blob: 5bb6f9f8f108a3d9370eea2d98e05e927fdafd97 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gtest/gtest.h"
#include "src/ast/stride_decoration.h"
#include "src/ast/type/alias_type.h"
#include "src/ast/type/array_type.h"
#include "src/ast/type/bool_type.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/pointer_type.h"
#include "src/ast/type/sampled_texture_type.h"
#include "src/ast/type/sampler_type.h"
#include "src/ast/type/struct_type.h"
#include "src/ast/type/u32_type.h"
#include "src/ast/type/vector_type.h"
#include "src/reader/wgsl/parser_impl.h"
#include "src/reader/wgsl/parser_impl_test_helper.h"
namespace tint {
namespace reader {
namespace wgsl {
namespace {
TEST_F(ParserImplTest, TypeDecl_Invalid) {
auto p = parser("1234");
auto t = p->type_decl();
EXPECT_EQ(t.errored, false);
EXPECT_EQ(t.matched, false);
EXPECT_EQ(t.value, nullptr);
EXPECT_FALSE(p->has_error());
}
TEST_F(ParserImplTest, TypeDecl_Identifier) {
auto p = parser("A");
auto& mod = p->get_module();
auto* int_type = mod.create<ast::type::I32>();
auto* alias_type =
mod.create<ast::type::Alias>(mod.RegisterSymbol("A"), int_type);
p->register_constructed("A", alias_type);
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
EXPECT_EQ(t.value, alias_type);
ASSERT_TRUE(t->Is<ast::type::Alias>());
auto* alias = t->As<ast::type::Alias>();
EXPECT_EQ(p->get_module().SymbolToName(alias->symbol()), "A");
EXPECT_EQ(alias->type(), int_type);
}
TEST_F(ParserImplTest, TypeDecl_Identifier_NotFound) {
auto p = parser("B");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
EXPECT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:1: unknown constructed type 'B'");
}
TEST_F(ParserImplTest, TypeDecl_Bool) {
auto p = parser("bool");
auto& mod = p->get_module();
auto* bool_type = mod.create<ast::type::Bool>();
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
EXPECT_EQ(t.value, bool_type);
ASSERT_TRUE(t->Is<ast::type::Bool>());
}
TEST_F(ParserImplTest, TypeDecl_F32) {
auto p = parser("f32");
auto& mod = p->get_module();
auto* float_type = mod.create<ast::type::F32>();
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
EXPECT_EQ(t.value, float_type);
ASSERT_TRUE(t->Is<ast::type::F32>());
}
TEST_F(ParserImplTest, TypeDecl_I32) {
auto p = parser("i32");
auto& mod = p->get_module();
auto* int_type = mod.create<ast::type::I32>();
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
EXPECT_EQ(t.value, int_type);
ASSERT_TRUE(t->Is<ast::type::I32>());
}
TEST_F(ParserImplTest, TypeDecl_U32) {
auto p = parser("u32");
auto& mod = p->get_module();
auto* uint_type = mod.create<ast::type::U32>();
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
EXPECT_EQ(t.value, uint_type);
ASSERT_TRUE(t->Is<ast::type::U32>());
}
struct VecData {
const char* input;
size_t count;
};
inline std::ostream& operator<<(std::ostream& out, VecData data) {
out << std::string(data.input);
return out;
}
class VecTest : public ParserImplTestWithParam<VecData> {};
TEST_P(VecTest, Parse) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
EXPECT_TRUE(t->Is<ast::type::Vector>());
EXPECT_EQ(t->As<ast::type::Vector>()->size(), params.count);
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecTest,
testing::Values(VecData{"vec2<f32>", 2},
VecData{"vec3<f32>", 3},
VecData{"vec4<f32>", 4}));
class VecMissingGreaterThanTest : public ParserImplTestWithParam<VecData> {};
TEST_P(VecMissingGreaterThanTest, Handles_Missing_GreaterThan) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:9: expected '>' for vector");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecMissingGreaterThanTest,
testing::Values(VecData{"vec2<f32", 2},
VecData{"vec3<f32", 3},
VecData{"vec4<f32", 4}));
class VecMissingLessThanTest : public ParserImplTestWithParam<VecData> {};
TEST_P(VecMissingLessThanTest, Handles_Missing_GreaterThan) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: expected '<' for vector");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecMissingLessThanTest,
testing::Values(VecData{"vec2", 2},
VecData{"vec3", 3},
VecData{"vec4", 4}));
class VecBadType : public ParserImplTestWithParam<VecData> {};
TEST_P(VecBadType, Handles_Unknown_Type) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:6: unknown constructed type 'unknown'");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecBadType,
testing::Values(VecData{"vec2<unknown", 2},
VecData{"vec3<unknown", 3},
VecData{"vec4<unknown", 4}));
class VecMissingType : public ParserImplTestWithParam<VecData> {};
TEST_P(VecMissingType, Handles_Missing_Type) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:6: invalid type for vector");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecMissingType,
testing::Values(VecData{"vec2<>", 2},
VecData{"vec3<>", 3},
VecData{"vec4<>", 4}));
TEST_F(ParserImplTest, TypeDecl_Ptr) {
auto p = parser("ptr<function, f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t->Is<ast::type::Pointer>());
auto* ptr = t->As<ast::type::Pointer>();
ASSERT_TRUE(ptr->type()->Is<ast::type::F32>());
ASSERT_EQ(ptr->storage_class(), ast::StorageClass::kFunction);
}
TEST_F(ParserImplTest, TypeDecl_Ptr_ToVec) {
auto p = parser("ptr<function, vec2<f32>>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t->Is<ast::type::Pointer>());
auto* ptr = t->As<ast::type::Pointer>();
ASSERT_TRUE(ptr->type()->Is<ast::type::Vector>());
ASSERT_EQ(ptr->storage_class(), ast::StorageClass::kFunction);
auto* vec = ptr->type()->As<ast::type::Vector>();
ASSERT_EQ(vec->size(), 2u);
ASSERT_TRUE(vec->type()->Is<ast::type::F32>());
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingLessThan) {
auto p = parser("ptr private, f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: expected '<' for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingGreaterThan) {
auto p = parser("ptr<function, f32");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:18: expected '>' for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingComma) {
auto p = parser("ptr<function f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:14: expected ',' for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingStorageClass) {
auto p = parser("ptr<, f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: invalid storage class for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingParams) {
auto p = parser("ptr<>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: invalid storage class for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingType) {
auto p = parser("ptr<function,>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:14: invalid type for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_BadStorageClass) {
auto p = parser("ptr<unknown, f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: invalid storage class for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_BadType) {
auto p = parser("ptr<function, unknown>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:15: unknown constructed type 'unknown'");
}
TEST_F(ParserImplTest, TypeDecl_Array) {
auto p = parser("array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t->Is<ast::type::Array>());
auto* a = t->As<ast::type::Array>();
ASSERT_FALSE(a->IsRuntimeArray());
ASSERT_EQ(a->size(), 5u);
ASSERT_TRUE(a->type()->Is<ast::type::F32>());
ASSERT_FALSE(a->has_array_stride());
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride) {
auto p = parser("[[stride(16)]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t->Is<ast::type::Array>());
auto* a = t->As<ast::type::Array>();
ASSERT_FALSE(a->IsRuntimeArray());
ASSERT_EQ(a->size(), 5u);
ASSERT_TRUE(a->type()->Is<ast::type::F32>());
ASSERT_TRUE(a->has_array_stride());
EXPECT_EQ(a->array_stride(), 16u);
}
TEST_F(ParserImplTest, TypeDecl_Array_Runtime_Stride) {
auto p = parser("[[stride(16)]] array<f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t->Is<ast::type::Array>());
auto* a = t->As<ast::type::Array>();
ASSERT_TRUE(a->IsRuntimeArray());
ASSERT_TRUE(a->type()->Is<ast::type::F32>());
ASSERT_TRUE(a->has_array_stride());
EXPECT_EQ(a->array_stride(), 16u);
}
TEST_F(ParserImplTest, TypeDecl_Array_MultipleDecorations_OneBlock) {
auto p = parser("[[stride(16), stride(32)]] array<f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t->Is<ast::type::Array>());
auto* a = t->As<ast::type::Array>();
ASSERT_TRUE(a->IsRuntimeArray());
ASSERT_TRUE(a->type()->Is<ast::type::F32>());
auto& decos = a->decorations();
ASSERT_EQ(decos.size(), 2u);
EXPECT_TRUE(decos[0]->Is<ast::StrideDecoration>());
EXPECT_EQ(decos[0]->As<ast::StrideDecoration>()->stride(), 16u);
EXPECT_TRUE(decos[1]->Is<ast::StrideDecoration>());
EXPECT_EQ(decos[1]->As<ast::StrideDecoration>()->stride(), 32u);
}
TEST_F(ParserImplTest, TypeDecl_Array_MultipleDecorations_MultipleBlocks) {
auto p = parser("[[stride(16)]] [[stride(32)]] array<f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t->Is<ast::type::Array>());
auto* a = t->As<ast::type::Array>();
ASSERT_TRUE(a->IsRuntimeArray());
ASSERT_TRUE(a->type()->Is<ast::type::F32>());
auto& decos = a->decorations();
ASSERT_EQ(decos.size(), 2u);
EXPECT_TRUE(decos[0]->Is<ast::StrideDecoration>());
EXPECT_EQ(decos[0]->As<ast::StrideDecoration>()->stride(), 16u);
EXPECT_TRUE(decos[1]->Is<ast::StrideDecoration>());
EXPECT_EQ(decos[1]->As<ast::StrideDecoration>()->stride(), 32u);
}
TEST_F(ParserImplTest, TypeDecl_Array_Decoration_MissingArray) {
auto p = parser("[[stride(16)]] f32");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:3: unexpected decorations");
}
TEST_F(ParserImplTest, TypeDecl_Array_Decoration_MissingClosingAttr) {
auto p = parser("[[stride(16) array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:14: expected ']]' for decoration list");
}
TEST_F(ParserImplTest, TypeDecl_Array_Decoration_UnknownDecoration) {
auto p = parser("[[unknown 16]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:3: expected decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_MissingLeftParen) {
auto p = parser("[[stride 4)]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:10: expected '(' for stride decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_MissingRightParen) {
auto p = parser("[[stride(4]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:11: expected ')' for stride decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_MissingValue) {
auto p = parser("[[stride()]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(),
"1:10: expected signed integer literal for stride decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_InvalidValue) {
auto p = parser("[[stride(invalid)]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(),
"1:10: expected signed integer literal for stride decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_InvalidValue_Negative) {
auto p = parser("[[stride(-1)]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:10: stride decoration must be greater than 0");
}
TEST_F(ParserImplTest, TypeDecl_Array_Runtime) {
auto p = parser("array<u32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t->Is<ast::type::Array>());
auto* a = t->As<ast::type::Array>();
ASSERT_TRUE(a->IsRuntimeArray());
ASSERT_TRUE(a->type()->Is<ast::type::U32>());
}
TEST_F(ParserImplTest, TypeDecl_Array_BadType) {
auto p = parser("array<unknown, 3>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:7: unknown constructed type 'unknown'");
}
TEST_F(ParserImplTest, TypeDecl_Array_ZeroSize) {
auto p = parser("array<f32, 0>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:12: array size must be greater than 0");
}
TEST_F(ParserImplTest, TypeDecl_Array_NegativeSize) {
auto p = parser("array<f32, -1>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:12: array size must be greater than 0");
}
TEST_F(ParserImplTest, TypeDecl_Array_BadSize) {
auto p = parser("array<f32, invalid>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:12: expected signed integer literal for array size");
}
TEST_F(ParserImplTest, TypeDecl_Array_MissingLessThan) {
auto p = parser("array f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:7: expected '<' for array declaration");
}
TEST_F(ParserImplTest, TypeDecl_Array_MissingGreaterThan) {
auto p = parser("array<f32");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:10: expected '>' for array declaration");
}
TEST_F(ParserImplTest, TypeDecl_Array_MissingComma) {
auto p = parser("array<f32 3>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:11: expected '>' for array declaration");
}
struct MatrixData {
const char* input;
size_t columns;
size_t rows;
};
inline std::ostream& operator<<(std::ostream& out, MatrixData data) {
out << std::string(data.input);
return out;
}
class MatrixTest : public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixTest, Parse) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
EXPECT_TRUE(t->Is<ast::type::Matrix>());
auto* mat = t->As<ast::type::Matrix>();
EXPECT_EQ(mat->rows(), params.rows);
EXPECT_EQ(mat->columns(), params.columns);
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixTest,
testing::Values(MatrixData{"mat2x2<f32>", 2, 2},
MatrixData{"mat2x3<f32>", 2, 3},
MatrixData{"mat2x4<f32>", 2, 4},
MatrixData{"mat3x2<f32>", 3, 2},
MatrixData{"mat3x3<f32>", 3, 3},
MatrixData{"mat3x4<f32>", 3, 4},
MatrixData{"mat4x2<f32>", 4, 2},
MatrixData{"mat4x3<f32>", 4, 3},
MatrixData{"mat4x4<f32>", 4, 4}));
class MatrixMissingGreaterThanTest
: public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixMissingGreaterThanTest, Handles_Missing_GreaterThan) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:11: expected '>' for matrix");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixMissingGreaterThanTest,
testing::Values(MatrixData{"mat2x2<f32", 2, 2},
MatrixData{"mat2x3<f32", 2, 3},
MatrixData{"mat2x4<f32", 2, 4},
MatrixData{"mat3x2<f32", 3, 2},
MatrixData{"mat3x3<f32", 3, 3},
MatrixData{"mat3x4<f32", 3, 4},
MatrixData{"mat4x2<f32", 4, 2},
MatrixData{"mat4x3<f32", 4, 3},
MatrixData{"mat4x4<f32", 4, 4}));
class MatrixMissingLessThanTest : public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixMissingLessThanTest, Handles_Missing_GreaterThan) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:8: expected '<' for matrix");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixMissingLessThanTest,
testing::Values(MatrixData{"mat2x2 f32>", 2, 2},
MatrixData{"mat2x3 f32>", 2, 3},
MatrixData{"mat2x4 f32>", 2, 4},
MatrixData{"mat3x2 f32>", 3, 2},
MatrixData{"mat3x3 f32>", 3, 3},
MatrixData{"mat3x4 f32>", 3, 4},
MatrixData{"mat4x2 f32>", 4, 2},
MatrixData{"mat4x3 f32>", 4, 3},
MatrixData{"mat4x4 f32>", 4, 4}));
class MatrixBadType : public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixBadType, Handles_Unknown_Type) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:8: unknown constructed type 'unknown'");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixBadType,
testing::Values(MatrixData{"mat2x2<unknown>", 2, 2},
MatrixData{"mat2x3<unknown>", 2, 3},
MatrixData{"mat2x4<unknown>", 2, 4},
MatrixData{"mat3x2<unknown>", 3, 2},
MatrixData{"mat3x3<unknown>", 3, 3},
MatrixData{"mat3x4<unknown>", 3, 4},
MatrixData{"mat4x2<unknown>", 4, 2},
MatrixData{"mat4x3<unknown>", 4, 3},
MatrixData{"mat4x4<unknown>", 4, 4}));
class MatrixMissingType : public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixMissingType, Handles_Missing_Type) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:8: invalid type for matrix");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixMissingType,
testing::Values(MatrixData{"mat2x2<>", 2, 2},
MatrixData{"mat2x3<>", 2, 3},
MatrixData{"mat2x4<>", 2, 4},
MatrixData{"mat3x2<>", 3, 2},
MatrixData{"mat3x3<>", 3, 3},
MatrixData{"mat3x4<>", 3, 4},
MatrixData{"mat4x2<>", 4, 2},
MatrixData{"mat4x3<>", 4, 3},
MatrixData{"mat4x4<>", 4, 4}));
TEST_F(ParserImplTest, TypeDecl_Sampler) {
auto p = parser("sampler");
auto& mod = p->get_module();
auto* type = mod.create<ast::type::Sampler>(ast::type::SamplerKind::kSampler);
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
EXPECT_EQ(t.value, type);
ASSERT_TRUE(t->Is<ast::type::Sampler>());
ASSERT_FALSE(t->As<ast::type::Sampler>()->IsComparison());
}
TEST_F(ParserImplTest, TypeDecl_Texture_Old) {
auto p = parser("texture_sampled_cube<f32>");
auto& mod = p->get_module();
auto* type = mod.create<ast::type::SampledTexture>(
ast::type::TextureDimension::kCube, ty.f32);
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
EXPECT_EQ(t.value, type);
ASSERT_TRUE(t->Is<ast::type::Texture>());
ASSERT_TRUE(t->Is<ast::type::SampledTexture>());
ASSERT_TRUE(t->As<ast::type::SampledTexture>()->type()->Is<ast::type::F32>());
}
TEST_F(ParserImplTest, TypeDecl_Texture) {
auto p = parser("texture_cube<f32>");
auto& mod = p->get_module();
auto* type = mod.create<ast::type::SampledTexture>(
ast::type::TextureDimension::kCube, ty.f32);
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr);
EXPECT_EQ(t.value, type);
ASSERT_TRUE(t->Is<ast::type::Texture>());
ASSERT_TRUE(t->Is<ast::type::SampledTexture>());
ASSERT_TRUE(t->As<ast::type::SampledTexture>()->type()->Is<ast::type::F32>());
}
} // namespace
} // namespace wgsl
} // namespace reader
} // namespace tint