blob: a6bdb1b1ccdc58c5a5996bc7994b151a37a4c339 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gtest/gtest.h"
#include "src/ast/array_accessor_expression.h"
#include "src/ast/binary_expression.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/bool_literal.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/scalar_constructor_expression.h"
#include "src/ast/sint_literal.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type_constructor_expression.h"
#include "src/ast/unary_op_expression.h"
#include "src/reader/wgsl/parser_impl.h"
#include "src/reader/wgsl/parser_impl_test_helper.h"
namespace tint {
namespace reader {
namespace wgsl {
namespace {
TEST_F(ParserImplTest, PrimaryExpression_Ident) {
auto p = parser("a");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::IdentifierExpression>());
auto* ident = e->As<ast::IdentifierExpression>();
EXPECT_EQ(ident->symbol(), p->get_module().RegisterSymbol("a"));
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl) {
auto p = parser("vec4<i32>(1, 2, 3, 4))");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::ConstructorExpression>());
ASSERT_TRUE(e->Is<ast::TypeConstructorExpression>());
auto* ty = e->As<ast::TypeConstructorExpression>();
ASSERT_EQ(ty->values().size(), 4u);
const auto& val = ty->values();
ASSERT_TRUE(val[0]->Is<ast::ConstructorExpression>());
ASSERT_TRUE(val[0]->Is<ast::ScalarConstructorExpression>());
auto* ident = val[0]->As<ast::ScalarConstructorExpression>();
ASSERT_TRUE(ident->literal()->Is<ast::SintLiteral>());
EXPECT_EQ(ident->literal()->As<ast::SintLiteral>()->value(), 1);
ASSERT_TRUE(val[1]->Is<ast::ConstructorExpression>());
ASSERT_TRUE(val[1]->Is<ast::ScalarConstructorExpression>());
ident = val[1]->As<ast::ScalarConstructorExpression>();
ASSERT_TRUE(ident->literal()->Is<ast::SintLiteral>());
EXPECT_EQ(ident->literal()->As<ast::SintLiteral>()->value(), 2);
ASSERT_TRUE(val[2]->Is<ast::ConstructorExpression>());
ASSERT_TRUE(val[2]->Is<ast::ScalarConstructorExpression>());
ident = val[2]->As<ast::ScalarConstructorExpression>();
ASSERT_TRUE(ident->literal()->Is<ast::SintLiteral>());
EXPECT_EQ(ident->literal()->As<ast::SintLiteral>()->value(), 3);
ASSERT_TRUE(val[3]->Is<ast::ConstructorExpression>());
ASSERT_TRUE(val[3]->Is<ast::ScalarConstructorExpression>());
ident = val[3]->As<ast::ScalarConstructorExpression>();
ASSERT_TRUE(ident->literal()->Is<ast::SintLiteral>());
EXPECT_EQ(ident->literal()->As<ast::SintLiteral>()->value(), 4);
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_ZeroConstructor) {
auto p = parser("vec4<i32>()");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::ConstructorExpression>());
ASSERT_TRUE(e->Is<ast::TypeConstructorExpression>());
auto* ty = e->As<ast::TypeConstructorExpression>();
ASSERT_EQ(ty->values().size(), 0u);
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidTypeDecl) {
auto p = parser("vec4<if>(2., 3., 4., 5.)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:6: invalid type for vector");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingLeftParen) {
auto p = parser("vec4<f32> 2., 3., 4., 5.)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:11: expected '(' for type constructor");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingRightParen) {
auto p = parser("vec4<f32>(2., 3., 4., 5.");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:25: expected ')' for type constructor");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidValue) {
auto p = parser("i32(if(a) {})");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:5: unable to parse argument expression");
}
TEST_F(ParserImplTest, PrimaryExpression_ConstLiteral_True) {
auto p = parser("true");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::ConstructorExpression>());
ASSERT_TRUE(e->Is<ast::ScalarConstructorExpression>());
auto* init = e->As<ast::ScalarConstructorExpression>();
ASSERT_TRUE(init->literal()->Is<ast::BoolLiteral>());
EXPECT_TRUE(init->literal()->As<ast::BoolLiteral>()->IsTrue());
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr) {
auto p = parser("(a == b)");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BinaryExpression>());
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingRightParen) {
auto p = parser("(a == b");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:8: expected ')'");
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingExpr) {
auto p = parser("()");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:2: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_InvalidExpr) {
auto p = parser("(if (a) {})");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:2: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Cast) {
auto p = parser("f32(1)");
auto& mod = p->get_module();
auto* f32 = mod.create<ast::type::F32>();
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::ConstructorExpression>());
ASSERT_TRUE(e->Is<ast::TypeConstructorExpression>());
auto* c = e->As<ast::TypeConstructorExpression>();
ASSERT_EQ(c->type(), f32);
ASSERT_EQ(c->values().size(), 1u);
ASSERT_TRUE(c->values()[0]->Is<ast::ConstructorExpression>());
ASSERT_TRUE(c->values()[0]->Is<ast::ScalarConstructorExpression>());
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast) {
auto p = parser("bitcast<f32>(1)");
auto& mod = p->get_module();
auto* f32 = mod.create<ast::type::F32>();
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BitcastExpression>());
auto* c = e->As<ast::BitcastExpression>();
ASSERT_EQ(c->type(), f32);
ASSERT_TRUE(c->expr()->Is<ast::ConstructorExpression>());
ASSERT_TRUE(c->expr()->Is<ast::ScalarConstructorExpression>());
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingGreaterThan) {
auto p = parser("bitcast<f32(1)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:12: expected '>' for bitcast expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingType) {
auto p = parser("bitcast<>(1)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:9: invalid type for bitcast expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_InvalidType) {
auto p = parser("bitcast<invalid>(1)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:9: unknown constructed type 'invalid'");
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingLeftParen) {
auto p = parser("bitcast<f32>1)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:13: expected '('");
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingRightParen) {
auto p = parser("bitcast<f32>(1");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:15: expected ')'");
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingExpression) {
auto p = parser("bitcast<f32>()");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:14: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_bitcast_InvalidExpression) {
auto p = parser("bitcast<f32>(if (a) {})");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:14: unable to parse expression");
}
} // namespace
} // namespace wgsl
} // namespace reader
} // namespace tint