blob: 66136a24552a92e12f13e01296e72697cafb056d [file] [log] [blame]
// Copyright 2020 The Tint Authors. //
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/writer/spirv/builder.h"
#include <sstream>
#include <utility>
#include "spirv/unified1/spirv.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/binary_expression.h"
#include "src/ast/binding_decoration.h"
#include "src/ast/bool_literal.h"
#include "src/ast/builtin_decoration.h"
#include "src/ast/call_expression.h"
#include "src/ast/constructor_expression.h"
#include "src/ast/decorated_variable.h"
#include "src/ast/else_statement.h"
#include "src/ast/float_literal.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/if_statement.h"
#include "src/ast/int_literal.h"
#include "src/ast/location_decoration.h"
#include "src/ast/loop_statement.h"
#include "src/ast/return_statement.h"
#include "src/ast/scalar_constructor_expression.h"
#include "src/ast/set_decoration.h"
#include "src/ast/struct.h"
#include "src/ast/struct_member.h"
#include "src/ast/struct_member_offset_decoration.h"
#include "src/ast/type/array_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/pointer_type.h"
#include "src/ast/type/struct_type.h"
#include "src/ast/type/u32_type.h"
#include "src/ast/type/vector_type.h"
#include "src/ast/type_constructor_expression.h"
#include "src/ast/uint_literal.h"
#include "src/ast/variable_decl_statement.h"
namespace tint {
namespace writer {
namespace spirv {
namespace {
uint32_t size_of(const std::vector<Instruction>& instructions) {
uint32_t size = 0;
for (const auto& inst : instructions)
size += inst.word_length();
return size;
}
uint32_t pipeline_stage_to_execution_model(ast::PipelineStage stage) {
SpvExecutionModel model = SpvExecutionModelVertex;
switch (stage) {
case ast::PipelineStage::kFragment:
model = SpvExecutionModelFragment;
break;
case ast::PipelineStage::kVertex:
model = SpvExecutionModelVertex;
break;
case ast::PipelineStage::kCompute:
model = SpvExecutionModelGLCompute;
break;
case ast::PipelineStage::kNone:
model = SpvExecutionModelMax;
break;
}
return model;
}
} // namespace
Builder::Builder(ast::Module* mod) : mod_(mod), scope_stack_({}) {}
Builder::~Builder() = default;
bool Builder::Build() {
push_preamble(spv::Op::OpCapability, {Operand::Int(SpvCapabilityShader)});
push_preamble(spv::Op::OpCapability,
{Operand::Int(SpvCapabilityVulkanMemoryModel)});
for (const auto& imp : mod_->imports()) {
GenerateImport(imp.get());
}
push_preamble(spv::Op::OpMemoryModel,
{Operand::Int(SpvAddressingModelLogical),
Operand::Int(SpvMemoryModelVulkanKHR)});
for (const auto& var : mod_->global_variables()) {
if (!GenerateGlobalVariable(var.get())) {
return false;
}
}
for (const auto& func : mod_->functions()) {
if (!GenerateFunction(func.get())) {
return false;
}
}
for (const auto& ep : mod_->entry_points()) {
if (!GenerateEntryPoint(ep.get())) {
return false;
}
}
return true;
}
Operand Builder::result_op() {
return Operand::Int(next_id());
}
uint32_t Builder::total_size() const {
// The 5 covers the magic, version, generator, id bound and reserved.
uint32_t size = 5;
size += size_of(preamble_);
size += size_of(debug_);
size += size_of(annotations_);
size += size_of(types_);
for (const auto& func : functions_) {
size += func.word_length();
}
return size;
}
void Builder::iterate(std::function<void(const Instruction&)> cb) const {
for (const auto& inst : preamble_) {
cb(inst);
}
for (const auto& inst : debug_) {
cb(inst);
}
for (const auto& inst : annotations_) {
cb(inst);
}
for (const auto& inst : types_) {
cb(inst);
}
for (const auto& func : functions_) {
func.iterate(cb);
}
}
bool Builder::GenerateAssignStatement(ast::AssignmentStatement* assign) {
auto lhs_id = GenerateExpression(assign->lhs());
if (lhs_id == 0) {
return false;
}
auto rhs_id = GenerateExpression(assign->rhs());
if (rhs_id == 0) {
return false;
}
GenerateStore(lhs_id, rhs_id);
return true;
}
bool Builder::GenerateEntryPoint(ast::EntryPoint* ep) {
auto name = ep->name();
if (name.empty()) {
name = ep->function_name();
}
auto id = id_for_func_name(ep->function_name());
if (id == 0) {
error_ = "unable to find ID for function: " + ep->function_name();
return false;
}
auto stage = pipeline_stage_to_execution_model(ep->stage());
if (stage == SpvExecutionModelMax) {
error_ = "Unknown pipeline stage provided";
return false;
}
push_preamble(spv::Op::OpEntryPoint,
{Operand::Int(stage), Operand::Int(id), Operand::String(name)});
return true;
}
uint32_t Builder::GenerateExpression(ast::Expression* expr) {
if (expr->IsBinary()) {
return GenerateBinaryExpression(expr->AsBinary());
}
if (expr->IsConstructor()) {
return GenerateConstructorExpression(expr->AsConstructor(), false);
}
if (expr->IsIdentifier()) {
return GenerateIdentifierExpression(expr->AsIdentifier());
}
error_ = "unknown expression type";
return 0;
}
uint32_t Builder::GenerateExpressionAndLoad(ast::Expression* expr) {
auto id = GenerateExpression(expr);
if (id == 0) {
return false;
}
// Only need to load identifiers
if (!expr->IsIdentifier()) {
return id;
}
if (spirv_id_to_variable_.find(id) == spirv_id_to_variable_.end()) {
error_ = "missing generated ID for variable";
return 0;
}
auto* var = spirv_id_to_variable_[id];
if (var->is_const()) {
return id;
}
auto type_id = GenerateTypeIfNeeded(expr->result_type());
auto result = result_op();
auto result_id = result.to_i();
push_function_inst(spv::Op::OpLoad,
{Operand::Int(type_id), result, Operand::Int(id)});
return result_id;
}
bool Builder::GenerateFunction(ast::Function* func) {
uint32_t func_type_id = GenerateFunctionTypeIfNeeded(func);
if (func_type_id == 0) {
return false;
}
auto func_op = result_op();
auto func_id = func_op.to_i();
push_debug(spv::Op::OpName,
{Operand::Int(func_id), Operand::String(func->name())});
auto ret_id = GenerateTypeIfNeeded(func->return_type());
if (ret_id == 0) {
return false;
}
// TODO(dsinclair): Handle parameters
auto definition_inst = Instruction{
spv::Op::OpFunction,
{Operand::Int(ret_id), func_op, Operand::Int(SpvFunctionControlMaskNone),
Operand::Int(func_type_id)}};
std::vector<Instruction> params;
push_function(Function{definition_inst, result_op(), std::move(params)});
scope_stack_.push_scope();
for (const auto& stmt : func->body()) {
if (!GenerateStatement(stmt.get())) {
return false;
}
}
scope_stack_.pop_scope();
func_name_to_id_[func->name()] = func_id;
return true;
}
uint32_t Builder::GenerateFunctionTypeIfNeeded(ast::Function* func) {
auto val = type_name_to_id_.find(func->type_name());
if (val != type_name_to_id_.end()) {
return val->second;
}
auto func_op = result_op();
auto func_type_id = func_op.to_i();
auto ret_id = GenerateTypeIfNeeded(func->return_type());
if (ret_id == 0) {
return 0;
}
// TODO(dsinclair): Handle parameters
push_type(spv::Op::OpTypeFunction, {func_op, Operand::Int(ret_id)});
type_name_to_id_[func->type_name()] = func_type_id;
return func_type_id;
}
bool Builder::GenerateFunctionVariable(ast::Variable* var) {
uint32_t init_id = 0;
if (var->has_constructor()) {
init_id = GenerateExpression(var->constructor());
if (init_id == 0) {
return false;
}
}
if (var->is_const()) {
if (!var->has_constructor()) {
error_ = "missing constructor for constant";
return false;
}
scope_stack_.set(var->name(), init_id);
spirv_id_to_variable_[init_id] = var;
return true;
}
auto result = result_op();
auto var_id = result.to_i();
auto sc = ast::StorageClass::kFunction;
ast::type::PointerType pt(var->type(), sc);
auto type_id = GenerateTypeIfNeeded(&pt);
if (type_id == 0) {
return false;
}
push_debug(spv::Op::OpName,
{Operand::Int(var_id), Operand::String(var->name())});
// TODO(dsinclair) We could detect if the constructor is fully const and emit
// an initializer value for the variable instead of doing the OpLoad.
push_function_var(
{Operand::Int(type_id), result, Operand::Int(ConvertStorageClass(sc))});
if (var->has_constructor()) {
GenerateStore(var_id, init_id);
}
scope_stack_.set(var->name(), var_id);
spirv_id_to_variable_[var_id] = var;
return true;
}
void Builder::GenerateStore(uint32_t to, uint32_t from) {
push_function_inst(spv::Op::OpStore, {Operand::Int(to), Operand::Int(from)});
}
bool Builder::GenerateGlobalVariable(ast::Variable* var) {
uint32_t init_id = 0;
if (var->has_constructor()) {
if (!var->constructor()->IsConstructor()) {
error_ = "scalar constructor expected";
return false;
}
init_id = GenerateConstructorExpression(var->constructor()->AsConstructor(),
true);
if (init_id == 0) {
return false;
}
}
if (var->is_const()) {
if (!var->has_constructor()) {
error_ = "missing constructor for constant";
return false;
}
scope_stack_.set_global(var->name(), init_id);
spirv_id_to_variable_[init_id] = var;
return true;
}
auto result = result_op();
auto var_id = result.to_i();
auto sc = var->storage_class() == ast::StorageClass::kNone
? ast::StorageClass::kPrivate
: var->storage_class();
ast::type::PointerType pt(var->type(), sc);
auto type_id = GenerateTypeIfNeeded(&pt);
if (type_id == 0) {
return false;
}
push_debug(spv::Op::OpName,
{Operand::Int(var_id), Operand::String(var->name())});
std::vector<Operand> ops = {Operand::Int(type_id), result,
Operand::Int(ConvertStorageClass(sc))};
if (var->has_constructor()) {
ops.push_back(Operand::Int(init_id));
}
push_type(spv::Op::OpVariable, std::move(ops));
if (var->IsDecorated()) {
for (const auto& deco : var->AsDecorated()->decorations()) {
if (deco->IsBuiltin()) {
push_debug(spv::Op::OpDecorate,
{Operand::Int(var_id), Operand::Int(SpvDecorationBuiltIn),
Operand::Int(ConvertBuiltin(deco->AsBuiltin()->value()))});
} else if (deco->IsLocation()) {
push_debug(spv::Op::OpDecorate,
{Operand::Int(var_id), Operand::Int(SpvDecorationLocation),
Operand::Int(deco->AsLocation()->value())});
} else if (deco->IsBinding()) {
push_debug(spv::Op::OpDecorate,
{Operand::Int(var_id), Operand::Int(SpvDecorationBinding),
Operand::Int(deco->AsBinding()->value())});
} else if (deco->IsSet()) {
push_debug(
spv::Op::OpDecorate,
{Operand::Int(var_id), Operand::Int(SpvDecorationDescriptorSet),
Operand::Int(deco->AsSet()->value())});
} else {
error_ = "unknown decoration";
return false;
}
}
}
scope_stack_.set_global(var->name(), var_id);
spirv_id_to_variable_[var_id] = var;
return true;
}
uint32_t Builder::GenerateIdentifierExpression(
ast::IdentifierExpression* expr) {
uint32_t val = 0;
if (expr->has_path()) {
auto* imp = mod_->FindImportByName(expr->path());
if (imp == nullptr) {
error_ = "unable to find import for " + expr->path();
return 0;
}
val = imp->GetIdForMethod(expr->name());
if (val == 0) {
error_ = "unable to lookup: " + expr->name() + " in " + expr->path();
}
} else if (!scope_stack_.get(expr->name(), &val)) {
error_ = "unable to find name for identifier: " + expr->name();
return 0;
}
return val;
}
void Builder::GenerateImport(ast::Import* imp) {
auto result = result_op();
auto id = result.to_i();
push_preamble(spv::Op::OpExtInstImport,
{result, Operand::String(imp->path())});
import_name_to_id_[imp->name()] = id;
}
uint32_t Builder::GenerateConstructorExpression(
ast::ConstructorExpression* expr,
bool is_global_init) {
if (expr->IsScalarConstructor()) {
return GenerateLiteralIfNeeded(expr->AsScalarConstructor()->literal());
}
if (expr->IsTypeConstructor()) {
auto* init = expr->AsTypeConstructor();
auto type_id = GenerateTypeIfNeeded(init->type());
if (type_id == 0) {
return 0;
}
std::ostringstream out;
out << "__const";
std::vector<Operand> ops;
bool constructor_is_const = true;
for (const auto& e : init->values()) {
if (!e->IsConstructor()) {
if (is_global_init) {
error_ = "constructor must be a constant expression";
return 0;
}
constructor_is_const = false;
}
auto id =
GenerateConstructorExpression(e->AsConstructor(), is_global_init);
if (id == 0) {
return 0;
}
out << "_" << id;
ops.push_back(Operand::Int(id));
}
auto str = out.str();
auto val = const_to_id_.find(str);
if (val != const_to_id_.end()) {
return val->second;
}
auto result = result_op();
ops.insert(ops.begin(), result);
ops.insert(ops.begin(), Operand::Int(type_id));
const_to_id_[str] = result.to_i();
if (constructor_is_const) {
push_type(spv::Op::OpConstantComposite, ops);
} else {
push_function_inst(spv::Op::OpCompositeConstruct, ops);
}
return result.to_i();
}
error_ = "unknown constructor expression";
return 0;
}
uint32_t Builder::GenerateLiteralIfNeeded(ast::Literal* lit) {
auto type_id = GenerateTypeIfNeeded(lit->type());
if (type_id == 0) {
return 0;
}
auto name = lit->name();
auto val = const_to_id_.find(name);
if (val != const_to_id_.end()) {
return val->second;
}
auto result = result_op();
auto result_id = result.to_i();
if (lit->IsBool()) {
if (lit->AsBool()->IsTrue()) {
push_type(spv::Op::OpConstantTrue, {Operand::Int(type_id), result});
} else {
push_type(spv::Op::OpConstantFalse, {Operand::Int(type_id), result});
}
} else if (lit->IsInt()) {
push_type(spv::Op::OpConstant, {Operand::Int(type_id), result,
Operand::Int(lit->AsInt()->value())});
} else if (lit->IsUint()) {
push_type(spv::Op::OpConstant, {Operand::Int(type_id), result,
Operand::Int(lit->AsUint()->value())});
} else if (lit->IsFloat()) {
push_type(spv::Op::OpConstant, {Operand::Int(type_id), result,
Operand::Float(lit->AsFloat()->value())});
} else {
error_ = "unknown literal type";
return 0;
}
const_to_id_[name] = result_id;
return result_id;
}
uint32_t Builder::GenerateBinaryExpression(ast::BinaryExpression* expr) {
auto lhs_id = GenerateExpressionAndLoad(expr->lhs());
if (lhs_id == 0) {
return 0;
}
auto rhs_id = GenerateExpressionAndLoad(expr->rhs());
if (rhs_id == 0) {
return 0;
}
auto result = result_op();
auto result_id = result.to_i();
auto type_id = GenerateTypeIfNeeded(expr->result_type());
if (type_id == 0) {
return 0;
}
// Handle int and float and the vectors of those types. Other types
// should have been rejected by validation.
auto* lhs_type = expr->lhs()->result_type();
auto* rhs_type = expr->rhs()->result_type();
bool lhs_is_float_or_vec = lhs_type->is_float_scalar_or_vector();
bool lhs_is_unsigned = lhs_type->is_unsigned_scalar_or_vector();
spv::Op op = spv::Op::OpNop;
if (expr->IsAnd()) {
op = spv::Op::OpBitwiseAnd;
} else if (expr->IsAdd()) {
op = lhs_is_float_or_vec ? spv::Op::OpFAdd : spv::Op::OpIAdd;
} else if (expr->IsDivide()) {
if (lhs_is_float_or_vec) {
op = spv::Op::OpFDiv;
} else if (lhs_is_unsigned) {
op = spv::Op::OpUDiv;
} else {
op = spv::Op::OpSDiv;
}
} else if (expr->IsEqual()) {
op = lhs_is_float_or_vec ? spv::Op::OpFOrdEqual : spv::Op::OpIEqual;
} else if (expr->IsGreaterThan()) {
if (lhs_is_float_or_vec) {
op = spv::Op::OpFOrdGreaterThan;
} else if (lhs_is_unsigned) {
op = spv::Op::OpUGreaterThan;
} else {
op = spv::Op::OpSGreaterThan;
}
} else if (expr->IsGreaterThanEqual()) {
if (lhs_is_float_or_vec) {
op = spv::Op::OpFOrdGreaterThanEqual;
} else if (lhs_is_unsigned) {
op = spv::Op::OpUGreaterThanEqual;
} else {
op = spv::Op::OpSGreaterThanEqual;
}
} else if (expr->IsLessThan()) {
if (lhs_is_float_or_vec) {
op = spv::Op::OpFOrdLessThan;
} else if (lhs_is_unsigned) {
op = spv::Op::OpULessThan;
} else {
op = spv::Op::OpSLessThan;
}
} else if (expr->IsLessThanEqual()) {
if (lhs_is_float_or_vec) {
op = spv::Op::OpFOrdLessThanEqual;
} else if (lhs_is_unsigned) {
op = spv::Op::OpULessThanEqual;
} else {
op = spv::Op::OpSLessThanEqual;
}
} else if (expr->IsModulo()) {
if (lhs_is_float_or_vec) {
op = spv::Op::OpFMod;
} else if (lhs_is_unsigned) {
op = spv::Op::OpUMod;
} else {
op = spv::Op::OpSMod;
}
} else if (expr->IsMultiply()) {
if (lhs_type->is_integer_scalar_or_vector()) {
// If the left hand side is an integer then this _has_ to be OpIMul as
// there there is no other integer multiplication.
op = spv::Op::OpIMul;
} else if (lhs_type->is_float_scalar() && rhs_type->is_float_scalar()) {
// Float scalars multiply with OpFMul
op = spv::Op::OpFMul;
} else if (lhs_type->is_float_vector() && rhs_type->is_float_vector()) {
// Float vectors must be validated to be the same size and then use OpFMul
op = spv::Op::OpFMul;
} else if (lhs_type->is_float_scalar() && rhs_type->is_float_vector()) {
// Scalar * Vector we need to flip lhs and rhs types
// because OpVectorTimesScalar expects <vector>, <scalar>
std::swap(lhs_id, rhs_id);
op = spv::Op::OpVectorTimesScalar;
} else if (lhs_type->is_float_vector() && rhs_type->is_float_scalar()) {
// float vector * scalar
op = spv::Op::OpVectorTimesScalar;
} else if (lhs_type->is_float_scalar() && rhs_type->is_float_matrix()) {
// Scalar * Matrix we need to flip lhs and rhs types because
// OpMatrixTimesScalar expects <matrix>, <scalar>
std::swap(lhs_id, rhs_id);
op = spv::Op::OpMatrixTimesScalar;
} else if (lhs_type->is_float_matrix() && rhs_type->is_float_scalar()) {
// float matrix * scalar
op = spv::Op::OpMatrixTimesScalar;
} else if (lhs_type->is_float_vector() && rhs_type->is_float_matrix()) {
// float vector * matrix
op = spv::Op::OpVectorTimesMatrix;
} else if (lhs_type->is_float_matrix() && rhs_type->is_float_vector()) {
// float matrix * vector
op = spv::Op::OpMatrixTimesVector;
} else if (lhs_type->is_float_matrix() && rhs_type->is_float_matrix()) {
// float matrix * matrix
op = spv::Op::OpMatrixTimesMatrix;
} else {
return 0;
}
} else if (expr->IsNotEqual()) {
op = lhs_is_float_or_vec ? spv::Op::OpFOrdNotEqual : spv::Op::OpINotEqual;
} else if (expr->IsOr()) {
op = spv::Op::OpBitwiseOr;
} else if (expr->IsShiftLeft()) {
op = spv::Op::OpShiftLeftLogical;
} else if (expr->IsShiftRight()) {
op = spv::Op::OpShiftRightLogical;
} else if (expr->IsShiftRightArith()) {
op = spv::Op::OpShiftRightArithmetic;
} else if (expr->IsSubtract()) {
op = lhs_is_float_or_vec ? spv::Op::OpFSub : spv::Op::OpISub;
} else if (expr->IsXor()) {
op = spv::Op::OpBitwiseXor;
} else {
return 0;
}
push_function_inst(op, {Operand::Int(type_id), result, Operand::Int(lhs_id),
Operand::Int(rhs_id)});
return result_id;
}
uint32_t Builder::GenerateCallExpression(ast::CallExpression* expr) {
// TODO(dsinclair): Support regular function calls
if (!expr->func()->IsIdentifier() ||
!expr->func()->AsIdentifier()->has_path()) {
error_ = "function calls not supported yet.";
return 0;
}
auto* ident = expr->func()->AsIdentifier();
auto type_id = GenerateTypeIfNeeded(expr->func()->result_type());
if (type_id == 0) {
return 0;
}
auto set_iter = import_name_to_id_.find(ident->path());
if (set_iter == import_name_to_id_.end()) {
error_ = "unknown import " + ident->path();
return 0;
}
auto set_id = set_iter->second;
auto* imp = mod_->FindImportByName(ident->path());
if (imp == nullptr) {
error_ = "unknown import " + ident->path();
return 0;
}
auto inst_id = imp->GetIdForMethod(ident->name());
if (inst_id == 0) {
error_ = "unknown method " + ident->name();
return 0;
}
auto result = result_op();
auto result_id = result.to_i();
std::vector<Operand> ops{Operand::Int(type_id), result, Operand::Int(set_id),
Operand::Int(inst_id)};
for (const auto& param : expr->params()) {
auto id = GenerateExpression(param.get());
if (id == 0) {
return 0;
}
ops.push_back(Operand::Int(id));
}
push_function_inst(spv::Op::OpExtInst, std::move(ops));
return result_id;
}
bool Builder::GenerateConditionalBlock(
ast::Expression* cond,
const ast::StatementList& true_body,
size_t cur_else_idx,
const ast::ElseStatementList& else_stmts) {
auto cond_id = GenerateExpression(cond);
if (cond_id == 0) {
return false;
}
auto merge_block = result_op();
auto merge_block_id = merge_block.to_i();
push_function_inst(spv::Op::OpSelectionMerge,
{Operand::Int(merge_block_id),
Operand::Int(SpvSelectionControlMaskNone)});
auto true_block = result_op();
auto true_block_id = true_block.to_i();
// if there are no more else statements we branch on false to the merge block
// otherwise we branch to the false block
auto false_block_id =
cur_else_idx < else_stmts.size() ? next_id() : merge_block_id;
push_function_inst(spv::Op::OpBranchConditional,
{Operand::Int(cond_id), Operand::Int(true_block_id),
Operand::Int(false_block_id)});
// Output true block
push_function_inst(spv::Op::OpLabel, {true_block});
if (!GenerateStatementList(true_body)) {
return false;
}
// TODO(dsinclair): The branch should be optional based on how the
// StatementList ended ...
push_function_inst(spv::Op::OpBranch, {Operand::Int(merge_block_id)});
// Start the false block if needed
if (false_block_id != merge_block_id) {
push_function_inst(spv::Op::OpLabel, {Operand::Int(false_block_id)});
auto* else_stmt = else_stmts[cur_else_idx].get();
// Handle the else case by just outputting the statements.
if (!else_stmt->HasCondition()) {
if (!GenerateStatementList(else_stmt->body())) {
return false;
}
// TODO(dsinclair): The branch should be optional based on how the
// StatementList ended ...
push_function_inst(spv::Op::OpBranch, {Operand::Int(merge_block_id)});
} else {
if (!GenerateConditionalBlock(else_stmt->condition(), else_stmt->body(),
cur_else_idx + 1, else_stmts)) {
return false;
}
push_function_inst(spv::Op::OpBranch, {Operand::Int(merge_block_id)});
}
}
// Output the merge block
push_function_inst(spv::Op::OpLabel, {merge_block});
return true;
}
bool Builder::GenerateIfStatement(ast::IfStatement* stmt) {
if (!GenerateConditionalBlock(stmt->condition(), stmt->body(), 0,
stmt->else_statements())) {
return false;
}
return true;
}
bool Builder::GenerateReturnStatement(ast::ReturnStatement* stmt) {
if (stmt->has_value()) {
auto val_id = GenerateExpression(stmt->value());
if (val_id == 0) {
return false;
}
push_function_inst(spv::Op::OpReturnValue, {Operand::Int(val_id)});
} else {
push_function_inst(spv::Op::OpReturn, {});
}
return true;
}
bool Builder::GenerateLoopStatement(ast::LoopStatement* stmt) {
auto loop_header = result_op();
auto loop_header_id = loop_header.to_i();
push_function_inst(spv::Op::OpBranch, {Operand::Int(loop_header_id)});
push_function_inst(spv::Op::OpLabel, {loop_header});
auto merge_block = result_op();
auto merge_block_id = merge_block.to_i();
auto continue_block = result_op();
auto continue_block_id = continue_block.to_i();
auto body_block = result_op();
auto body_block_id = body_block.to_i();
push_function_inst(
spv::Op::OpLoopMerge,
{Operand::Int(merge_block_id), Operand::Int(continue_block_id),
Operand::Int(SpvLoopControlMaskNone)});
push_function_inst(spv::Op::OpBranch, {Operand::Int(body_block_id)});
push_function_inst(spv::Op::OpLabel, {body_block});
if (!GenerateStatementList(stmt->body())) {
return false;
}
push_function_inst(spv::Op::OpBranch, {Operand::Int(continue_block_id)});
push_function_inst(spv::Op::OpLabel, {continue_block});
if (!GenerateStatementList(stmt->continuing())) {
return false;
}
push_function_inst(spv::Op::OpBranch, {Operand::Int(loop_header_id)});
push_function_inst(spv::Op::OpLabel, {merge_block});
return true;
}
bool Builder::GenerateStatementList(const ast::StatementList& list) {
for (const auto& inst : list) {
if (!GenerateStatement(inst.get())) {
return false;
}
}
return true;
}
bool Builder::GenerateStatement(ast::Statement* stmt) {
if (stmt->IsAssign()) {
return GenerateAssignStatement(stmt->AsAssign());
}
if (stmt->IsIf()) {
return GenerateIfStatement(stmt->AsIf());
}
if (stmt->IsLoop()) {
return GenerateLoopStatement(stmt->AsLoop());
}
if (stmt->IsReturn()) {
return GenerateReturnStatement(stmt->AsReturn());
}
if (stmt->IsVariableDecl()) {
return GenerateVariableDeclStatement(stmt->AsVariableDecl());
}
error_ = "Unknown statement";
return false;
}
bool Builder::GenerateVariableDeclStatement(ast::VariableDeclStatement* stmt) {
return GenerateFunctionVariable(stmt->variable());
}
uint32_t Builder::GenerateTypeIfNeeded(ast::type::Type* type) {
if (type == nullptr) {
error_ = "attempting to generate type from null type";
return 0;
}
if (type->IsAlias()) {
return GenerateTypeIfNeeded(type->AsAlias()->type());
}
auto val = type_name_to_id_.find(type->type_name());
if (val != type_name_to_id_.end()) {
return val->second;
}
auto result = result_op();
auto id = result.to_i();
if (type->IsArray()) {
if (!GenerateArrayType(type->AsArray(), result)) {
return 0;
}
} else if (type->IsBool()) {
push_type(spv::Op::OpTypeBool, {result});
} else if (type->IsF32()) {
push_type(spv::Op::OpTypeFloat, {result, Operand::Int(32)});
} else if (type->IsI32()) {
push_type(spv::Op::OpTypeInt, {result, Operand::Int(32), Operand::Int(1)});
} else if (type->IsMatrix()) {
if (!GenerateMatrixType(type->AsMatrix(), result)) {
return 0;
}
} else if (type->IsPointer()) {
if (!GeneratePointerType(type->AsPointer(), result)) {
return 0;
}
} else if (type->IsStruct()) {
if (!GenerateStructType(type->AsStruct(), result)) {
return 0;
}
} else if (type->IsU32()) {
push_type(spv::Op::OpTypeInt, {result, Operand::Int(32), Operand::Int(0)});
} else if (type->IsVector()) {
if (!GenerateVectorType(type->AsVector(), result)) {
return 0;
}
} else if (type->IsVoid()) {
push_type(spv::Op::OpTypeVoid, {result});
} else {
error_ = "unable to convert type: " + type->type_name();
return 0;
}
type_name_to_id_[type->type_name()] = id;
return id;
}
bool Builder::GenerateArrayType(ast::type::ArrayType* ary,
const Operand& result) {
auto elem_type = GenerateTypeIfNeeded(ary->type());
if (elem_type == 0) {
return false;
}
if (ary->IsRuntimeArray()) {
push_type(spv::Op::OpTypeRuntimeArray, {result, Operand::Int(elem_type)});
} else {
ast::type::U32Type u32;
ast::IntLiteral ary_size(&u32, ary->size());
auto len_id = GenerateLiteralIfNeeded(&ary_size);
if (len_id == 0) {
return false;
}
push_type(spv::Op::OpTypeArray,
{result, Operand::Int(elem_type), Operand::Int(len_id)});
}
return true;
}
bool Builder::GenerateMatrixType(ast::type::MatrixType* mat,
const Operand& result) {
ast::type::VectorType col_type(mat->type(), mat->rows());
auto col_type_id = GenerateTypeIfNeeded(&col_type);
if (has_error()) {
return false;
}
push_type(spv::Op::OpTypeMatrix,
{result, Operand::Int(col_type_id), Operand::Int(mat->columns())});
return true;
}
bool Builder::GeneratePointerType(ast::type::PointerType* ptr,
const Operand& result) {
auto pointee_id = GenerateTypeIfNeeded(ptr->type());
if (pointee_id == 0) {
return false;
}
auto stg_class = ConvertStorageClass(ptr->storage_class());
if (stg_class == SpvStorageClassMax) {
error_ = "invalid storage class for pointer";
return false;
}
push_type(spv::Op::OpTypePointer,
{result, Operand::Int(stg_class), Operand::Int(pointee_id)});
return true;
}
bool Builder::GenerateStructType(ast::type::StructType* struct_type,
const Operand& result) {
auto struct_id = result.to_i();
auto* impl = struct_type->impl();
if (!struct_type->name().empty()) {
push_debug(spv::Op::OpName,
{Operand::Int(struct_id), Operand::String(struct_type->name())});
}
std::vector<Operand> ops;
ops.push_back(result);
if (impl->decoration() == ast::StructDecoration::kBlock) {
push_annot(spv::Op::OpDecorate,
{Operand::Int(struct_id), Operand::Int(SpvDecorationBlock)});
} else {
if (impl->decoration() != ast::StructDecoration::kNone) {
error_ = "unknown struct decoration";
return false;
}
}
auto& members = impl->members();
for (uint32_t i = 0; i < members.size(); ++i) {
auto mem_id = GenerateStructMember(struct_id, i, members[i].get());
if (mem_id == 0) {
return false;
}
ops.push_back(Operand::Int(mem_id));
}
push_type(spv::Op::OpTypeStruct, std::move(ops));
return true;
}
uint32_t Builder::GenerateStructMember(uint32_t struct_id,
uint32_t idx,
ast::StructMember* member) {
push_debug(spv::Op::OpMemberName, {Operand::Int(struct_id), Operand::Int(idx),
Operand::String(member->name())});
for (const auto& deco : member->decorations()) {
if (deco->IsOffset()) {
push_annot(spv::Op::OpMemberDecorate,
{Operand::Int(struct_id), Operand::Int(idx),
Operand::Int(SpvDecorationOffset),
Operand::Int(deco->AsOffset()->offset())});
} else {
error_ = "unknown struct member decoration";
return 0;
}
}
return GenerateTypeIfNeeded(member->type());
}
bool Builder::GenerateVectorType(ast::type::VectorType* vec,
const Operand& result) {
auto type_id = GenerateTypeIfNeeded(vec->type());
if (has_error()) {
return false;
}
push_type(spv::Op::OpTypeVector,
{result, Operand::Int(type_id), Operand::Int(vec->size())});
return true;
}
SpvStorageClass Builder::ConvertStorageClass(ast::StorageClass klass) const {
switch (klass) {
case ast::StorageClass::kInput:
return SpvStorageClassInput;
case ast::StorageClass::kOutput:
return SpvStorageClassOutput;
case ast::StorageClass::kUniform:
return SpvStorageClassUniform;
case ast::StorageClass::kWorkgroup:
return SpvStorageClassWorkgroup;
case ast::StorageClass::kUniformConstant:
return SpvStorageClassUniformConstant;
case ast::StorageClass::kStorageBuffer:
return SpvStorageClassStorageBuffer;
case ast::StorageClass::kImage:
return SpvStorageClassImage;
case ast::StorageClass::kPushConstant:
return SpvStorageClassPushConstant;
case ast::StorageClass::kPrivate:
return SpvStorageClassPrivate;
case ast::StorageClass::kFunction:
return SpvStorageClassFunction;
case ast::StorageClass::kNone:
break;
}
return SpvStorageClassMax;
}
SpvBuiltIn Builder::ConvertBuiltin(ast::Builtin builtin) const {
switch (builtin) {
case ast::Builtin::kPosition:
return SpvBuiltInPosition;
case ast::Builtin::kVertexIdx:
return SpvBuiltInVertexIndex;
case ast::Builtin::kInstanceIdx:
return SpvBuiltInInstanceIndex;
case ast::Builtin::kFrontFacing:
return SpvBuiltInFrontFacing;
case ast::Builtin::kFragCoord:
return SpvBuiltInFragCoord;
case ast::Builtin::kFragDepth:
return SpvBuiltInFragDepth;
case ast::Builtin::kNumWorkgroups:
return SpvBuiltInNumWorkgroups;
case ast::Builtin::kWorkgroupSize:
return SpvBuiltInWorkgroupSize;
case ast::Builtin::kLocalInvocationId:
return SpvBuiltInLocalInvocationId;
case ast::Builtin::kLocalInvocationIdx:
return SpvBuiltInLocalInvocationIndex;
case ast::Builtin::kGlobalInvocationId:
return SpvBuiltInGlobalInvocationId;
case ast::Builtin::kNone:
break;
}
return SpvBuiltInMax;
}
} // namespace spirv
} // namespace writer
} // namespace tint