"40"},
// TODO(crbug.com/tint/678): Resolver fails on vector bitwise operations
// Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpBitwiseAnd", "v2uint_20_10",
"vec2<u32>", AstFor("v2uint_10_20"), "&",
AstFor("v2uint_20_10")},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpBitwiseAnd", "v2int_40_30",
"vec2<i32>", AstFor("v2int_30_40"), "&",
AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_BitwiseAnd_MixedSignedness,
SpvBinaryBitGeneralTest,
::testing::Values(
// Mixed, uint <- int uint
BinaryDataGeneral{"uint", "int_30", "OpBitwiseAnd", "uint_10", "u32",
"bitcast<u32>((30 & bitcast<i32>(10u)))"},
// Mixed, int <- int uint
BinaryDataGeneral{"int", "int_30", "OpBitwiseAnd", "uint_10", "i32",
"(30 & bitcast<i32>(10u))"},
// Mixed, uint <- uint int
BinaryDataGeneral{"uint", "uint_10", "OpBitwiseAnd", "int_30", "u32",
"(10u & bitcast<u32>(30))"},
// Mixed, int <- uint uint
BinaryDataGeneral{"int", "uint_20", "OpBitwiseAnd", "uint_10", "i32",
"bitcast<i32>((20u & 10u))"},
// Mixed, returning v2uint
BinaryDataGeneral{
"v2uint", "v2int_30_40", "OpBitwiseAnd", "v2uint_10_20",
"vec2<u32>",
R"(bitcast<vec2<u32>>((vec2<i32>(30, 40) & bitcast<vec2<i32>>(vec2<u32>(10u, 20u)))))"},
// Mixed, returning v2int
BinaryDataGeneral{
"v2int", "v2uint_10_20", "OpBitwiseAnd", "v2int_40_30", "vec2<i32>",
R"(bitcast<vec2<i32>>((vec2<u32>(10u, 20u) & bitcast<vec2<u32>>(vec2<i32>(40, 30)))))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_BitwiseOr,
SpvBinaryBitTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpBitwiseOr", "uint_20", "u32", "10u",
"|", "20u"},
// Both int
BinaryData{"int", "int_30", "OpBitwiseOr", "int_40", "i32", "30", "|",
"40"},
// TODO(crbug.com/tint/678): Resolver fails on vector bitwise operations
// Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpBitwiseOr", "v2uint_20_10",
"vec2<u32>", AstFor("v2uint_10_20"), "|",
AstFor("v2uint_20_10")},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpBitwiseOr", "v2int_40_30",
"vec2<i32>", AstFor("v2int_30_40"), "|",
AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_BitwiseOr_MixedSignedness,
SpvBinaryBitGeneralTest,
::testing::Values(
// Mixed, uint <- int uint
BinaryDataGeneral{"uint", "int_30", "OpBitwiseOr", "uint_10", "u32",
"bitcast<u32>((30 | bitcast<i32>(10u)))"},
// Mixed, int <- int uint
BinaryDataGeneral{"int", "int_30", "OpBitwiseOr", "uint_10", "i32",
"(30 | bitcast<i32>(10u))"},
// Mixed, uint <- uint int
BinaryDataGeneral{"uint", "uint_10", "OpBitwiseOr", "int_30", "u32",
"(10u | bitcast<u32>(30))"},
// Mixed, int <- uint uint
BinaryDataGeneral{"int", "uint_20", "OpBitwiseOr", "uint_10", "i32",
"bitcast<i32>((20u | 10u))"},
// Mixed, returning v2uint
BinaryDataGeneral{
"v2uint", "v2int_30_40", "OpBitwiseOr", "v2uint_10_20", "vec2<u32>",
R"(bitcast<vec2<u32>>((vec2<i32>(30, 40) | bitcast<vec2<i32>>(vec2<u32>(10u, 20u)))))"},
// Mixed, returning v2int
BinaryDataGeneral{
"v2int", "v2uint_10_20", "OpBitwiseOr", "v2int_40_30", "vec2<i32>",
R"(bitcast<vec2<i32>>((vec2<u32>(10u, 20u) | bitcast<vec2<u32>>(vec2<i32>(40, 30)))))"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_BitwiseXor,
SpvBinaryBitTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpBitwiseXor", "uint_20", "u32", "10u",
"^", "20u"},
// Both int
BinaryData{"int", "int_30", "OpBitwiseXor", "int_40", "i32", "30", "^",
"40"},
// TODO(crbug.com/tint/678): Resolver fails on vector bitwise operations
// Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpBitwiseXor", "v2uint_20_10",
"vec2<u32>", AstFor("v2uint_10_20"), "^",
AstFor("v2uint_20_10")},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpBitwiseXor", "v2int_40_30",
"vec2<i32>", AstFor("v2int_30_40"), "^",
AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_BitwiseXor_MixedSignedness,
SpvBinaryBitGeneralTest,
::testing::Values(
// Mixed, uint <- int uint
BinaryDataGeneral{"uint", "int_30", "OpBitwiseXor", "uint_10", "u32",
"bitcast<u32>((30 ^ bitcast<i32>(10u)))"},
// Mixed, int <- int uint
BinaryDataGeneral{"int", "int_30", "OpBitwiseXor", "uint_10", "i32",
"(30 ^ bitcast<i32>(10u))"},
// Mixed, uint <- uint int
BinaryDataGeneral{"uint", "uint_10", "OpBitwiseXor", "int_30", "u32",
"(10u ^ bitcast<u32>(30))"},
// Mixed, int <- uint uint
BinaryDataGeneral{"int", "uint_20", "OpBitwiseXor", "uint_10", "i32",
"bitcast<i32>((20u ^ 10u))"},
// Mixed, returning v2uint
BinaryDataGeneral{
"v2uint", "v2int_30_40", "OpBitwiseXor", "v2uint_10_20",
"vec2<u32>",
R"(bitcast<vec2<u32>>((vec2<i32>(30, 40) ^ bitcast<vec2<i32>>(vec2<u32>(10u, 20u)))))"},
// Mixed, returning v2int
BinaryDataGeneral{
"v2int", "v2uint_10_20", "OpBitwiseXor", "v2int_40_30", "vec2<i32>",
R"(bitcast<vec2<i32>>((vec2<u32>(10u, 20u) ^ bitcast<vec2<u32>>(vec2<i32>(40, 30)))))"}));
TEST_F(SpvUnaryBitTest, Not_Int_Int) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpNot %int %int_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : i32 = ~(30);"));
}
TEST_F(SpvUnaryBitTest, Not_Int_Uint) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpNot %int %uint_10
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : i32 = bitcast<i32>(~(10u));"));
}
TEST_F(SpvUnaryBitTest, Not_Uint_Int) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpNot %uint %int_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : u32 = bitcast<u32>(~(30));"));
}
TEST_F(SpvUnaryBitTest, Not_Uint_Uint) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpNot %uint %uint_10
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : u32 = ~(10u);"));
}
TEST_F(SpvUnaryBitTest, Not_SignedVec_SignedVec) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpNot %v2int %v2int_30_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : vec2<i32> = ~(vec2<i32>(30, 40));"));
}
TEST_F(SpvUnaryBitTest, Not_SignedVec_UnsignedVec) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpNot %v2int %v2uint_10_20
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(
body,
HasSubstr(
"let x_1 : vec2<i32> = bitcast<vec2<i32>>(~(vec2<u32>(10u, 20u)));"));
}
TEST_F(SpvUnaryBitTest, Not_UnsignedVec_SignedVec) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpNot %v2uint %v2int_30_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(
body,
HasSubstr(
"let x_1 : vec2<u32> = bitcast<vec2<u32>>(~(vec2<i32>(30, 40)));"));
}
TEST_F(SpvUnaryBitTest, Not_UnsignedVec_UnsignedVec) {
const auto assembly = SimplePreamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpNot %v2uint %v2uint_10_20
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : vec2<u32> = ~(vec2<u32>(10u, 20u));"));
}
std::string BitTestPreamble() {
return R"(
OpCapability Shader
%glsl = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %100 "main"
OpExecutionMode %100 LocalSize 1 1 1
OpName %u1 "u1"
OpName %i1 "i1"
OpName %v2u1 "v2u1"
OpName %v2i1 "v2i1"
)" + CommonTypes() +
R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%u1 = OpCopyObject %uint %uint_10
%i1 = OpCopyObject %int %int_30
%v2u1 = OpCopyObject %v2uint %v2uint_10_20
%v2i1 = OpCopyObject %v2int %v2int_30_40
)";
}
TEST_F(SpvUnaryBitTest, BitCount_Uint_Uint) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitCount %uint %u1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : u32 = countOneBits(u1);")) << body;
}
TEST_F(SpvUnaryBitTest, BitCount_Uint_Int) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitCount %uint %i1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body,
HasSubstr("let x_1 : u32 = bitcast<u32>(countOneBits(i1));"))
<< body;
}
TEST_F(SpvUnaryBitTest, BitCount_Int_Uint) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitCount %int %u1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body,
HasSubstr("let x_1 : i32 = bitcast<i32>(countOneBits(u1));"))
<< body;
}
TEST_F(SpvUnaryBitTest, BitCount_Int_Int) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitCount %int %i1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : i32 = countOneBits(i1);")) << body;
}
TEST_F(SpvUnaryBitTest, BitCount_UintVector_UintVector) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitCount %v2uint %v2u1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : vec2<u32> = countOneBits(v2u1);"))
<< body;
}
TEST_F(SpvUnaryBitTest, BitCount_UintVector_IntVector) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitCount %v2uint %v2i1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(
body,
HasSubstr(
"let x_1 : vec2<u32> = bitcast<vec2<u32>>(countOneBits(v2i1));"))
<< body;
}
TEST_F(SpvUnaryBitTest, BitCount_IntVector_UintVector) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitCount %v2int %v2u1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(
body,
HasSubstr(
"let x_1 : vec2<i32> = bitcast<vec2<i32>>(countOneBits(v2u1));"))
<< body;
}
TEST_F(SpvUnaryBitTest, BitCount_IntVector_IntVector) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitCount %v2int %v2i1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : vec2<i32> = countOneBits(v2i1);"))
<< body;
}
TEST_F(SpvUnaryBitTest, BitReverse_Uint_Uint) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitReverse %uint %u1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : u32 = reverseBits(u1);")) << body;
}
TEST_F(SpvUnaryBitTest, BitReverse_Uint_Int) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitReverse %uint %i1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->Parse());
EXPECT_FALSE(p->success());
EXPECT_THAT(
p->error(),
HasSubstr("Expected Base Type to be equal to Result Type: BitReverse"));
}
TEST_F(SpvUnaryBitTest, BitReverse_Int_Uint) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitReverse %int %u1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->Parse());
EXPECT_FALSE(p->success());
EXPECT_THAT(
p->error(),
HasSubstr("Expected Base Type to be equal to Result Type: BitReverse"));
}
TEST_F(SpvUnaryBitTest, BitReverse_Int_Int) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitReverse %int %i1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : i32 = reverseBits(i1);")) << body;
}
TEST_F(SpvUnaryBitTest, BitReverse_UintVector_UintVector) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitReverse %v2uint %v2u1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : vec2<u32> = reverseBits(v2u1);"))
<< body;
}
TEST_F(SpvUnaryBitTest, BitReverse_UintVector_IntVector) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitReverse %v2uint %v2i1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->Parse());
EXPECT_FALSE(p->success());
EXPECT_THAT(
p->error(),
HasSubstr("Expected Base Type to be equal to Result Type: BitReverse"));
}
TEST_F(SpvUnaryBitTest, BitReverse_IntVector_UintVector) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitReverse %v2int %v2u1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->Parse());
EXPECT_FALSE(p->success());
EXPECT_THAT(
p->error(),
HasSubstr("Expected Base Type to be equal to Result Type: BitReverse"));
}
TEST_F(SpvUnaryBitTest, BitReverse_IntVector_IntVector) {
const auto assembly = BitTestPreamble() + R"(
%1 = OpBitReverse %v2int %v2i1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto body = test::ToString(p->program(), ast_body);
EXPECT_THAT(body, HasSubstr("let x_1 : vec2<i32> = reverseBits(v2i1);"))
<< body;
}
// TODO(dneto): OpBitFieldInsert
// TODO(dneto): OpBitFieldSExtract
// TODO(dneto): OpBitFieldUExtract
} // namespace
} // namespace spirv
} // namespace reader
} // namespace tint