blob: b27a0530b5d7775d0b8b1b3771bfcc59ee3517a4 [file] [log] [blame]
// Copyright 2022 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/core/constant/eval_test.h"
namespace tint::core::constant::test {
namespace {
using namespace tint::core::fluent_types; // NOLINT
using namespace tint::core::number_suffixes; // NOLINT
TEST_F(ConstEvalTest, Vec3_Index) {
auto* expr = IndexAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), 2_i);
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
ASSERT_TRUE(sem->Type()->Is<core::type::I32>());
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->AllZero());
EXPECT_EQ(sem->ConstantValue()->ValueAs<i32>(), 3_i);
}
TEST_F(ConstEvalTest, Vec3_Index_OOB_High) {
auto* expr = IndexAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), Expr(Source{{12, 34}}, 3_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index 3 out of bounds [0..2]");
}
TEST_F(ConstEvalTest, Vec3_Index_OOB_Low) {
auto* expr = IndexAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), Expr(Source{{12, 34}}, -3_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index -3 out of bounds [0..2]");
}
namespace Swizzle {
struct Case {
Value input;
const char* swizzle;
Value expected;
};
static Case C(Value input, const char* swizzle, Value expected) {
return Case{std::move(input), swizzle, std::move(expected)};
}
static std::ostream& operator<<(std::ostream& o, const Case& c) {
return o << "input: " << c.input << ", swizzle: " << c.swizzle << ", expected: " << c.expected;
}
using ConstEvalSwizzleTest = ConstEvalTestWithParam<Case>;
TEST_P(ConstEvalSwizzleTest, Test) {
Enable(wgsl::Extension::kF16);
auto& param = GetParam();
auto* expr = MemberAccessor(param.input.Expr(*this), param.swizzle);
auto* a = Const("a", expr);
WrapInFunction(a);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
CheckConstant(sem->ConstantValue(), param.expected);
}
template <typename T>
std::vector<Case> SwizzleCases() {
return {
C(Vec(T(0), T(1), T(2)), "xyz", Vec(T(0), T(1), T(2))),
C(Vec(T(0), T(1), T(2)), "xzy", Vec(T(0), T(2), T(1))),
C(Vec(T(0), T(1), T(2)), "yxz", Vec(T(1), T(0), T(2))),
C(Vec(T(0), T(1), T(2)), "yzx", Vec(T(1), T(2), T(0))),
C(Vec(T(0), T(1), T(2)), "zxy", Vec(T(2), T(0), T(1))),
C(Vec(T(0), T(1), T(2)), "zyx", Vec(T(2), T(1), T(0))),
C(Vec(T(0), T(1), T(2)), "xy", Vec(T(0), T(1))),
C(Vec(T(0), T(1), T(2)), "xz", Vec(T(0), T(2))),
C(Vec(T(0), T(1), T(2)), "yx", Vec(T(1), T(0))),
C(Vec(T(0), T(1), T(2)), "yz", Vec(T(1), T(2))),
C(Vec(T(0), T(1), T(2)), "zx", Vec(T(2), T(0))),
C(Vec(T(0), T(1), T(2)), "zy", Vec(T(2), T(1))),
C(Vec(T(0), T(1), T(2)), "xxxx", Vec(T(0), T(0), T(0), T(0))),
C(Vec(T(0), T(1), T(2)), "yyyy", Vec(T(1), T(1), T(1), T(1))),
C(Vec(T(0), T(1), T(2)), "zzzz", Vec(T(2), T(2), T(2), T(2))),
C(Vec(T(0), T(1), T(2)), "xxx", Vec(T(0), T(0), T(0))),
C(Vec(T(0), T(1), T(2)), "yyy", Vec(T(1), T(1), T(1))),
C(Vec(T(0), T(1), T(2)), "zzz", Vec(T(2), T(2), T(2))),
C(Vec(T(0), T(1), T(2)), "xx", Vec(T(0), T(0))),
C(Vec(T(0), T(1), T(2)), "yy", Vec(T(1), T(1))),
C(Vec(T(0), T(1), T(2)), "zz", Vec(T(2), T(2))),
C(Vec(T(0), T(1), T(2)), "x", Val(T(0))),
C(Vec(T(0), T(1), T(2)), "y", Val(T(1))),
C(Vec(T(0), T(1), T(2)), "z", Val(T(2))),
};
}
INSTANTIATE_TEST_SUITE_P(Swizzle,
ConstEvalSwizzleTest,
testing::ValuesIn(Concat(SwizzleCases<AInt>(), //
SwizzleCases<AFloat>(), //
SwizzleCases<f32>(), //
SwizzleCases<f16>(), //
SwizzleCases<i32>(), //
SwizzleCases<u32>(), //
SwizzleCases<bool>() //
)));
} // namespace Swizzle
TEST_F(ConstEvalTest, Vec3_Swizzle_Scalar) {
auto* expr = MemberAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), "y");
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
ASSERT_TRUE(sem->Type()->Is<core::type::I32>());
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->AllZero());
EXPECT_EQ(sem->ConstantValue()->ValueAs<i32>(), 2_i);
}
TEST_F(ConstEvalTest, Vec3_Swizzle_Vector) {
auto* expr = MemberAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), "zx");
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
auto* vec = sem->Type()->As<core::type::Vector>();
ASSERT_NE(vec, nullptr);
EXPECT_EQ(vec->Width(), 2u);
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(0)->ValueAs<f32>(), 3._a);
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(1)->ValueAs<f32>(), 1._a);
}
TEST_F(ConstEvalTest, Vec3_Swizzle_Chain) {
auto* expr = // (1, 2, 3) -> (2, 3, 1) -> (3, 2) -> 2
MemberAccessor(MemberAccessor(MemberAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), "gbr"), "yx"),
"y");
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
ASSERT_TRUE(sem->Type()->Is<core::type::I32>());
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->AllZero());
EXPECT_EQ(sem->ConstantValue()->ValueAs<i32>(), 2_i);
}
TEST_F(ConstEvalTest, Mat3x2_Index) {
auto* expr =
IndexAccessor(Call<mat3x2<f32>>(Call<vec2<f32>>(1._a, 2._a), Call<vec2<f32>>(3._a, 4._a),
Call<vec2<f32>>(5._a, 6._a)),
2_i);
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
auto* vec = sem->Type()->As<core::type::Vector>();
ASSERT_NE(vec, nullptr);
EXPECT_EQ(vec->Width(), 2u);
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(0)->ValueAs<f32>(), 5._a);
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(1)->ValueAs<f32>(), 6._a);
}
TEST_F(ConstEvalTest, Mat3x2_Index_OOB_High) {
auto* expr =
IndexAccessor(Call<mat3x2<f32>>(Call<vec2<f32>>(1._a, 2._a), Call<vec2<f32>>(3._a, 4._a),
Call<vec2<f32>>(5._a, 6._a)),
Expr(Source{{12, 34}}, 3_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index 3 out of bounds [0..2]");
}
TEST_F(ConstEvalTest, Mat3x2_Index_OOB_Low) {
auto* expr =
IndexAccessor(Call<mat3x2<f32>>(Call<vec2<f32>>(1._a, 2._a), Call<vec2<f32>>(3._a, 4._a),
Call<vec2<f32>>(5._a, 6._a)),
Expr(Source{{12, 34}}, -3_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index -3 out of bounds [0..2]");
}
TEST_F(ConstEvalTest, Array_vec3_f32_Index) {
auto* expr = IndexAccessor(Call<array<vec3<f32>, 2>>( //
Call<vec3<f32>>(1_f, 2_f, 3_f), //
Call<vec3<f32>>(4_f, 5_f, 6_f)),
1_i);
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
auto* vec = sem->Type()->As<core::type::Vector>();
ASSERT_NE(vec, nullptr);
EXPECT_TRUE(vec->type()->Is<core::type::F32>());
EXPECT_EQ(vec->Width(), 3u);
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(0)->ValueAs<f32>(), 4_f);
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(1)->ValueAs<f32>(), 5_f);
EXPECT_FALSE(sem->ConstantValue()->Index(2)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(2)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(2)->ValueAs<f32>(), 6_f);
}
TEST_F(ConstEvalTest, Array_vec3_f32_Index_OOB_High) {
auto* expr = IndexAccessor(Call<array<vec3<f32>, 2>>( //
Call<vec3<f32>>(1_f, 2_f, 3_f), //
Call<vec3<f32>>(4_f, 5_f, 6_f)),
Expr(Source{{12, 34}}, 2_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index 2 out of bounds [0..1]");
}
TEST_F(ConstEvalTest, Array_vec3_f32_Index_OOB_Low) {
auto* expr = IndexAccessor(Call<array<vec3<f32>, 2>>( //
Call<vec3<f32>>(1_f, 2_f, 3_f), //
Call<vec3<f32>>(4_f, 5_f, 6_f)),
Expr(Source{{12, 34}}, -2_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index -2 out of bounds [0..1]");
}
TEST_F(ConstEvalTest, RuntimeArray_vec3_f32_Index_OOB_Low) {
auto* sb = GlobalVar("sb", ty.array<vec3<f32>>(), Group(0_a), Binding(0_a),
core::AddressSpace::kStorage);
auto* expr = IndexAccessor(sb, Expr(Source{{12, 34}}, -2_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index -2 out of bounds");
}
TEST_F(ConstEvalTest, ChainedIndex) {
auto* arr_expr = Call<array<mat2x3<f32>, 2>>( //
Call<mat2x3<f32>>(Call<vec3<f32>>(1_f, 2_f, 3_f), //
Call<vec3<f32>>(4_f, 5_f, 6_f)), //
Call<mat2x3<f32>>(Call<vec3<f32>>(7_f, 0_f, 9_f), //
Call<vec3<f32>>(10_f, 11_f, 12_f)));
auto* mat_expr = IndexAccessor(arr_expr, 1_i); // arr[1]
auto* vec_expr = IndexAccessor(mat_expr, 0_i); // arr[1][0]
auto* f32_expr = IndexAccessor(vec_expr, 2_i); // arr[1][0][2]
WrapInFunction(f32_expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
{
auto* mat = Sem().Get(mat_expr);
EXPECT_NE(mat, nullptr);
auto* ty = mat->Type()->As<core::type::Matrix>();
ASSERT_NE(mat->Type(), nullptr);
EXPECT_TRUE(ty->ColumnType()->Is<core::type::Vector>());
EXPECT_EQ(ty->columns(), 2u);
EXPECT_EQ(ty->rows(), 3u);
EXPECT_EQ(mat->ConstantValue()->Type(), mat->Type());
EXPECT_TRUE(mat->ConstantValue()->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->AllZero());
EXPECT_FALSE(mat->ConstantValue()->Index(0)->Index(0)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(0)->Index(0)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(0)->Index(0)->ValueAs<f32>(), 7_f);
EXPECT_TRUE(mat->ConstantValue()->Index(0)->Index(1)->AnyZero());
EXPECT_TRUE(mat->ConstantValue()->Index(0)->Index(1)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(0)->Index(1)->ValueAs<f32>(), 0_f);
EXPECT_FALSE(mat->ConstantValue()->Index(0)->Index(2)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(0)->Index(2)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(0)->Index(2)->ValueAs<f32>(), 9_f);
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(0)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(0)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(1)->Index(0)->ValueAs<f32>(), 10_f);
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(1)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(1)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(1)->Index(1)->ValueAs<f32>(), 11_f);
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(2)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(2)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(1)->Index(2)->ValueAs<f32>(), 12_f);
}
{
auto* vec = Sem().Get(vec_expr);
EXPECT_NE(vec, nullptr);
auto* ty = vec->Type()->As<core::type::Vector>();
ASSERT_NE(vec->Type(), nullptr);
EXPECT_TRUE(ty->type()->Is<core::type::F32>());
EXPECT_EQ(ty->Width(), 3u);
EXPECT_EQ(vec->ConstantValue()->Type(), vec->Type());
EXPECT_TRUE(vec->ConstantValue()->AnyZero());
EXPECT_FALSE(vec->ConstantValue()->AllZero());
EXPECT_FALSE(vec->ConstantValue()->Index(0)->AnyZero());
EXPECT_FALSE(vec->ConstantValue()->Index(0)->AllZero());
EXPECT_EQ(vec->ConstantValue()->Index(0)->ValueAs<f32>(), 7_f);
EXPECT_TRUE(vec->ConstantValue()->Index(1)->AnyZero());
EXPECT_TRUE(vec->ConstantValue()->Index(1)->AllZero());
EXPECT_EQ(vec->ConstantValue()->Index(1)->ValueAs<f32>(), 0_f);
EXPECT_FALSE(vec->ConstantValue()->Index(2)->AnyZero());
EXPECT_FALSE(vec->ConstantValue()->Index(2)->AllZero());
EXPECT_EQ(vec->ConstantValue()->Index(2)->ValueAs<f32>(), 9_f);
}
{
auto* f = Sem().Get(f32_expr);
EXPECT_NE(f, nullptr);
EXPECT_TRUE(f->Type()->Is<core::type::F32>());
EXPECT_EQ(f->ConstantValue()->Type(), f->Type());
EXPECT_FALSE(f->ConstantValue()->AnyZero());
EXPECT_FALSE(f->ConstantValue()->AllZero());
EXPECT_EQ(f->ConstantValue()->ValueAs<f32>(), 9_f);
}
}
} // namespace
} // namespace tint::core::constant::test