blob: d08a23d65d8982e075765158fd56186411fc1de2 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/ast/alias.h"
#include "src/ast/array.h"
#include "src/ast/matrix.h"
#include "src/ast/sampler.h"
#include "src/reader/wgsl/parser_impl_test_helper.h"
#include "src/sem/sampled_texture_type.h"
namespace tint {
namespace reader {
namespace wgsl {
namespace {
TEST_F(ParserImplTest, TypeDecl_Invalid) {
auto p = parser("1234");
auto t = p->type_decl();
EXPECT_EQ(t.errored, false);
EXPECT_EQ(t.matched, false);
EXPECT_EQ(t.value, nullptr);
EXPECT_FALSE(p->has_error());
}
TEST_F(ParserImplTest, TypeDecl_Identifier) {
auto p = parser("A");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
auto* type_name = t.value->As<ast::TypeName>();
ASSERT_NE(type_name, nullptr);
EXPECT_EQ(p->builder().Symbols().Get("A"), type_name->name);
EXPECT_EQ(type_name->source.range, (Source::Range{{1u, 1u}, {1u, 2u}}));
}
TEST_F(ParserImplTest, TypeDecl_Bool) {
auto p = parser("bool");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_TRUE(t.value->Is<ast::Bool>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 5u}}));
}
TEST_F(ParserImplTest, TypeDecl_F32) {
auto p = parser("f32");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_TRUE(t.value->Is<ast::F32>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 4u}}));
}
TEST_F(ParserImplTest, TypeDecl_I32) {
auto p = parser("i32");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_TRUE(t.value->Is<ast::I32>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 4u}}));
}
TEST_F(ParserImplTest, TypeDecl_U32) {
auto p = parser("u32");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_TRUE(t.value->Is<ast::U32>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 4u}}));
}
struct VecData {
const char* input;
size_t count;
Source::Range range;
};
inline std::ostream& operator<<(std::ostream& out, VecData data) {
out << std::string(data.input);
return out;
}
class VecTest : public ParserImplTestWithParam<VecData> {};
TEST_P(VecTest, Parse) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
EXPECT_TRUE(t.value->Is<ast::Vector>());
EXPECT_EQ(t.value->As<ast::Vector>()->width, params.count);
EXPECT_EQ(t.value->source.range, params.range);
}
INSTANTIATE_TEST_SUITE_P(
ParserImplTest,
VecTest,
testing::Values(VecData{"vec2<f32>", 2, {{1u, 1u}, {1u, 10u}}},
VecData{"vec3<f32>", 3, {{1u, 1u}, {1u, 10u}}},
VecData{"vec4<f32>", 4, {{1u, 1u}, {1u, 10u}}}));
class VecMissingGreaterThanTest : public ParserImplTestWithParam<VecData> {};
TEST_P(VecMissingGreaterThanTest, Handles_Missing_GreaterThan) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:9: expected '>' for vector");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecMissingGreaterThanTest,
testing::Values(VecData{"vec2<f32", 2, {}},
VecData{"vec3<f32", 3, {}},
VecData{"vec4<f32", 4, {}}));
class VecMissingLessThanTest : public ParserImplTestWithParam<VecData> {};
TEST_P(VecMissingLessThanTest, Handles_Missing_GreaterThan) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: expected '<' for vector");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecMissingLessThanTest,
testing::Values(VecData{"vec2", 2, {}},
VecData{"vec3", 3, {}},
VecData{"vec4", 4, {}}));
class VecMissingType : public ParserImplTestWithParam<VecData> {};
TEST_P(VecMissingType, Handles_Missing_Type) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:6: invalid type for vector");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecMissingType,
testing::Values(VecData{"vec2<>", 2, {}},
VecData{"vec3<>", 3, {}},
VecData{"vec4<>", 4, {}}));
TEST_F(ParserImplTest, TypeDecl_Ptr) {
auto p = parser("ptr<function, f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Pointer>());
auto* ptr = t.value->As<ast::Pointer>();
ASSERT_TRUE(ptr->type->Is<ast::F32>());
ASSERT_EQ(ptr->storage_class, ast::StorageClass::kFunction);
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 19u}}));
}
TEST_F(ParserImplTest, TypeDecl_Ptr_WithAccess) {
auto p = parser("ptr<function, f32, read>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Pointer>());
auto* ptr = t.value->As<ast::Pointer>();
ASSERT_TRUE(ptr->type->Is<ast::F32>());
ASSERT_EQ(ptr->storage_class, ast::StorageClass::kFunction);
ASSERT_EQ(ptr->access, ast::Access::kRead);
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 25u}}));
}
TEST_F(ParserImplTest, TypeDecl_Ptr_ToVec) {
auto p = parser("ptr<function, vec2<f32>>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Pointer>());
auto* ptr = t.value->As<ast::Pointer>();
ASSERT_TRUE(ptr->type->Is<ast::Vector>());
ASSERT_EQ(ptr->storage_class, ast::StorageClass::kFunction);
auto* vec = ptr->type->As<ast::Vector>();
ASSERT_EQ(vec->width, 2u);
ASSERT_TRUE(vec->type->Is<ast::F32>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 25}}));
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingLessThan) {
auto p = parser("ptr private, f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: expected '<' for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingGreaterThanAfterType) {
auto p = parser("ptr<function, f32");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:18: expected '>' for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingGreaterThanAfterAccess) {
auto p = parser("ptr<function, f32, read");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:24: expected '>' for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingCommaAfterStorageClass) {
auto p = parser("ptr<function f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:14: expected ',' for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingCommaAfterAccess) {
auto p = parser("ptr<function, f32 read>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:19: expected '>' for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingStorageClass) {
auto p = parser("ptr<, f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: invalid storage class for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingType) {
auto p = parser("ptr<function,>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:14: invalid type for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingAccess) {
auto p = parser("ptr<function, i32, >");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:20: expected identifier for access control");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingParams) {
auto p = parser("ptr<>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: invalid storage class for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_BadStorageClass) {
auto p = parser("ptr<unknown, f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:5: invalid storage class for ptr declaration");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_BadAccess) {
auto p = parser("ptr<function, i32, unknown>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:20: invalid value for access control");
}
TEST_F(ParserImplTest, TypeDecl_Atomic) {
auto p = parser("atomic<f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Atomic>());
auto* atomic = t.value->As<ast::Atomic>();
ASSERT_TRUE(atomic->type->Is<ast::F32>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 12u}}));
}
TEST_F(ParserImplTest, TypeDecl_Atomic_ToVec) {
auto p = parser("atomic<vec2<f32>>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Atomic>());
auto* atomic = t.value->As<ast::Atomic>();
ASSERT_TRUE(atomic->type->Is<ast::Vector>());
auto* vec = atomic->type->As<ast::Vector>();
ASSERT_EQ(vec->width, 2u);
ASSERT_TRUE(vec->type->Is<ast::F32>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 18u}}));
}
TEST_F(ParserImplTest, TypeDecl_Atomic_MissingLessThan) {
auto p = parser("atomic f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:8: expected '<' for atomic declaration");
}
TEST_F(ParserImplTest, TypeDecl_Atomic_MissingGreaterThan) {
auto p = parser("atomic<f32");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:11: expected '>' for atomic declaration");
}
TEST_F(ParserImplTest, TypeDecl_Atomic_MissingType) {
auto p = parser("atomic<>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:8: invalid type for atomic declaration");
}
TEST_F(ParserImplTest, TypeDecl_Array_SintLiteralSize) {
auto p = parser("array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Array>());
auto* a = t.value->As<ast::Array>();
ASSERT_FALSE(a->IsRuntimeArray());
ASSERT_TRUE(a->type->Is<ast::F32>());
EXPECT_EQ(a->decorations.size(), 0u);
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 14u}}));
auto* size = a->count->As<ast::SintLiteralExpression>();
ASSERT_NE(size, nullptr);
EXPECT_EQ(size->ValueAsI32(), 5);
}
TEST_F(ParserImplTest, TypeDecl_Array_UintLiteralSize) {
auto p = parser("array<f32, 5u>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Array>());
auto* a = t.value->As<ast::Array>();
ASSERT_FALSE(a->IsRuntimeArray());
ASSERT_TRUE(a->type->Is<ast::F32>());
EXPECT_EQ(a->decorations.size(), 0u);
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 15u}}));
auto* size = a->count->As<ast::UintLiteralExpression>();
ASSERT_NE(size, nullptr);
EXPECT_EQ(size->ValueAsU32(), 5u);
}
TEST_F(ParserImplTest, TypeDecl_Array_ConstantSize) {
auto p = parser("array<f32, size>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Array>());
auto* a = t.value->As<ast::Array>();
ASSERT_FALSE(a->IsRuntimeArray());
ASSERT_TRUE(a->type->Is<ast::F32>());
EXPECT_EQ(a->decorations.size(), 0u);
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 17u}}));
auto* count_expr = a->count->As<ast::IdentifierExpression>();
ASSERT_NE(count_expr, nullptr);
EXPECT_EQ(p->builder().Symbols().NameFor(count_expr->symbol), "size");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride) {
auto p = parser("[[stride(16)]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Array>());
auto* a = t.value->As<ast::Array>();
ASSERT_FALSE(a->IsRuntimeArray());
ASSERT_TRUE(a->type->Is<ast::F32>());
auto* size = a->count->As<ast::SintLiteralExpression>();
ASSERT_NE(size, nullptr);
EXPECT_EQ(size->ValueAsI32(), 5);
ASSERT_EQ(a->decorations.size(), 1u);
auto* stride = a->decorations[0];
ASSERT_TRUE(stride->Is<ast::StrideDecoration>());
ASSERT_EQ(stride->As<ast::StrideDecoration>()->stride, 16u);
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 16u}, {1u, 29u}}));
}
TEST_F(ParserImplTest, TypeDecl_Array_Runtime_Stride) {
auto p = parser("[[stride(16)]] array<f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Array>());
auto* a = t.value->As<ast::Array>();
ASSERT_TRUE(a->IsRuntimeArray());
ASSERT_TRUE(a->type->Is<ast::F32>());
ASSERT_EQ(a->decorations.size(), 1u);
auto* stride = a->decorations[0];
ASSERT_TRUE(stride->Is<ast::StrideDecoration>());
ASSERT_EQ(stride->As<ast::StrideDecoration>()->stride, 16u);
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 16u}, {1u, 26u}}));
}
TEST_F(ParserImplTest, TypeDecl_Array_MultipleDecorations_OneBlock) {
auto p = parser("[[stride(16), stride(32)]] array<f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Array>());
auto* a = t.value->As<ast::Array>();
ASSERT_TRUE(a->IsRuntimeArray());
ASSERT_TRUE(a->type->Is<ast::F32>());
auto& decos = a->decorations;
ASSERT_EQ(decos.size(), 2u);
EXPECT_TRUE(decos[0]->Is<ast::StrideDecoration>());
EXPECT_EQ(decos[0]->As<ast::StrideDecoration>()->stride, 16u);
EXPECT_TRUE(decos[1]->Is<ast::StrideDecoration>());
EXPECT_EQ(decos[1]->As<ast::StrideDecoration>()->stride, 32u);
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 28u}, {1u, 38u}}));
}
TEST_F(ParserImplTest, TypeDecl_Array_MultipleDecorations_MultipleBlocks) {
auto p = parser("[[stride(16)]] [[stride(32)]] array<f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Array>());
auto* a = t.value->As<ast::Array>();
ASSERT_TRUE(a->IsRuntimeArray());
ASSERT_TRUE(a->type->Is<ast::F32>());
auto& decos = a->decorations;
ASSERT_EQ(decos.size(), 2u);
EXPECT_TRUE(decos[0]->Is<ast::StrideDecoration>());
EXPECT_EQ(decos[0]->As<ast::StrideDecoration>()->stride, 16u);
EXPECT_TRUE(decos[1]->Is<ast::StrideDecoration>());
EXPECT_EQ(decos[1]->As<ast::StrideDecoration>()->stride, 32u);
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 31u}, {1u, 41u}}));
}
TEST_F(ParserImplTest, TypeDecl_Array_Decoration_MissingArray) {
auto p = parser("[[stride(16)]] f32");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:3: unexpected decorations");
}
TEST_F(ParserImplTest, TypeDecl_Array_Decoration_MissingClosingAttr) {
auto p = parser("[[stride(16) array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:14: expected ']]' for decoration list");
}
TEST_F(ParserImplTest, TypeDecl_Array_Decoration_UnknownDecoration) {
auto p = parser("[[unknown 16]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:3: expected decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_MissingLeftParen) {
auto p = parser("[[stride 4)]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:10: expected '(' for stride decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_MissingRightParen) {
auto p = parser("[[stride(4]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:11: expected ')' for stride decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_MissingValue) {
auto p = parser("[[stride()]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(),
"1:10: expected signed integer literal for stride decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_InvalidValue) {
auto p = parser("[[stride(invalid)]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(),
"1:10: expected signed integer literal for stride decoration");
}
TEST_F(ParserImplTest, TypeDecl_Array_Stride_InvalidValue_Negative) {
auto p = parser("[[stride(-1)]] array<f32, 5>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:10: stride decoration must be greater than 0");
}
TEST_F(ParserImplTest, TypeDecl_Array_Runtime) {
auto p = parser("array<u32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Array>());
auto* a = t.value->As<ast::Array>();
ASSERT_TRUE(a->IsRuntimeArray());
ASSERT_TRUE(a->type->Is<ast::U32>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 11u}}));
}
TEST_F(ParserImplTest, TypeDecl_Array_Runtime_Vec) {
auto p = parser("array<vec4<u32>>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ASSERT_TRUE(t.value->Is<ast::Array>());
auto* a = t.value->As<ast::Array>();
ASSERT_TRUE(a->IsRuntimeArray());
ASSERT_TRUE(a->type->Is<ast::Vector>());
EXPECT_EQ(a->type->As<ast::Vector>()->width, 4u);
EXPECT_TRUE(a->type->As<ast::Vector>()->type->Is<ast::U32>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 17u}}));
}
TEST_F(ParserImplTest, TypeDecl_Array_BadSize) {
auto p = parser("array<f32, !>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:12: expected array size expression");
}
TEST_F(ParserImplTest, TypeDecl_Array_MissingSize) {
auto p = parser("array<f32,>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:11: expected array size expression");
}
TEST_F(ParserImplTest, TypeDecl_Array_MissingLessThan) {
auto p = parser("array f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:7: expected '<' for array declaration");
}
TEST_F(ParserImplTest, TypeDecl_Array_MissingGreaterThan) {
auto p = parser("array<f32");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:10: expected '>' for array declaration");
}
TEST_F(ParserImplTest, TypeDecl_Array_MissingComma) {
auto p = parser("array<f32 3>");
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:11: expected '>' for array declaration");
}
struct MatrixData {
const char* input;
size_t columns;
size_t rows;
Source::Range range;
};
inline std::ostream& operator<<(std::ostream& out, MatrixData data) {
out << std::string(data.input);
return out;
}
class MatrixTest : public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixTest, Parse) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
EXPECT_TRUE(t.value->Is<ast::Matrix>());
auto* mat = t.value->As<ast::Matrix>();
EXPECT_EQ(mat->rows, params.rows);
EXPECT_EQ(mat->columns, params.columns);
EXPECT_EQ(t.value->source.range, params.range);
}
INSTANTIATE_TEST_SUITE_P(
ParserImplTest,
MatrixTest,
testing::Values(MatrixData{"mat2x2<f32>", 2, 2, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat2x3<f32>", 2, 3, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat2x4<f32>", 2, 4, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat3x2<f32>", 3, 2, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat3x3<f32>", 3, 3, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat3x4<f32>", 3, 4, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat4x2<f32>", 4, 2, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat4x3<f32>", 4, 3, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat4x4<f32>", 4, 4, {{1u, 1u}, {1u, 12u}}}));
class MatrixMissingGreaterThanTest
: public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixMissingGreaterThanTest, Handles_Missing_GreaterThan) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:11: expected '>' for matrix");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixMissingGreaterThanTest,
testing::Values(MatrixData{"mat2x2<f32", 2, 2, {}},
MatrixData{"mat2x3<f32", 2, 3, {}},
MatrixData{"mat2x4<f32", 2, 4, {}},
MatrixData{"mat3x2<f32", 3, 2, {}},
MatrixData{"mat3x3<f32", 3, 3, {}},
MatrixData{"mat3x4<f32", 3, 4, {}},
MatrixData{"mat4x2<f32", 4, 2, {}},
MatrixData{"mat4x3<f32", 4, 3, {}},
MatrixData{"mat4x4<f32", 4, 4, {}}));
class MatrixMissingLessThanTest : public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixMissingLessThanTest, Handles_Missing_GreaterThan) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:8: expected '<' for matrix");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixMissingLessThanTest,
testing::Values(MatrixData{"mat2x2 f32>", 2, 2, {}},
MatrixData{"mat2x3 f32>", 2, 3, {}},
MatrixData{"mat2x4 f32>", 2, 4, {}},
MatrixData{"mat3x2 f32>", 3, 2, {}},
MatrixData{"mat3x3 f32>", 3, 3, {}},
MatrixData{"mat3x4 f32>", 3, 4, {}},
MatrixData{"mat4x2 f32>", 4, 2, {}},
MatrixData{"mat4x3 f32>", 4, 3, {}},
MatrixData{"mat4x4 f32>", 4, 4, {}}));
class MatrixMissingType : public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixMissingType, Handles_Missing_Type) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_decl();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:8: invalid type for matrix");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixMissingType,
testing::Values(MatrixData{"mat2x2<>", 2, 2, {}},
MatrixData{"mat2x3<>", 2, 3, {}},
MatrixData{"mat2x4<>", 2, 4, {}},
MatrixData{"mat3x2<>", 3, 2, {}},
MatrixData{"mat3x3<>", 3, 3, {}},
MatrixData{"mat3x4<>", 3, 4, {}},
MatrixData{"mat4x2<>", 4, 2, {}},
MatrixData{"mat4x3<>", 4, 3, {}},
MatrixData{"mat4x4<>", 4, 4, {}}));
TEST_F(ParserImplTest, TypeDecl_Sampler) {
auto p = parser("sampler");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_TRUE(t.value->Is<ast::Sampler>());
ASSERT_FALSE(t.value->As<ast::Sampler>()->IsComparison());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 8u}}));
}
TEST_F(ParserImplTest, TypeDecl_Texture) {
auto p = parser("texture_cube<f32>");
auto t = p->type_decl();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr);
ASSERT_TRUE(t.value->Is<ast::Texture>());
ASSERT_TRUE(t.value->Is<ast::SampledTexture>());
ASSERT_TRUE(t.value->As<ast::SampledTexture>()->type->Is<ast::F32>());
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 18u}}));
}
} // namespace
} // namespace wgsl
} // namespace reader
} // namespace tint