blob: b74a8c88a087f5371914f620b0e1a698c5288c68 [file] [log] [blame]
// Copyright 2023 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/ir/test_helper.h"
#include "gmock/gmock.h"
#include "src/tint/ast/case_selector.h"
#include "src/tint/ast/int_literal_expression.h"
#include "src/tint/constant/scalar.h"
namespace tint::ir {
namespace {
using namespace tint::number_suffixes; // NOLINT
using IR_BuilderImplTest = TestHelper;
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Add) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Add(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = add %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Increment) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.u32());
auto* expr = Increment("v1");
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, u32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:u32 = load %v1
%3:u32 = add %2, 1u
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundAdd) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.u32());
auto* expr = CompoundAssign("v1", 1_u, ast::BinaryOp::kAdd);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, u32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:u32 = load %v1
%3:u32 = add %2, 1u
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Subtract) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Sub(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = sub %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Decrement) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.i32());
auto* expr = Decrement("v1");
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, i32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:i32 = load %v1
%3:i32 = sub %2, 1i
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundSubtract) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.u32());
auto* expr = CompoundAssign("v1", 1_u, ast::BinaryOp::kSubtract);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, u32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:u32 = load %v1
%3:u32 = sub %2, 1u
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Multiply) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Mul(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = mul %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundMultiply) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.u32());
auto* expr = CompoundAssign("v1", 1_u, ast::BinaryOp::kMultiply);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, u32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:u32 = load %v1
%3:u32 = mul %2, 1u
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Div) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Div(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = div %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundDiv) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.u32());
auto* expr = CompoundAssign("v1", 1_u, ast::BinaryOp::kDivide);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, u32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:u32 = load %v1
%3:u32 = div %2, 1u
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Modulo) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Mod(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = mod %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundModulo) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.u32());
auto* expr = CompoundAssign("v1", 1_u, ast::BinaryOp::kModulo);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, u32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:u32 = load %v1
%3:u32 = mod %2, 1u
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_And) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = And(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = and %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundAnd) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.bool_());
auto* expr = CompoundAssign("v1", false, ast::BinaryOp::kAnd);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, bool, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:bool = load %v1
%3:bool = and %2, false
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Or) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Or(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = or %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundOr) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.bool_());
auto* expr = CompoundAssign("v1", false, ast::BinaryOp::kOr);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, bool, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:bool = load %v1
%3:bool = or %2, false
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Xor) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Xor(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = xor %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundXor) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.u32());
auto* expr = CompoundAssign("v1", 1_u, ast::BinaryOp::kXor);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, u32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:u32 = load %v1
%3:u32 = xor %2, 1u
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_LogicalAnd) {
Func("my_func", utils::Empty, ty.bool_(), utils::Vector{Return(true)});
auto* expr = If(LogicalAnd(Call("my_func"), false), Block());
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():bool {
%fn2 = block {
} -> %func_end true # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:bool = call my_func
} -> %fn5 # branch
%fn5 = if %1 [t: %fn6, f: %fn7, m: %fn8]
# true branch
%fn6 = block {
} -> %fn8 false # branch
# false branch
%fn7 = block {
} -> %fn8 %1 # branch
# if merge
%fn8 = block (%2:bool) {
} -> %fn9 # branch
%fn9 = if %2:bool [t: %fn10, f: %fn11, m: %fn12]
# true branch
%fn10 = block {
} -> %fn12 # branch
# false branch
%fn11 = block {
} -> %fn12 # branch
# if merge
%fn12 = block {
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_LogicalOr) {
Func("my_func", utils::Empty, ty.bool_(), utils::Vector{Return(true)});
auto* expr = If(LogicalOr(Call("my_func"), true), Block());
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():bool {
%fn2 = block {
} -> %func_end true # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:bool = call my_func
} -> %fn5 # branch
%fn5 = if %1 [t: %fn6, f: %fn7, m: %fn8]
# true branch
%fn6 = block {
} -> %fn8 %1 # branch
# false branch
%fn7 = block {
} -> %fn8 true # branch
# if merge
%fn8 = block (%2:bool) {
} -> %fn9 # branch
%fn9 = if %2:bool [t: %fn10, f: %fn11, m: %fn12]
# true branch
%fn10 = block {
} -> %fn12 # branch
# false branch
%fn11 = block {
} -> %fn12 # branch
# if merge
%fn12 = block {
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Equal) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Equal(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:bool = eq %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_NotEqual) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = NotEqual(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:bool = neq %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_LessThan) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = LessThan(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:bool = lt %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_GreaterThan) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = GreaterThan(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:bool = gt %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_LessThanEqual) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = LessThanEqual(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:bool = lte %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_GreaterThanEqual) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = GreaterThanEqual(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:bool = gte %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_ShiftLeft) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Shl(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = shiftl %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundShiftLeft) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.u32());
auto* expr = CompoundAssign("v1", 1_u, ast::BinaryOp::kShiftLeft);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, u32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:u32 = load %v1
%3:u32 = shiftl %2, 1u
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_ShiftRight) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Shr(Call("my_func"), 4_u);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():u32 {
%fn2 = block {
} -> %func_end 0u # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:u32 = call my_func
%tint_symbol:u32 = shiftr %1, 4u
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_CompoundShiftRight) {
GlobalVar("v1", builtin::AddressSpace::kPrivate, ty.u32());
auto* expr = CompoundAssign("v1", 1_u, ast::BinaryOp::kShiftRight);
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = block {
%v1:ptr<private, u32, read_write> = var
}
%fn2 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn3 = block {
%2:u32 = load %v1
%3:u32 = shiftr %2, 1u
store %v1, %3
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Compound) {
Func("my_func", utils::Empty, ty.f32(), utils::Vector{Return(0_f)});
auto* expr = LogicalAnd(LessThan(Call("my_func"), 2_f),
GreaterThan(2.5_f, Div(Call("my_func"), Mul(2.3_f, Call("my_func")))));
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func():f32 {
%fn2 = block {
} -> %func_end 0.0f # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%1:f32 = call my_func
%2:bool = lt %1, 2.0f
} -> %fn5 # branch
%fn5 = if %2 [t: %fn6, f: %fn7, m: %fn8]
# true branch
%fn6 = block {
%3:f32 = call my_func
%4:f32 = call my_func
%5:f32 = mul 2.29999995231628417969f, %4
%6:f32 = div %3, %5
%7:bool = gt 2.5f, %6
} -> %fn8 %7 # branch
# false branch
%fn7 = block {
} -> %fn8 %2 # branch
# if merge
%fn8 = block (%tint_symbol:bool) {
} -> %func_end # return
} %func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Compound_WithConstEval) {
Func("my_func", utils::Vector{Param("p", ty.bool_())}, ty.bool_(), utils::Vector{Return(true)});
auto* expr = Call("my_func", LogicalAnd(LessThan(2.4_f, 2_f),
GreaterThan(2.5_f, Div(10_f, Mul(2.3_f, 9.4_f)))));
WrapInFunction(expr);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()), R"(%fn1 = func my_func(%p:bool):bool {
%fn2 = block {
} -> %func_end true # return
} %func_end
%fn3 = func test_function():void [@compute @workgroup_size(1, 1, 1)] {
%fn4 = block {
%tint_symbol:bool = call my_func, false
} -> %func_end # return
} %func_end
)");
}
} // namespace
} // namespace tint::ir